Modification of Collagen Film via Surface Grafting of Taurine Molecular to Promote Corneal Nerve Repair and Epithelization Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method of Collagen-Taurine Material
2.3. XPS of Col and Col-Tau Film
2.4. FTIR of Col and Col-Tau film
2.5. Contact Angle (CA) on the Surface of Col and Col-Tau
2.6. Swelling Performance after Water Absorption of Col and Col-Tau
2.7. Optical Properties Test of Col and Col-Tau Film
2.8. Mechanical Performance of Col and Col-Tau Film
2.9. Proliferation of PC12 Neuronal Cells on Col and Col-Tau Film
2.10. HCECs Growth on the Surface of Col and Col-Tau
2.11. Histology
2.12. Statistical Analysis
3. Results and Discussion
3.1. X-ray Photoelectron Spectroscopy
3.2. Infrared Spectroscopy
3.3. Evaluation of Surface Contact Angle
3.4. Saturated Water Absorption and Swelling Properties
3.5. Transparency of the Collagen-Based Films
3.6. Mechanical Performance
3.7. The Metabolic Activity of PC12 Neuronal Cells on Col and Col-Tau
3.8. The HCECs Growth and Epithelization Process on Col-Tau Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Ahearne, M.; Fernández-Pérez, J.; Masterton, S.; Madden, P.W.; Bhattacharjee, P. Designing scaffolds for corneal regeneration. Adv. Funct. Mater. 2020, 30, 1908996. [Google Scholar] [CrossRef] [Green Version]
- Matthyssen, S.; van den Bogerd, B.; Dhubhghaill, S.N.; Koppen, C.; Zakaria, N. Corneal regeneration: A review of stromal replacements. Acta Biomater. 2018, 69, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Fagerholm, P.; Lagali, N.S.; Griffith, M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci. Transl. Med. 2010, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.L.; Lu, Y.B.; Wu, T.T.; Zhang, M.; Zhang, Y.J.; Jin, Y. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. Biomaterials 2013, 34, 6748–6759. [Google Scholar] [CrossRef] [PubMed]
- Spang, M.T.; Christman, K.L. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater. 2018, 68, 1–14. [Google Scholar] [CrossRef]
- Xie, L.J.; Ouyang, C.; Ji, J.P.; Wu, J.; Dong, X.J.; Hou, C.; Huang, T. Construction of bioengineered corneal stromal implants using an allogeneic cornea-derived matrix. Mater. Sci. C 2021, 120, 111673. [Google Scholar] [CrossRef]
- Komai, Y.; Ushiki, T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Investig. Ophthalmol. Vis. Sci. 1991, 32, 2244–2258. [Google Scholar]
- Jiang, H.; Zuo, Y.; Zhang, L.; Li, J.D.; Zhang, A.M.; Li, Y.B.; Yang, X. Property-based design: Optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea. J. Mater. Sci. Mater. Med. 2014, 25, 941–952. [Google Scholar] [CrossRef]
- Che, X.; Wu, H.; Jia, C.; Sun, H.; Ou, S.; Wang, J.; Jeyalatha, M.V.; He, X.; Yu, J.; Zuo, C.; et al. A novel tissue-engineered corneal stromal equivalent based on amniotic membrane and keratocytes. Investig. Ophthalmol. Vis. Sci. 2019, 60, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, L.; Wang, Y.J. A Novel Collagen Film with Micro-Rough Surface Structure for Corneal Epithelial Repair Fabricated by Freeze Drying Technique. Appl. Surf. Sci. 2014, 301, 396–400. [Google Scholar] [CrossRef]
- Ji, P.H.; Zhang, C.L.; Kong, Y.H.; Liu, H.Y.; Shi, L.S.; Guo, J.; Shi, L.; Yang, H.; Gu, Z.; Liu, Y. Collagen Film with Bionic Layered Structure and High Light Transmittance for Personalized Corneal Repair Fabricated by Controlled Solvent Evaporation Technique. J. Funct. Biomater. 2022, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Wu, M.H.; Ji, P.H.; Lv, H.L.; Deng, L.H. A collagen film with micro-rough surface can promote the corneal epithelization process for corneal repair. Int. J. Biol. Macromol. 2019, 121, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Whitford, C.; Studer, H.; Boote, C.; Meek, K.M.; Elsheikh, A. Biomechanical model of the human cornea: Considering shear stiffness and regional variation of collagen anisotropy and density. J. Mech. Behav. Biomed. Mater. 2015, 42, 76–87. [Google Scholar] [CrossRef]
- Dong, Q.W.; Wu, D.K.; Li, M.Q.; Dong, W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022, 76, 101782. [Google Scholar] [CrossRef]
- Bollag, W.B.; Olala, L.O.; Xie, D.; Lu, X.; Qin, H.; Choudhary, V.; Patel, R.; Bogorad, D.; Estes, A.; Watsky, M. Dioleoyl phosphatidylglycerol accelerates corneal epithelial wound healing. Investig. Ophthalmol. Vis. Sci. 2020, 61, 29. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.T.; Hao, R.; Du, J.; Wu, X.L.; Chen, X.; Zhang, Y.; Li, W.; Gu, Z.; Yang, H. A human cornea-on-a-chip for the study of epithelial wound healing by extracellular vesicles. iScience 2022, 25, 104200. [Google Scholar] [CrossRef]
- Wels, M.; Roels, D.; Raemdonck, K.; Smedt, S.C.; Sauvage, F. Challenges and strategies for the delivery of biologics to the cornea. J. Control. Release 2021, 333, 560–578. [Google Scholar] [CrossRef]
- Ljubimov, A.V.; Saghizadeh, M. Progress in corneal wound healing. Prog. Retin. Eye Res. 2015, 49, 17–45. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, L.; Long, K.; Wang, L.; Wan, Y.J. Preparation and characterization of a novel tobramycin-containing antibacterial collagen film for corneal tissue engineering. Acta Biomaterialia 2014, 10, 289–299. [Google Scholar] [CrossRef]
- Pantazaka, E.; Papadimitriou, E. Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochim. Biophys. Acta 2014, 1840, 2643–2650. [Google Scholar] [CrossRef] [PubMed]
- Zaki, H.F.; Salem, H.A.; Mohammed, F.E. Taurine: A promising agent of therapeutic potential in experimentally-induced arthritis. Egypt. Rheumatol. 2011, 33, 131–137. [Google Scholar] [CrossRef] [Green Version]
- El Idrissi, A. Taurine Regulation of Neuroendocrine Function. Adv. Exp. Med. Biol. 2019, 1155, 977–985. [Google Scholar] [PubMed]
- Froger, N.; Moutsimilli, L.; Cadetti, L.; Jammoul, F.; Wang, Q.P.; Fan, Y.C.; Gaucher, D.; Rosolen, S.G.; Neveux, N.; Cynober, L.; et al. Taurine: The comeback of a neutraceutical in the prevention of retinal degenerations. Prog. Retin. Eye Res. 2014, 41, 44–63. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Y.; Li, R.; Deng, S.W.; Qin, Q.S.; Ran, C.P.; Hao, Y.; Zhang, J.; Zhu, L. Mechanism of taurine reducing inflammation and organ injury in sepsis mice. Cell. Immunol. 2022, 375, 104503. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Zhang, Z.; Yang, Z.; Rao, B. The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis. Food Chem. Mol. Sci. 2022, 4, 10010620. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, R.; Camilo, M.E. Taurine: A conditionally essential amino acid in humans? An overview in health and disease. Nutr. Hosp. 2002, 17, 262–270. [Google Scholar] [PubMed]
- Ito, T.; Schaffer, S.W.; Azuma, J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012, 42, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.S.; Yang, D.X.; Li, X.F.; Li, W.P.; Zhang, Y.; Liu, W.L. Silencing PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced neuronal apoptosis via activation of PI3K/AKT signaling in PC12 cells. Life Sci. 2021, 265, 118806. [Google Scholar] [CrossRef]
- Shrestha, S.; Jang, S.R.; Shrestha, B.K.; Park, C.H.; Kim, C.S. Engineering 2D approaches fibrous platform incorporating turmeric and polyaniline nanoparticles to predict the expression of βIII-Tubulin and TREK-1 through qRT-PCR to detect neuronal differentiation of PC12 cells. Mater. Sci. Eng. C 2021, 127, 112176. [Google Scholar] [CrossRef]
- Liu, W.G.; Deng, C.; Mclauglin, C.R.; Fagerholm, P.; Lagali, N.S.; Heyne, B.; Scaiano, J.C.; Watsky, M.A.; Kato, Y.; Munger, R.; et al. Collagen-Phosphorylcholine Interpenetrating Network Hydrogels as Corneal Substitutes. Biomaterials 2009, 30, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
Sample | C (%) | O (%) | N (%) | S (%) | N/C | O/C |
---|---|---|---|---|---|---|
Col | 67.28 | 18.87 | 13.85 | 0 | 0.21 | 0.28 |
Col-Tau | 67.27 | 19.83 | 12.11 | 0.79 | 0.18 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, C.; Kong, Y.; Liu, H.; Guo, J.; Yang, H.; Deng, L. Modification of Collagen Film via Surface Grafting of Taurine Molecular to Promote Corneal Nerve Repair and Epithelization Process. J. Funct. Biomater. 2022, 13, 98. https://doi.org/10.3390/jfb13030098
Liu Y, Zhang C, Kong Y, Liu H, Guo J, Yang H, Deng L. Modification of Collagen Film via Surface Grafting of Taurine Molecular to Promote Corneal Nerve Repair and Epithelization Process. Journal of Functional Biomaterials. 2022; 13(3):98. https://doi.org/10.3390/jfb13030098
Chicago/Turabian StyleLiu, Yang, Chuanlei Zhang, Yanhui Kong, Huiyu Liu, Jia Guo, Hui Yang, and Linhong Deng. 2022. "Modification of Collagen Film via Surface Grafting of Taurine Molecular to Promote Corneal Nerve Repair and Epithelization Process" Journal of Functional Biomaterials 13, no. 3: 98. https://doi.org/10.3390/jfb13030098
APA StyleLiu, Y., Zhang, C., Kong, Y., Liu, H., Guo, J., Yang, H., & Deng, L. (2022). Modification of Collagen Film via Surface Grafting of Taurine Molecular to Promote Corneal Nerve Repair and Epithelization Process. Journal of Functional Biomaterials, 13(3), 98. https://doi.org/10.3390/jfb13030098