Dissolution Behavior of Hydrothermally Treated Hydroxyapatite–Titanium Nitride Films Coated on PEEK: In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Coating Procedures and Hydrothermal Treatment
2.3. Specimen Immersion in Simulated Body Fluid (SBF)
2.4. Coating Characteristic Evaluation
3. Results
3.1. Coating Characteristics
3.1.1. Crystallinity of Coatings
3.1.2. Chemical Composition of Coatings
3.1.3. Surface Morphology of Coatings
3.1.4. Surface Roughness of Coatings
3.2. Coating Dissolution Behavior
Calcium and Phosphorus Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toth, J.M.; Wang, M.; Estes, B.T.; Scifert, J.L.; Seim, H.B., 3rd; Turner, A.S. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006, 27, 324–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bathala, L.; Majeti, V.; Rachuri, N.; Singh, N.; Gedela, S. The Role of Polyether Ether Ketone (Peek) in Dentistry—A Review. J. Med. Life 2019, 12, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Suonan, A.; Zhou, J.; Yuan, Q.; Liu, L.; Zhao, X.; Lou, X.; Yang, C.; Li, D.; Zhang, Y.-G. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab. J. Chem. 2021, 14, 102977. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, L.; Yao, S.; Zhao, J.; Zhou, C.; Oates, T.W.; Weir, M.D.; Wu, J.; Xu, H.H.K. Review on Development and Dental Applications of Polyetheretherketone-Based Biomaterials and Restorations. Materials 2021, 14, 408. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Tang, T. Current strategies to improve the bioactivity of PEEK. Int. J. Mol. Sci. 2014, 15, 5426–5445. [Google Scholar] [CrossRef] [Green Version]
- Almasi, D.; Iqbal, N.; Sadeghi, M.; Sudin, I.; Abdul Kadir, M.R.; Kamarul, T. Preparation Methods for Improving PEEK’s Bioactivity for Orthopedic and Dental Application: A Review. Int. J. Biomater. 2016, 2016, 8202653. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, L.; Hou, Z.; Ye, X.; Gu, H.; Yan, G.; Shang, P. Physical Modification of Polyetheretherketone for Orthopedic Implants. Front. Mater. Sci. 2014, 8, 313–324. [Google Scholar] [CrossRef]
- Scarano, A.; Piattelli, M.; Vrespa, G.; Petrone, G.; Iezzi, G.; Piattelli, A. Bone healing around titanium and titanium nitride-coated dental implants with three surfaces: An experimental study in rats. Clin. Implant Dent. Relat. Res. 2003, 5, 103–111. [Google Scholar] [CrossRef]
- Ogiso, M.; Yamashita, Y.; Matsumoto, T. The process of physical weakening and dissolution of the HA-coated implant in bone and soft tissue. J. Dent. Res. 1998, 77, 1426–1434. [Google Scholar] [CrossRef]
- van Hove, R.P.; Sierevelt, I.N.; van Royen, B.J.; Nolte, P.A. Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature. BioMed Res. Int. 2015, 2015, 485975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.B.; Campbell, C.T.; Graham, D.J.; Ratner, B.D. Surface Characterization of Hydroxyapatite and Related Calcium Phosphates by XPS and TOF-SIMS. Anal. Chem. 2000, 72, 2886–2894. [Google Scholar] [CrossRef] [PubMed]
- Asri, R.I.M.; Harun, W.S.W.; Hassan, M.A.; Ghani, S.A.C.; Buyong, Z. A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 2016, 57, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Maxian, S.H.; Zawadsky, J.P.; Dunn, M.G. In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. J. Biomed. Mater. Res. 1993, 27, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Boonyawan, D.; Waruriya, P.; Suttiat, K. Characterization of titanium nitride–hydroxyapatite on PEEK for dental implants by co-axis target magnetron sputtering. Surf. Coat. Technol. 2016, 306, 164–170. [Google Scholar] [CrossRef]
- Material Data Center. Available online: https://www.materialdatacenter.com/ms/en/tradenames/Peek-Optima/Invibio®+Biomaterial+Solutions/PEEK-OPTIMA®+Natural+LT1/df67965d/6411 (accessed on 27 June 2022).
- Berg, S.; Nyberg, T. Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Film 2005, 476, 215–230. [Google Scholar] [CrossRef]
- Constantin, D.G.; Apreutesei, M.; Arvinte, R.; Marin, A.; Andrei, O.; Munteanu, D. Magnetron sputtering technique used for coatings deposition; technologies and applications. Technol. Appl. Recent 2011, 12, 29–33. [Google Scholar]
- Ivanova, A.; Surmeneva, M.; Grubova, I.; Sharonova, A.; Pichugin, V.F.; Chaikina, M.V.; Buck, V.; Prymak, O.; Epple, M.; Surmenev, R. Influence of the substrate bias on the stoichiometry and structure of RF-magnetron sputter-deposited silver containing calcium phosphate coatings. Mat.-Wiss. Werkstofftech. 2013, 44, 218–225. [Google Scholar] [CrossRef]
- Jansen, J.A.; Wolke, J.G.; Swann, S.; Van der Waerden, J.P.; de Groot, K. Application of magnetron sputtering for producing ceramic coatings on implant materials. Clin. Oral Implant. Res. 1993, 4, 28–34. [Google Scholar] [CrossRef]
- Wolke, J.G.; de Groot, K.; Jansen, J.A. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings. J. Biomed. Mater. Res. 1998, 39, 524–530. [Google Scholar] [CrossRef]
- Ozeki, K.; Mishima, A.; Yuhta, T.; Fukui, Y.; Aoki, H. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment. Biomed. Mater. Eng. 2003, 13, 451–463. [Google Scholar]
- Ozeki, K.; Aoki, H.; Fukui, Y. Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment. J. Biomed. Mater. Res. A 2006, 76, 605–613. [Google Scholar] [CrossRef]
- Tong, W.; Chen, J.; Cao, Y.; Lu, L.; Feng, J.; Zhang, X. Effect of water vapor pressure and temperature on the amorphous-to-crystalline HA conversion during heat treatment of HA coatings. J. Biomed. Mater. Res. 1997, 36, 242–245. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, K.H.; Agrawal, C.M.; Ong, J.L. Influence of post-deposition heating time and the presence of water vapor on sputter-coated calcium phosphate crystallinity. J. Dent. Res. 2003, 82, 833–837. [Google Scholar] [CrossRef]
- Yang, C.-W.; Lui, T.-S.; Chang, E. Low Temperature Crystallization and Structural Modification of Plasma-Sprayed Hydroxyapatite Coating with Hydrothermal Treatment. Adv. Mater. Res. 2007, 15–17, 147–152. [Google Scholar] [CrossRef]
- Buranapanich, V.; Boonyawan, D.; Sutiat, K.; Yavirach, P. Effect of temperature and treatment time of hydrothermal treatment on crystallization of titanium nitride-hydroxyapatite films coated on polyetheretherketone. In Proceedings of the AIP Conference Proceedings, Pattaya, Thailand, 26 October 2020; p. 080001. [Google Scholar]
- Xue, W.; Liu, X.; Zheng, X.; Ding, C. Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J. Biomed. Mater. Res. A 2005, 74, 553–561. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, L.; An, J. Crystallographic Characteristics of Hydroxylapatite in Hard Tissues of Cololabis saira. Crystals 2017, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, J.; Feng, J.; Cao, Y.; Deng, C.; Zhang, X. Dissolution and mineralization behaviors of HA coatings. Biomaterials 2003, 24, 4741–4748. [Google Scholar] [CrossRef]
- Van Dijk, K.; Schaeken, H.G.; Wolke, J.C.; Marée, C.H.; Habraken, F.H.; Verhoeven, J.; Jansen, J.A. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6A14V with RF magnetron sputtering. J. Biomed. Mater. Res. 1995, 29, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Nupangtha, W.; Boonyawan, D. Fabrication and Physical Properties of Titanium Nitride/Hydroxyapatite Composites on Polyether Ether Ketone by RF Magnetron Sputtering Technique. J. Phys. Conf. Ser. 2017, 901, 012131. [Google Scholar] [CrossRef]
- An, S.; In, J.-H.; Chang, H. Characteristics of the Deposition Rate per Unit Power on Pulsed-DC Magnetron Sputtering Source. Plasma Process. Polym. 2009, 6, 855–859. [Google Scholar] [CrossRef]
- Kelly, P.; Onifade, A.; Zhou, Y.; Clarke, G.; Audronis, M.; Bradley, J. The Influence of Pulse Frequency and Duty on the Deposition Rate in Pulsed Magnetron Sputtering. Plasma Process. Polym. 2007, 4, 246–252. [Google Scholar] [CrossRef]
- Chase, M.W. NIST-JANAF Thermochemical Tables, 4th ed.; American Chemical Society; American Institute of Physics; National Institute of Standards and Technology: Washington, DC, USA, 1998; 1951p. [Google Scholar]
- Shan, C.X.; Hou, X.; Choy, K.-L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol. 2008, 202, 2399–2402. [Google Scholar] [CrossRef]
- Tsou, H.-K.; Hsieh, P.-Y.; Chung, C.-J.; Tang, C.-H.; Shyr, T.-W.; He, J.-L. Low-temperature deposition of anatase TiO2 on medical grade polyetheretherketone to assist osseous integration. Surf. Coat. Technol. 2009, 204, 1121–1125. [Google Scholar] [CrossRef]
- Gross, K.; Gross, V.; Berndt, C. Thermal Analysis of Amorphous Phase in Hydroxyapatite Coatings. J. Am. Ceram. Soc. 2005, 81, 106–112. [Google Scholar] [CrossRef]
- Schepers, E.; de Clercq, M.; Ducheyne, P.; Kempeneers, R. Bioactive glass particulate material as a filler for bone lesions. J. Oral Rehabil. 1991, 18, 439–452. [Google Scholar] [CrossRef]
- Kumta, P.N.; Sfeir, C.; Lee, D.-H.; Olton, D.; Choi, D. Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization. Acta Biomater. 2005, 1, 65–83. [Google Scholar] [CrossRef]
- Ergun, C.; Liu, H.; Webster, T.J.; Olcay, E.; Yilmaz, S.; Sahin, F.C. Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher Ca/P ratios. J. Biomed. Mater. Res. 2008, 85, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yazici, H.; Ergun, C.; Webster, T.J.; Bermek, H. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 2008, 4, 1472–1479. [Google Scholar] [CrossRef]
- Burke, E.M.; Lucas, L.C. Dissolution kinetics of calcium phosphate coatings. Implant Dent. 1998, 7, 323–330. [Google Scholar] [CrossRef]
- Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005, 26, 4847–4855. [Google Scholar] [CrossRef] [PubMed]
- Paital, S.R.; Dahotre, N.B. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Mater. Sci. Eng. R Rep. 2009, 66, 1–70. [Google Scholar] [CrossRef]
- Recum, A.F.; Shannon, C.E.; Cannon, C.E.; Long, K.J.; Kooten, T.G.; Meyle, J. Surface roughness, porosity, and texture as modifiers of cellular adhesion. Tissue Eng. 1996, 2, 241–253. [Google Scholar] [CrossRef]
- Koonrungsesomboon, K.; Boonyawan, D.; Suttiat, K.; Yavirach, P. Effect of immersion time in simulated body fluid on adhesion strength of hydrothermally treated hydroxyapatite- titanium nitride films on polyetheretherketones. CMU J. Nat. Sci. 2021, 3, e2022042. [Google Scholar] [CrossRef]
- Tan, J.H.; Cheong, C.K.; Hey, H.W.D. Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: A systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Eur. Spine J. 2021, 30, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Bds, Z.K.; Bds, S.Z.; Bds, M.S. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review. J. Oral Implant. 2016, 42, 512–516. [Google Scholar] [CrossRef]
- Najeeb, S.; Khurshid, Z.; Matinlinna, J.P.; Siddiqui, F.; Nassani, M.Z.; Baroudi, K. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification-A Review. Int. J. Dent. 2015, 2015, 381759. [Google Scholar] [CrossRef] [Green Version]
- Anil, S.; Anand, P.; Alghamdi, H.; Jansen, J.A. Dental Implant Surface Enhancement and Osseointegration. In Implant Denistry—A Rapid Evolving Practic; IntechOpen: London, UK, 2011; pp. 83–108. [Google Scholar]
Material | Tensile Strength (Mpa) | Elastic Modulus (GPa) |
---|---|---|
Cortical bone | 104–121 | 14 |
Titanium PEEK-OPTIMA (LT1) [8] | 954–976 100 | 102–110 4.1 |
Solution | Na+ | K+ | Ca2+ | Mg2+ | HCO3− | Cl− | HPO42− | SO42− |
---|---|---|---|---|---|---|---|---|
Human body plasma | 142.0 | 5.0 | 2.5 | 1.5 | 27.0 | 103.0 | 1.0 | 0.5 |
SBF | 142.0 | 5.0 | 2.5 | 1.5 | 4.2 | 147.8 | 1.0 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonpok, S.; Koonrungsrisomboon, K.; Suttiat, K.; Yavirach, P.; Boonyawan, D. Dissolution Behavior of Hydrothermally Treated Hydroxyapatite–Titanium Nitride Films Coated on PEEK: In Vitro Study. J. Funct. Biomater. 2022, 13, 99. https://doi.org/10.3390/jfb13030099
Boonpok S, Koonrungsrisomboon K, Suttiat K, Yavirach P, Boonyawan D. Dissolution Behavior of Hydrothermally Treated Hydroxyapatite–Titanium Nitride Films Coated on PEEK: In Vitro Study. Journal of Functional Biomaterials. 2022; 13(3):99. https://doi.org/10.3390/jfb13030099
Chicago/Turabian StyleBoonpok, Siriwat, Kwanchanok Koonrungsrisomboon, Kullapop Suttiat, Piriya Yavirach, and Dhreerawan Boonyawan. 2022. "Dissolution Behavior of Hydrothermally Treated Hydroxyapatite–Titanium Nitride Films Coated on PEEK: In Vitro Study" Journal of Functional Biomaterials 13, no. 3: 99. https://doi.org/10.3390/jfb13030099
APA StyleBoonpok, S., Koonrungsrisomboon, K., Suttiat, K., Yavirach, P., & Boonyawan, D. (2022). Dissolution Behavior of Hydrothermally Treated Hydroxyapatite–Titanium Nitride Films Coated on PEEK: In Vitro Study. Journal of Functional Biomaterials, 13(3), 99. https://doi.org/10.3390/jfb13030099