Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope
Abstract
:1. Introduction
2. Pathophysiology and Molecular Basis of Psoriasis
3. Current Pharmacotherapy for the Management of Psoriasis
Combination Approach for Management of Psoriasis
4. Challenges in Topical Delivery of Anti-Psoriasis Drugs
5. Nanoscale Topical Pharmacotherapy in Effective Treatment of Psoriasis
5.1. Liposome
Clinical Investigations on Liposome-Based Pharmacotherapy
5.2. Niosomes
Clinical Investigations on Niosomes-Based Pharmacotherapy
5.3. Solid Lipid Nanoparticles
5.4. Nanostructured Lipid Carrier
5.5. Polymeric Nanoparticles
5.6. Nanoemulsion/Microemulsion-Based System
5.7. Metallic Nanoparticles
6. Targeted Pharmacotherapy in the Management of Psoriasis
6.1. Targeting through Serotonergic Receptors
6.2. Targeting through Dopamine Receptors
6.3. Targeting through microRNAs (miRNA-Based Targeting)
6.4. Targeting through CD44 Receptors
7. Conclusive Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Act | Acitrein |
AE | Aloe-emodin |
AgNPs | Silver nanoparticles |
CLSM | Confocal laser scanning microscopy |
Cs | Cyclosporine |
CT | Calcipotriol |
DCs | Dendritic cells |
DDS | Drug delivery systems |
DSW | Dead Sea Water |
GNPs | Gold nanoparticles |
hBD-2 | Human β defensin-2. |
IL | Interleukin |
IT | Isotretinoin |
KGF | keratinocytes growth factor. |
MNPs | Metallic nanoparticles. |
MTX | Methotrexate. |
NEG | Nanoemulgel |
NLCs | Nanostructured Lipid Carriers. |
NPs | Nanoparticles |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
PASI | Psoriasis area and the severity index |
PDGF | Platelet-derived growth factor |
PM | Polymeric micelles |
PNPs | Polymeric nanoparticles |
TAM | Tamoxifen |
Th cell | T helper cell |
TNF | Tumor necrosis factor |
ToPAS | Toronto psoriatic arthritic screening |
TRE | Tretinoin |
UCL | Ultra deformable cationic liposome |
ZnONPs | Zinc oxide nanoparticles |
References
- Sala, M.; Elaissari, A.; Fessi, H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J. Control. Release 2016, 239, 182–202. [Google Scholar] [CrossRef]
- Pradhan, M.; Singh, D.; Singh, M.R. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches. J. Control. Release 2013, 170, 380–395. [Google Scholar] [CrossRef]
- Mabuchi, T.; Chang, T.W.; Quinter, S.; Hwang, S.T. Chemokine receptors in the pathogenesis and therapy of psoriasis. J. Dermatol. Sci. 2012, 65, 4–11. [Google Scholar] [CrossRef]
- Global Report on Psoriasis. Available online: https://apps.who.int/iris/bitstream/handle/10665/204417/9789241565189_eng.pdf.psoriasis?sequence=1 (accessed on 30 October 2022).
- Boehncke, W.H.; Schon, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Aijaz, S.F.; Khan, S.J.; Azim, F.; Shakeel, C.S.; Hassan, U. Deep Learning Application for Effective Classification of Different Types of Psoriasis. J. Healthc. Eng. 2022, 2022, 7541583. [Google Scholar] [CrossRef]
- Facts and Statistics about Psoriasis. Available online: https://www.healthline.com/health/psoriasis/facts-statistics-infographic (accessed on 21 August 2022).
- American Academy of Dermatology. Psoriasis Resource Center. Available online: https://www.aad.org/public/diseases/scaly-skin/psoriasis (accessed on 1 November 2022).
- Menter, A.; Gottlieb, A.; Feldman, S.R.; Van Voorhees, A.S.; Leonardi, C.L.; Gordon, K.B.; Lebwohl, M.; Koo, J.Y.; Elmets, C.A.; Korman, N.J.; et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 2008, 58, 826–850. [Google Scholar] [CrossRef]
- Basavaraj, K.H.; Ashok, N.M.; Rashmi, R.; Praveen, T.K. The role of drugs in the induction and/or exacerbation of psoriasis. Int. J. Dermatol. 2010, 49, 1351–1361. [Google Scholar] [CrossRef]
- Reich, K.; Kruger, K.; Mossner, R.; Augustin, M. Epidemiology and clinical pattern of psoriatic arthritis in Germany: A prospective interdisciplinary epidemiological study of 1511 patients with plaque-type psoriasis. Br. J. Dermatol. 2009, 160, 1040–1047. [Google Scholar] [CrossRef]
- Schmitt, J.; Wozel, G. The psoriasis area and severity index is the adequate criterion to define severity in chronic plaque-type psoriasis. Dermatology 2005, 210, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Coates, L.C.; Aslam, T.; Al Balushi, F.; Burden, A.D.; Burden-Teh, E.; Caperon, A.R.; Cerio, R.; Chattopadhyay, C.; Chinoy, H.; Goodfield, M.J.; et al. Comparison of three screening tools to detect psoriatic arthritis in patients with psoriasis (CONTEST study). Br. J. Dermatol. 2013, 168, 802–807. [Google Scholar] [CrossRef]
- Cuesta-Montero, L.; Belinchon, I. Connective tissue diseases and psoriasis. Actas Dermosifiliogr. 2011, 102, 487–497. [Google Scholar] [CrossRef]
- Kim, J.; Krueger, J.G. The immunopathogenesis of psoriasis. Dermatol. Clin. 2015, 33, 13–23. [Google Scholar] [CrossRef]
- Nickoloff, B.J.; Qin, J.Z.; Nestle, F.O. Immunopathogenesis of psoriasis. Clin. Rev. Allergy Immunol. 2007, 33, 45–56. [Google Scholar] [CrossRef]
- Krueger, J.G.; Bowcock, A. Psoriasis pathophysiology: Current concepts of pathogenesis. Ann. Rheum. Dis. 2005, 64 (Suppl. S2), ii30–ii36. [Google Scholar] [CrossRef]
- Lowes, M.A.; Russell, C.B.; Martin, D.A.; Towne, J.E.; Krueger, J.G. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 2013, 34, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Viac, J.; Palacio, S.; Schmitt, D.; Claudy, A. Expression of vascular endothelial growth factor in normal epidermis, epithelial tumors and cultured keratinocytes. Arch. Dermatol. Res. 1997, 289, 158–163. [Google Scholar] [CrossRef]
- Ansel, J.C.; Tiesman, J.P.; Olerud, J.E.; Krueger, J.G.; Krane, J.F.; Tara, D.C.; Shipley, G.D.; Gilbertson, D.; Usui, M.L.; Hart, C.E. Human keratinocytes are a major source of cutaneous platelet-derived growth factor. J. Clin. Investig. 1993, 92, 671–678. [Google Scholar] [CrossRef]
- Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873. [Google Scholar] [CrossRef]
- Bowcock, A.M.; Krueger, J.G. Getting under the skin: The immunogenetics of psoriasis. Nat. Rev. Immunol. 2005, 5, 699–711. [Google Scholar] [CrossRef]
- Lowes, M.A.; Chamian, F.; Abello, M.V.; Fuentes-Duculan, J.; Lin, S.L.; Nussbaum, R.; Novitskaya, I.; Carbonaro, H.; Cardinale, I.; Kikuchi, T.; et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. USA 2005, 102, 19057–19062. [Google Scholar] [CrossRef]
- Lee, E.; Trepicchio, W.L.; Oestreicher, J.L.; Pittman, D.; Wang, F.; Chamian, F.; Dhodapkar, M.; Krueger, J.G. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 2004, 199, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Lee, E.; Lowes, M.A.; Haider, A.S.; Fuentes-Duculan, J.; Abello, M.V.; Chamian, F.; Cardinale, I.; Krueger, J.G. Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J. Investig. Dermatol. 2006, 126, 1590–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, J.G. The immunologic basis for the treatment of psoriasis with new biologic agents. J. Am. Acad. Dermatol. 2002, 46, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Nestle, F.O.; Conrad, C.; Tun-Kyi, A.; Homey, B.; Gombert, M.; Boyman, O.; Burg, G.; Liu, Y.J.; Gilliet, M. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 2005, 202, 135–143. [Google Scholar] [CrossRef]
- Hijnen, D.; Knol, E.F.; Gent, Y.Y.; Giovannone, B.; Beijn, S.J.; Kupper, T.S.; Bruijnzeel-Koomen, C.A.; Clark, R.A. CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-gamma, IL-13, IL-17, and IL-22. J. Investig. Dermatol. 2013, 133, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Purwar, R.; Kraus, M.; Werfel, T.; Wittmann, M. Modulation of keratinocyte-derived MMP-9 by IL-13: A possible role for the pathogenesis of epidermal inflammation. J. Investig. Dermatol. 2008, 128, 59–66. [Google Scholar] [CrossRef]
- Purwar, R.; Werfel, T.; Wittmann, M. IL-13-stimulated human keratinocytes preferentially attract CD4+CCR4+ T cells: Possible role in atopic dermatitis. J. Investig. Dermatol. 2006, 126, 1043–1051. [Google Scholar] [CrossRef] [Green Version]
- Cather, J.C.; Abramovits, W.; Menter, A. Cyclosporine and tacrolimus in dermatology. Dermatol. Clin. 2001, 19, 119–137. [Google Scholar] [CrossRef]
- Antignac, M.; Barrou, B.; Farinotti, R.; Lechat, P.; Urien, S. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br. J. Clin. Pharmacol. 2007, 64, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Stuetz, A.; Grassberger, M.; Meingassner, J.G. Pimecrolimus (Elidel, SDZ ASM 981)—Preclinical pharmacologic profile and skin selectivity. Semin. Cutan. Med. Surg. 2001, 20, 233–241. [Google Scholar] [CrossRef]
- Menter, A.; Korman, N.J.; Elmets, C.A.; Feldman, S.R.; Gelfand, J.M.; Gordon, K.B.; Gottlieb, A.; Koo, J.Y.; Lebwohl, M.; Lim, H.W.; et al. Guidelines of care for the management of psoriasis and psoriatic arthritis. Section 3. Guidelines of care for the management and treatment of psoriasis with topical therapies. J. Am. Acad. Dermatol. 2009, 60, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, C.O.; Burden, A.D. Current concepts in psoriasis and its treatment. Pharmacol. Ther. 2003, 99, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, M.; Singh, D.; Murthy, S.N.; Singh, M.R. Design, characterization and skin permeating potential of Fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids 2015, 101, 56–63. [Google Scholar] [CrossRef]
- Kragballe, K. Treatment of psoriasis with calcipotriol and other vitamin D analogues. J. Am. Acad. Dermatol. 1992, 27, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Fluhr, J.W.; Cavallotti, C.; Berardesca, E. Emollients, moisturizers, and keratolytic agents in psoriasis. Clin. Dermatol. 2008, 26, 380–386. [Google Scholar] [CrossRef]
- Federman, D.G.; Froelich, C.W.; Kirsner, R.S. Topical psoriasis therapy. Am. Fam. Physician 1999, 59, 957–962. [Google Scholar]
- Huber, C.; Christophers, E. “Keratolytic” effect of salicylic acid. Arch. Dermatol. Res. 1977, 257, 293–297. [Google Scholar] [CrossRef]
- Muller, K.H.; Pflugshaupt, C. Urea in dermatology I. Hautarzt 1989, 40 (Suppl. S9), 14–15. [Google Scholar]
- Mohandas, S.; Rai, R.; Srinivas, C.R. Halobetasol versus clobetasol: A study of potency. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 186–187. [Google Scholar]
- Fenton, C.; PLoSker, G.L. Calcipotriol/betamethasone dipropionate: A review of its use in the treatment of psoriasis vulgaris. Am. J. Clin. Dermatol. 2004, 5, 463–478. [Google Scholar] [CrossRef]
- Reid, D.C.; Kimball, A.B. Clobetasol propionate foam in the treatment of psoriasis. Expert Opin. Pharmacother. 2005, 6, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Chiricozzi, A.; Pitocco, R.; Saraceno, R.; Nistico, S.P.; Giunta, A.; Chimenti, S. New topical treatments for psoriasis. Expert Opin. Pharmacother. 2014, 15, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Laws, P.M.; Young, H.S. Topical treatment of psoriasis. Expert Opin. Pharmacother. 2010, 11, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Crim, C.; Pierre, L.N.; Daley-Yates, P.T. A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate. Clin. Ther. 2001, 23, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Pauporte, M.; Maibach, H.; Lowe, N.; Pugliese, M.; Friedman, D.J.; Mendelsohn, H.; Cargill, I.; Ramirez, R. Fluocinolone acetonide topical oil for scalp psoriasis. J. Dermatol. Treat. 2004, 15, 360–364. [Google Scholar] [CrossRef]
- Fowler, J.; Fowler, L. Physician and Patient Assessment of Triamcinolone Acetonide Spray for Steroid-responsive Dermatoses. J. Clin. Aesthet. Dermatol. 2010, 3, 27–31. [Google Scholar]
- Naldi, L.; Yawalkar, N.; Kaszuba, A.; Ortonne, J.P.; Morelli, P.; Rovati, S.; Mautone, G. Efficacy and safety of the Betamethasone valerate 0.1% plaster in mild-to-moderate chronic plaque psoriasis: A randomized, parallel-group, active-controlled, phase III study. Am. J. Clin. Dermatol. 2011, 12, 191–201. [Google Scholar] [CrossRef]
- OncoSec. What Is Combination Therapy? Available online: https://oncosec.com/2013/09/what-is-combination-therapy/ (accessed on 30 October 2022).
- Lebwohl, M.; Menter, A.; Koo, J.; Feldman, S.R. Combination therapy to treat moderate to severe psoriasis. J. Am. Acad. Dermatol. 2004, 50, 416–430. [Google Scholar] [CrossRef]
- van de Kerkhof, P.C. Therapeutic strategies: Rotational therapy and combinations. Clin. Exp. Dermatol. 2001, 26, 356–361. [Google Scholar] [CrossRef]
- Menter, M.A.; See, J.A.; Amend, W.J.; Ellis, C.N.; Krueger, G.G.; Lebwohl, M.; Morison, W.L.; Prystowsky, J.H.; Roenigk, H.H., Jr.; Shupack, J.L.; et al. Proceedings of the Psoriasis Combination and Rotation Therapy Conference. Deer Valley, Utah, 7–9 October 1994. J. Am. Acad. Dermatol. 1996, 34, 315–321. [Google Scholar] [CrossRef]
- Weinstein, G.D.; White, G.M. An approach to the treatment of moderate to severe psoriasis with rotational therapy. J. Am. Acad. Dermatol. 1993, 28, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Ortonne, J.P.; Kaufmann, R.; Lecha, M.; Goodfield, M. Efficacy of treatment with calcipotriol/betamethasone dipropionate followed by calcipotriol alone compared with tacalcitol for the treatment of psoriasis vulgaris: A randomised, double-blind trial. Dermatology 2004, 209, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.A.; Guenther, L.; Boyden, B.; Larsen, F.G.; Harvima, R.J.; Guilhou, J.J.; Kaufmann, R.; Rogers, S.; van de Kerkhof, P.C.; Hanssen, L.I.; et al. Early onset of action and efficacy of a combination of calcipotriene and betamethasone dipropionate in the treatment of psoriasis. J. Am. Acad. Dermatol. 2003, 48, 48–54. [Google Scholar] [CrossRef]
- Ruzicka, T.; Lorenz, B. Comparison of calcipotriol monotherapy and a combination of calcipotriol and betamethasone valerate after 2 weeks’ treatment with calcipotriol in the topical therapy of psoriasis vulgaris: A multicentre, double-blind, randomized study. Br. J. Dermatol. 1998, 138, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Austad, J.; Bjerke, J.R.; Gjertsen, B.T.; Helland, S.; Livden, J.K.; Morken, T.; Mork, N.J. Clobetasol propionate followed by calcipotriol is superior to calcipotriol alone in topical treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. 1998, 11, 19–24. [Google Scholar] [CrossRef]
- Katoh, N.; Kishimoto, S. Combination of calcipotriol and clobetasol propionate as a premixed ointment for the treatment of psoriasis. Eur. J. Dermatol. 2003, 13, 382–384. [Google Scholar]
- Salmhofer, W.; Maier, H.; Soyer, H.P.; Honigsmann, H.; Hodl, S. Double-blind, placebo-controlled, randomized, right-left study comparing calcipotriol monotherapy with a combined treatment of calcipotriol and diflucortolone valerate in chronic plaque psoriasis. Acta Derm. Venereol. Suppl. 2000, 80, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Rim, J.H.; Park, J.Y.; Choe, Y.B.; Youn, J.I. The efficacy of calcipotriol + acitretin combination therapy for psoriasis: Comparison with acitretin monotherapy. Am. J. Clin. Dermatol. 2003, 4, 507–510. [Google Scholar] [CrossRef]
- van de Kerkhof, P.C.; Cambazard, F.; Hutchinson, P.E.; Haneke, E.; Wong, E.; Souteyrand, P.; Damstra, R.J.; Combemale, P.; Neumann, M.H.; Chalmers, R.J.; et al. The effect of addition of calcipotriol ointment (50 micrograms/g) to acitretin therapy in psoriasis. Br. J. Dermatol. 1998, 138, 84–89. [Google Scholar] [CrossRef]
- Grossman, R.M.; Thivolet, J.; Claudy, A.; Souteyrand, P.; Guilhou, J.J.; Thomas, P.; Amblard, P.; Belaich, S.; de Belilovsky, C.; de la Brassinne, M.; et al. A novel therapeutic approach to psoriasis with combination calcipotriol ointment and very low-dose cyclosporine: Results of a multicenter placebo-controlled study. J. Am. Acad. Dermatol. 1994, 31, 68–74. [Google Scholar] [CrossRef]
- de Jong, E.M.; Mork, N.J.; Seijger, M.M.; De La Brassine, M.; Lauharanta, J.; Jansen, C.T.; Guilhou, J.J.; Guillot, B.; Ostrojic, A.; Souteyrand, P.; et al. The combination of calcipotriol and methotrexate compared with methotrexate and vehicle in psoriasis: Results of a multicentre placebo-controlled randomized trial. Br. J. Dermatol. 2003, 148, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.; Even-Chen, Z.; Lipets, I.; Pritulo, O.A.; Svyatenko, T.V.; Andrashko, Y.; Lebwohl, M.; Gottlieb, A. Pilot, multicenter, double-blind, randomized placebo-controlled bilateral comparative study of a combination of calcipotriene and nicotinamide for the treatment of psoriasis. J. Am. Acad. Dermatol. 2010, 63, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Guenther, L.C.; Poulin, Y.P.; Pariser, D.M. A comparison of tazarotene 0.1% gel once daily plus mometasone furoate 0.1% cream once daily versus calcipotriene 0.005% ointment twice daily in the treatment of plaque psoriasis. Clin. Ther. 2000, 22, 1225–1238. [Google Scholar] [CrossRef]
- Green, L.; Sadoff, W. A clinical evaluation of tazarotene 0.1% gel, with and without a high- or mid-high-potency corticosteroid, in patients with stable plaque psoriasis. J. Cutan. Med. Surg. 2002, 6, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Tiplica, G.S.; Salavastru, C.M. Mometasone furoate 0.1% and salicylic acid 5% vs. mometasone furoate 0.1% as sequential local therapy in psoriasis vulgaris. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 905–912. [Google Scholar] [CrossRef] [PubMed]
- van der Rhee, H.J.; Tijssen, J.G.; Herrmann, W.A.; Waterman, A.H.; Polano, M.K. Combined treatment of psoriasis with a new aromatic retinoid (Tigason) in low dosage orally and triamcinolone acetonide cream topically: A double-blind trial. Br. J. Dermatol. 1980, 102, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Thaci, D.; Ortonne, J.P.; Chimenti, S.; Ghislain, P.D.; Arenberger, P.; Kragballe, K.; Saurat, J.H.; Khemis, A.; Sprogel, P.; Esslinger, H.U.; et al. A phase IIIb, multicentre, randomized, double-blind, vehicle-controlled study of the efficacy and safety of adalimumab with and without calcipotriol/betamethasone topical treatment in patients with moderate to severe psoriasis: The BELIEVE study. Br. J. Dermatol. 2010, 163, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.J.; Prystowsky, J.H.; Bourget, T.; Edelstein, J.; Nychay, S.; Armstrong, R. Acitretin plus UVB therapy for psoriasis. Comparisons with placebo plus UVB and acitretin alone. J. Am. Acad. Dermatol. 1991, 24, 591–594. [Google Scholar] [CrossRef]
- Lauharanta, J.; Juvakoski, T.; Lassus, A. A clinical evaluation of the effects of an aromatic retinoid (Tigason), combination of retinoid and PUVA, and PUVA alone in severe psoriasis. Br. J. Dermatol. 1981, 104, 325–332. [Google Scholar] [CrossRef]
- Green, C.; Lakshmipathi, T.; Johnson, B.E.; Ferguson, J. A comparison of the efficacy and relapse rates of narrowband UVB (TL-01) monotherapy vs. etretinate (re-TL-01) vs. etretinate-PUVA (re-PUVA) in the treatment of psoriasis patients. Br. J. Dermatol. 1992, 127, 5–9. [Google Scholar] [CrossRef]
- Mahajan, R.; Kaur, I.; Kanwar, A. Methotrexate/narrowband UVB phototherapy combination vs. narrowband UVB phototherapy in the treatment of chronic plaque-type psoriasis—A randomized single-blinded placebo-controlled study. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Roussaki-Schulze, A.V.; Kouskoukis, C.; Klimi, E.; Zafiriou, E.; Galanos, A.; Rallis, E. Calcipotriol monotherapy versus calcipotriol plus UVA1 versus calcipotriol plus narrow-band UVB in the treatment of psoriasis. Drugs Exp. Clin. Res. 2005, 31, 169–174. [Google Scholar] [PubMed]
- Torras, H.; Aliaga, A.; Lopez-Estebaranz, J.L.; Hernandez, I.; Gardeazabal, J.; Quintanilla, E.; Mascaro, J.M. A combination therapy of calcipotriol cream and PUVA reduces the UVA dose and improves the response of psoriasis vulgaris. J. Dermatol. Treat. 2004, 15, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Jacobe, H.; Winterfield, L.; Kim, F.; Huet-Adams, B.; Cayce, R. The role of narrowband UV-B plus alefacept combination therapy in the treatment of psoriasis. Arch. Dermatol. 2008, 144, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Ring, J.; Kowalzick, L.; Christophers, E.; Schill, W.B.; Schopf, E.; Stander, M.; Wolff, H.H.; Altmeyer, P. Calcitriol 3 microg g-1 ointment in combination with ultraviolet B phototherapy for the treatment of plaque psoriasis: Results of a comparative study. Br. J. Dermatol. 2001, 144, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Woo, W.K.; McKenna, K.E. Combination TL01 ultraviolet B phototherapy and topical calcipotriol for psoriasis: A prospective randomized placebo-controlled clinical trial. Br. J. Dermatol. 2003, 149, 146–150. [Google Scholar] [CrossRef]
- Ramsay, C.A.; Schwartz, B.E.; Lowson, D.; Papp, K.; Bolduc, A.; Gilbert, M. Calcipotriol cream combined with twice weekly broad-band UVB phototherapy: A safe, effective and UVB-sparing antipsoriatric combination treatment. The Canadian Calcipotriol and UVB Study Group. Dermatology 2000, 200, 17–24. [Google Scholar] [CrossRef]
- Morganti, P.; Ruocco, E.; Wolf, R.; Ruocco, V. Percutaneous absorption and delivery systems3. Clin. Dermatol. 2001, 19, 489–501. [Google Scholar] [CrossRef]
- Katare, O.P.; Raza, K.; Singh, B.; Dogra, S. Novel drug delivery systems in topical treatment of psoriasis: Rigors and vigors. Indian J. Dermatol. Venereol. Leprol. 2010, 76, 612–621. [Google Scholar] [CrossRef]
- Wadhwa, S.; Singh, B.; Sharma, G.; Raza, K.; Katare, O.P. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv. 2016, 23, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Du Plessis, J.; Egbaria, K.; Weiner, N. Influence of formulation factors on the deposition of liposomal components into the different strata of the skin. Soc. Cosmet. Chem. 1992, 43, 93–100. [Google Scholar]
- Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci. 2017, 96, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Shen, L.N.; Wu, Z.H.; Zhao, J.H.; Feng, N.P. Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy. Int. J. Pharm. 2014, 471, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Desmet, E.; Bracke, S.; Forier, K.; Taevernier, L.; Stuart, M.C.; De Spiegeleer, B.; Raemdonck, K.; Van Gele, M.; Lambert, J. An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: Proof-of-concept in the treatment of psoriasis. Int. J. Pharm. 2016, 500, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Zhang, Y.; Zhou, X.K.; Yang, H.S.; Chen, X.C.; Wang, Y.S.; Wei, Y.Q.; Chen, L.J.; Hu, H.Z.; et al. Gene therapy for psoriasis in the K14-VEGF transgenic mouse model by topical transdermal delivery of interleukin-4 using ultradeformable cationic liposome. J. Gene Med. 2010, 12, 481–490. [Google Scholar] [CrossRef]
- Trotta, M.; Peira, E.; Carlotti, M.E.; Gallarate, M. Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm. 2004, 270, 119–125. [Google Scholar] [CrossRef]
- Srisuk, P.; Thongnopnua, P.; Raktanonchai, U.; Kanokpanont, S. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int. J. Pharm. 2012, 427, 426–434. [Google Scholar] [CrossRef]
- Dubey, V.; Mishra, D.; Dutta, T.; Nahar, M.; Saraf, D.K.; Jain, N.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release 2007, 123, 148–154. [Google Scholar] [CrossRef]
- Erdogan, M.; Wright, J.R., Jr.; McAlister, V.C. Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: Experimental studies in a murine model. Br. J. Dermatol. 2002, 146, 964–967. [Google Scholar] [CrossRef]
- Agarwal, R.; Katare, O.P.; Vyas, S.P. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int. J. Pharm. 2001, 228, 43–52. [Google Scholar] [CrossRef]
- Agarwal, R.; Saraswat, A.; Kaur, I.; Katare, O.P.; Kumar, B. A novelliposomal formulation of dithranol for psoriasis: Preliminary results. J. Dermatol. 2002, 29, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.O.; Ronholt, S.; Salte, R.D.; Jorgensen, L.; Thormann, T.; Basse, L.H.; Hansen, J.; Frokjaer, S.; Foged, C. Calcipotriol delivery into the skin with PEGylated liposomes. Eur. J. Pharm. Biopharm. 2012, 81, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Pooladanda, V.; Bulbake, U.; Doppalapudi, S.; Rafeeqi, T.A.; Godugu, C.; Khan, W. Liposphere mediated topical delivery of thymoquinone in the treatment of psoriasis. Nanomedicine 2017, 13, 2251–2262. [Google Scholar] [CrossRef] [PubMed]
- Walunj, M.; Doppalapudi, S.; Bulbake, U.; Khan, W. Preparation, characterization, and in vivo evaluation of cyclosporine cationic liposomes for the treatment of psoriasis. J. Liposome Res. 2020, 30, 68–79. [Google Scholar] [CrossRef]
- Wang, W.; Shu, G.F.; Lu, K.J.; Xu, X.L.; Sun, M.C.; Qi, J.; Huang, Q.L.; Tan, W.Q.; Du, Y.Z. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J. Nanobiotechnol. 2020, 18, 80. [Google Scholar] [CrossRef]
- Saka, R.; Jain, H.; Kommineni, N.; Chella, N.; Khan, W. Enhanced penetration and improved therapeutic efficacy of bexarotene via topical liposomal gel in imiquimod induced psoriatic plaque model in BALB/c mice. J. Drug Deliv. Sci. Technol. 2020, 58, 101691. [Google Scholar] [CrossRef]
- Jindal, S.; Awasthi, R.; Singhare, D.; Kulkarni, G.T. Topical delivery of Tacrolimus using liposome containing gel: An emerging and synergistic approach in management of psoriasis. Med. Hypotheses 2020, 142, 109838. [Google Scholar] [CrossRef]
- Kumar, R.; Dogra, S.; Amarji, B.; Singh, B.; Kumar, S.; Sharma; Vinay, K.; Mahajan, R.; Katare, O.P. Efficacy of Novel Topical Liposomal Formulation of Cyclosporine in Mild to Moderate Stable Plaque Psoriasis: A Randomized Clinical Trial. JAMA Dermatol. 2016, 152, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Saraswat, A.; Agarwal, R.; Katare, O.P.; Kaur, I.; Kumar, B. A randomized, double-blind, vehicle-controlled study of a novel liposomal dithranol formulation in psoriasis. J. Dermatol. Treat. 2007, 18, 40–45. [Google Scholar] [CrossRef]
- Fathalla, D.; Youssef, E.M.K.; Soliman, G.M. Liposomal and Ethosomal Gels for the Topical Delivery of Anthralin: Preparation, Comparative Evaluation and Clinical Assessment in Psoriatic Patients. Pharmaceutics 2020, 12, 446. [Google Scholar] [CrossRef]
- Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull. 2011, 34, 945–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamishehkar, H.; Rahimpour, Y.; Kouhsoltani, M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin. Drug Deliv. 2013, 10, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Moghddam, S.R.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; Nagpal, M.; Kaur, G. Development and Comparison of Nanosponge and Niosome based Gel for the Topical Delivery of Tazarotene. Pharm. Nanotechnol. 2016, 4, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gupta, M.; Mangal, S.; Agrawal, U.; Vyas, S.P. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif. Cells Nanomed. Biotechnol. 2016, 44, 825–834. [Google Scholar] [CrossRef]
- Parnami, N.; Garg, T.; Rath, G.; Goyal, A.K. Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy. Artif. Cells Nanomed. Biotechnol. 2014, 42, 406–412. [Google Scholar] [CrossRef]
- Bracke, S.; Carretero, M.; Guerrero-Aspizua, S.; Desmet, E.; Illera, N.; Navarro, M.; Lambert, J.; Del Rio, M. Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: Development of siRNA SECosome-based novel therapies. Exp. Dermatol. 2014, 23, 199–201. [Google Scholar] [CrossRef]
- Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol. 2014, 19, 160–163. [Google Scholar] [CrossRef]
- Marianecci, C.; Rinaldi, F.; Di Marzio, L.; Mastriota, M.; Pieretti, S.; Celia, C.; Paolino, D.; Iannone, M.; Fresta, M.; Carafa, M. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int. J. Nanomed. 2014, 9, 635–651. [Google Scholar] [CrossRef]
- Meng, S.; Sun, L.; Wang, L.; Lin, Z.; Liu, Z.; Xi, L.; Wang, Z.; Zheng, Y. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf. B Biointerfaces 2019, 182, 110352. [Google Scholar] [CrossRef]
- Al-Mahallawi, A.M.; Fares, A.R.; Abd-Elsalam, W.H. Enhanced Permeation of Methotrexate via Loading into Ultra-permeable Niosomal Vesicles: Fabrication, Statistical Optimization, Ex Vivo Studies, and In Vivo Skin Deposition and Tolerability. AAPS PharmSciTech 2019, 20, 171. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, P.K.; Devi, G.S.; Bhaskaran, S.; Sacchidanand, S. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies. Indian J. Dermatol. Venereol. Leprol. 2007, 73, 157–161. [Google Scholar] [CrossRef]
- Lakshmi, P.; Devi, S.; Bhaskaran, S. Clinical management of psoriasis using 0.25% niosomal methotrexate gel: A placebo controlled double blind study. Int. J. Dermatol. 2006, 3, 3. [Google Scholar]
- Ali, M.F.; Salah, M.; Rafea, M.; Saleh, N. Liposomal methotrexate hydrogel for treatment of localized psoriasis: Preparation, characterization and laser targeting. Med. Sci. Monit. 2008, 14, PI66–PI74. [Google Scholar] [PubMed]
- Jain, A.; Doppalapudi, S.; Domb, A.J.; Khan, W. Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J. Control. Release 2016, 243, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Abdelbary, A.A.; AbouGhaly, M.H. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box-Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int. J. Pharm. 2015, 485, 235–243. [Google Scholar] [CrossRef]
- Shah, K.A.; Date, A.A.; Joshi, M.D.; Patravale, V.B. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int. J. Pharm. 2007, 345, 163–171. [Google Scholar] [CrossRef]
- Muller, R.H.; Mader, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Wissing, S.A.; Muller, R.H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Santos Maia, C.; Mehnert, W.; Schaller, M.; Korting, H.C.; Gysler, A.; Haberland, A.; Schafer-Korting, M. Drug targeting by solid lipid nanoparticles for dermal use. J. Drug Target. 2002, 10, 489–495. [Google Scholar] [CrossRef]
- Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm. 2007, 328, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, R.; Harde, H.; Katariya, M.; Agrawal, S.; Jain, S. Solid lipid nanoparticles-loaded topical gel containing combination drugs: An approach to offset psoriasis. Expert Opin. Drug Deliv. 2014, 11, 1833–1847. [Google Scholar] [CrossRef] [PubMed]
- Bikkad, M.L.; Nathani, A.H.; Mandlik, S.K.; Shrotriya, S.N.; Ranpise, N.S. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery. J. Liposome Res. 2014, 24, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Madan, J.R.; Khude, P.A.; Dua, K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int. J. Pharm. Investig. 2014, 4, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, M.; Singh, D.; Singh, M.R. Influence of selected variables on fabrication of Triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. Artif. Cells Nanomed. Biotechnol. 2016, 44, 392–400. [Google Scholar] [CrossRef]
- Agrawal, U.; Gupta, M.; Vyas, S.P. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif. Cells Nanomed. Biotechnol. 2015, 43, 33–39. [Google Scholar] [CrossRef]
- Gambhire, M.; Bhalekar, M.; Shrivastava, B.J.P.C.J. Investigations in photostability of dithranol incorporated in solid lipid nanoparticles. Pharm. Chem. J. 2012, 46, 256–261. [Google Scholar] [CrossRef]
- Kim, S.T.; Jang, D.J.; Kim, J.H.; Park, J.Y.; Lim, J.S.; Lee, S.Y.; Lee, K.M.; Lim, S.J.; Kim, C.K. Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie 2009, 64, 510–514. [Google Scholar]
- Ridolfi, D.M.; Marcato, P.D.; Justo, G.Z.; Cordi, L.; Machado, D.; Duran, N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf. B Biointerfaces 2012, 93, 36–40. [Google Scholar] [CrossRef]
- Trombino, S.; Russo, R.; Mellace, S.; Varano, G.P.; Laganà, A.S.; Marcucci, F.; Cassano, R. Solid lipid nanoparticles made of trehalose monooleate for cyclosporin—A topic release. J. Drug Deliv. Sci. Technol. 2019, 49, 563–569. [Google Scholar] [CrossRef]
- Beloqui, A.; Solinis, M.A.; Rodriguez-Gascon, A.; Almeida, A.J.; Preat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016, 12, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 2013, 7, 41–55. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles and nanostructured lipid carriers. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Valencia, CA, USA, 2004; Volume 9, pp. 43–56. [Google Scholar]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002, 242, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. S1), S131–S155. [Google Scholar] [CrossRef] [PubMed]
- Loo, C.; Basri, M.; Ismail, R.; Lau, H.; Tejo, B.; Kanthimathi, M.; Hassan, H.; Choo, Y. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int. J. Nanomed. 2013, 8, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, Y.; Petkar, K.C.; Sawant, K.K. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int. J. Pharm. 2010, 401, 93–102. [Google Scholar] [CrossRef]
- Pinto, M.F.; Moura, C.C.; Nunes, C.; Segundo, M.A.; Costa Lima, S.A.; Reis, S. A new topical formulation for psoriasis: Development of methotrexate-loaded nanostructured lipid carriers. Int. J. Pharm. 2014, 477, 519–526. [Google Scholar] [CrossRef]
- Avasatthi, V.; Pawar, H.; Dora, C.P.; Bansod, P.; Gill, M.S.; Suresh, S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol. 2016, 21, 554–562. [Google Scholar] [CrossRef]
- Lin, Y.K.; Huang, Z.R.; Zhuo, R.Z.; Fang, J.Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int. J. Nanomed. 2010, 5, 117–128. [Google Scholar]
- Tripathi, P.; Kumar, A.; Jain, P.K.; Patel, J.R. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int. J. Biol. Macromol. 2018, 120, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Pople, P.V.; Singh, K.K. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus. Eur. J. Pharm. Biopharm. 2011, 79, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.K.; Baskaran, R.; Madheswaran, T.; Kim, J.O.; Yong, C.S.; Yoo, B.K. Technology. Preparation, characterization, and release study of tacrolimus-loaded liquid crystalline nanoparticles. J. Dispers. Sci. Technol. 2013, 34, 72–77. [Google Scholar] [CrossRef]
- Lapteva, M.; Mondon, K.; Moller, M.; Gurny, R.; Kalia, Y.N. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Mol. Pharm. 2014, 11, 2989–3001. [Google Scholar] [CrossRef] [PubMed]
- Viegas, J.S.R.; Praça, F.G.; Caron, A.L.; Suzuki, I.; Silvestrini, A.V.P.; Medina, W.S.G.; Del Ciampo, J.O.; Kravicz, M.; Bentley, M. Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis. Drug Deliv. Transl. Res. 2020, 10, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Iriventi, P.; Gupta, N.V. Topical delivery of curcumin and caffeine mixture-loaded nanostructured lipid carriers for effective treatment of psoriasis. Pharmacogn. Mag. 2020, 16, 206. [Google Scholar] [CrossRef]
- Qadir, A.; Aqil, M.; Ali, A.; Warsi, M.H.; Mujeeb, M.; Ahmad, F.J.; Ahmad, S.; Beg, S. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation. J. Drug Deliv. Sci. Technol. 2020, 57, 101775. [Google Scholar] [CrossRef]
- Sharma, A.; Upadhyay, D.K.; Sarma, G.S.; Kaur, N.; Gupta, G.D.; Narang, R.K.; Rai, V.K. Squalene integrated NLC based gel of tamoxifen citrate for efficient treatment of psoriasis: A preclinical investigation. J. Drug Deliv. Sci. Technol. 2020, 56, 101568. [Google Scholar] [CrossRef]
- Rapalli, V.K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S.K.; Singhvi, G. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: Optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur. J. Pharm. Sci. 2020, 152, 105438. [Google Scholar] [CrossRef]
- Kalariya, M.; Padhi, B.K.; Chougule, M.; Misra, A. Clobetasol propionate solid lipid nanoparticles cream for effective treatment of eczema: Formulation and clinical implications. Indian J. Exp. Biol. 2005, 43, 233–240. [Google Scholar]
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 271–299. [Google Scholar] [CrossRef] [PubMed]
- Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 771–784. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Dessy, A.; Kubowicz, S.; Alderighi, M.; Bartoli, C.; Piras, A.M.; Schmid, R.; Chiellini, F. Dead Sea Minerals loaded polymeric nanoparticles. Colloids Surf. B Biointerfaces 2011, 87, 236–242. [Google Scholar] [CrossRef]
- Mao, K.L.; Fan, Z.L.; Yuan, J.D.; Chen, P.P.; Yang, J.J.; Xu, J.; Zhuge, D.L.; Jin, B.H.; Zhu, Q.Y.; Shen, B.X.; et al. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf. B Biointerfaces 2017, 160, 704–714. [Google Scholar] [CrossRef]
- Bilia, A.R.; Bergonzi, M.C.; Isacchi, B.; Antiga, E.; Caproni, M. Curcumin nanoparticles potentiate therapeutic effectiveness of acitrein in moderate-to-severe psoriasis patients and control serum cholesterol levels. J. Pharm. Pharmacol. 2018, 70, 919–928. [Google Scholar] [CrossRef]
- Shah, P.P.; Desai, P.R.; Patel, A.R.; Singh, M.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 2012, 33, 1607–1617. [Google Scholar] [CrossRef] [Green Version]
- Pukale, S.S.; Sharma, S.; Dalela, M.; Singh, A.K.; Mohanty, S.; Mittal, A.; Chitkara, D. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino mice. Acta Biomater. 2020, 115, 393–409. [Google Scholar] [CrossRef]
- Agrawal, U.; Mehra, N.K.; Gupta, U.; Jain, N.K. Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J. Drug Target. 2013, 21, 497–506. [Google Scholar] [CrossRef]
- Suzuki, I.L.; de Araujo, M.M.; Bagnato, V.S.; Bentley, M. TNFα siRNA delivery by nanoparticles and photochemical internalization for psoriasis topical therapy. J. Control. Release 2021, 338, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.I.; Khan, D.; Rehman, A.U.; Elaissari, A.; Ahmed, N. Development and In Vitro/In Vivo Evaluation of pH-Sensitive Polymeric Nanoparticles Loaded Hydrogel for the Management of Psoriasis. Nanomaterials 2021, 11, 3433. [Google Scholar] [CrossRef] [PubMed]
- Fereig, S.A.; El-Zaafarany, G.M.; Arafa, M.G.; Abdel-Mottaleb, M.M.A. Self-assembled tacrolimus-loaded lecithin-chitosan hybrid nanoparticles for in vivo management of psoriasis. Int. J. Pharm. 2021, 608, 121114. [Google Scholar] [CrossRef] [PubMed]
- Kondiah, P.P.D.; Rants’o, T.A.; Mdanda, S.; Mohlomi, L.M.; Choonara, Y.E. A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris. Polymers 2022, 14, 2633. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhai, Y.Y.; Sun, L.; Wang, Z.; Xia, X.; Yao, Q.; Kou, L. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian J. Pharm. Sci. 2022, 17, 268–283. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Wu, C.; Tong, X.; Shi, Y.; Chen, S. Microneedle Patch Delivery of Methotrexate-Loaded Albumin Nanoparticles to Immune Cells Achieves a Potent Antipsoriatic Effect. Int. J. Nanomed. 2022, 17, 3841–3851. [Google Scholar] [CrossRef]
- Sengupta, P.; Chatterjee, B. Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int. J. Pharm. 2017, 526, 353–365. [Google Scholar] [CrossRef]
- Abolmaali, S.S.; Tamaddon, A.M.; Farvadi, F.S.; Daneshamuz, S.; Moghimi, H. Pharmaceutical nanoemulsions and their potential topical and transdermal applications. Iran. J. Pharm. Sci. 2011, 7, 139–150. [Google Scholar]
- Sutradhar, K.B.; Amin, M.L. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomed. 2013, 5, 97–110. [Google Scholar] [CrossRef]
- Brownlow, B.; Nagaraj, V.J.; Nayel, A.; Joshi, M.; Elbayoumi, T. Development and In Vitro Evaluation of Vitamin E-Enriched Nanoemulsion Vehicles Loaded with Genistein for Chemoprevention Against UVB-Induced Skin Damage. J. Pharm. Sci. 2015, 104, 3510–3523. [Google Scholar] [CrossRef]
- Divya, G.; Panonnummal, R.; Gupta, S.; Jayakumar, R.; Sabitha, M. Acitretin and aloe-emodin loaded chitin nanogel for the treatment of psoriasis. Eur. J. Pharm. Biopharm. 2016, 107, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Ourique, A.F.; Melero, A.; de Bona da Silva, C.; Schaefer, U.F.; Pohlmann, A.R.; Guterres, S.S.; Lehr, C.M.; Kostka, K.H.; Beck, R.C. Improved photostability and reduced skin permeation of tretinoin: Development of a semisolid nanomedicine. Eur. J. Pharm. Biopharm. 2011, 79, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Katiyar, S.S.; Kushwah, V.; Jain, S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine 2017, 13, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Panonnummal, R.; Jayakumar, R.; Sabitha, M. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. Eur. J. Pharm. Sci. 2017, 96, 193–206. [Google Scholar] [CrossRef]
- Alam, M.S.; Ali, M.S.; Alam, N.; Siddiqui, M.R.; Shamim, M.; Safhi, M. In vivo study of clobetasol propionate loaded nanoemulsion for topical application in psoriasis and atopic dermatitis. Drug Invent. Today 2013, 5, 8–12. [Google Scholar] [CrossRef]
- Baboota, S.; Alam, M.S.; Sharma, S.; Sahni, J.K.; Kumar, A.; Ali, J. Nanocarrier-based hydrogel of betamethasone dipropionate and salicylic acid for treatment of psoriasis. Int. J. Pharm. Investig. 2011, 1, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Panonnummal, R.; Sabitha, M. Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model. Int. J. Biol. Macromol. 2018, 110, 245–258. [Google Scholar] [CrossRef]
- Singka, G.S.; Samah, N.A.; Zulfakar, M.H.; Yurdasiper, A.; Heard, C.M. Enhanced topical delivery and anti-inflammatory activity of methotrexate from an activated nanogel. Eur. J. Pharm. Biopharm. 2010, 76, 275–281. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Z.; Wang, L.; Cun, D.; Tong, H.H.Y.; Yan, R.; Chen, X.; Wang, R.; Zheng, Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J. Control. Release 2017, 254, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Khurana, B.; Arora, D.; Narang, R.K. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: In vitro, ex vivo and in vivo studies. J. Drug Deliv. Sci. Technol. 2020, 59, 101901. [Google Scholar] [CrossRef]
- Li, Q.; Li, F.; Qi, X.; Wei, F.; Chen, H.; Wang, T. Pluronic® F127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: In vitro and in vivo studies. Colloids Surf. B Biointerfaces 2020, 195, 111246. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Song, R.; Cheng, M.; Chu, H.; Yan, F.; Wang, Y. Preparation of Calcipotriol Emulsion Using Bacterial Exopolysaccharides as Emulsifier for Percutaneous Treatment of Psoriasis Vulgaris. Int. J. Mol. Sci. 2019, 21, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinde, G.; Desai, P.; Shelke, S.; Patel, R.; Bangale, G.; Kulkarni, D. Mometasone furoate-loaded aspasomal gel for topical treatment of psoriasis: Formulation, optimization, in vitro and in vivo performance. J. Dermatol. Treat. 2020, 33, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Dadwal, A.; Mishra, N.; Rawal, R.K.; Narang, R.K. Development and characterisation of clobetasol propionate loaded Squarticles as a lipid nanocarrier for treatment of plaque psoriasis. J. Microencapsul. 2020, 37, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Erol, İ.; Üstündağ Okur, N.; Orak, D.; Sipahi, H.; Aydın, A.; Özer, Ö. Tazarotene-loaded in situ gels for potential management of psoriasis: Biocompatibility, anti-inflammatory and analgesic effect. Pharm. Dev. Technol. 2020, 25, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.W.; Cheng, Y.P.; Liu, C.Y.; Thong, H.Y.; Huang, C.J.; Lo, Y.; Wu, C.Y.; Jee, S.H. Salvianolic Acid B in Microemulsion Formulation Provided Sufficient Hydration for Dry Skin and Ameliorated the Severity of Imiquimod-Induced Psoriasis-Like Dermatitis in Mice. Pharmaceutics 2020, 12, 457. [Google Scholar] [CrossRef]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Birla, S.; Yadav, A.; Santos, C.A. Strategic role of selected noble metal nanoparticles in medicine. Crit. Rev. Microbiol. 2016, 42, 696–719. [Google Scholar] [CrossRef]
- Manisekaran, R.; García-Contreras, R.; Rasu Chettiar, A.D.; Serrano-Díaz, P.; Lopez-Ayuso, C.A.; Arenas-Arrocena, M.C.; Hernández-Padrón, G.; López-Marín, L.M.; Acosta-Torres, L.S. 2D Nanosheets—A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021, 13, 1803. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, T.; Chen, W.; Li, Y.; Wang, B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 2020, 5, 1071–1086. [Google Scholar] [CrossRef]
- Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013, 4, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Bessar, H.; Venditti, I.; Benassi, L.; Vaschieri, C.; Azzoni, P.; Pellacani, G.; Magnoni, C.; Botti, E.; Casagrande, V.; Federici, M.; et al. Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf. B Biointerfaces 2016, 141, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerra, S.; Matassa, R.; Beltrán, A.M.; Familiari, G.; Battocchio, C.; Pis, I.; Sciubba, F.; Scaramuzzo, F.A.; Del Giudice, A.; Fratoddi, I. Insights about the interaction of methotrexate loaded hydrophilic gold nanoparticles: Spectroscopic, morphological and structural characterizations. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111337. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Ho, L.W.C.; Bai, Q.; Chan, C.K.W.; Lee, L.K.C.; Choi, P.C.; Choi, C.H.J. Alkyl-Terminated Gold Nanoparticles as a Self-Therapeutic Treatment for Psoriasis. Nano Lett. 2021, 21, 8723–8733. [Google Scholar] [CrossRef]
- Fereig, S.; El-Zaafarany, G.M.; Arafa, G.; Abdel-Mottaleb, M.M.A. Boosting the anti-inflammatory effect of self-assembled hybrid lecithin-chitosan nanoparticles via hybridization with gold nanoparticles for the treatment of psoriasis: Elemental mapping and in vivo modeling. Drug Deliv. 2022, 29, 1726–1742. [Google Scholar] [CrossRef]
- David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces 2014, 122, 767–777. [Google Scholar] [CrossRef]
- Lai, X.; Wang, M.; Zhu, Y.; Feng, X.; Liang, H.; Nie, L.; Li, L.; Shao, L. ZnO NPs Delay the Recovery of Psoriasis-like Skin Lesions through Promoting Inflammation and Keratinocyte Apoptosis via Nuclear Translocation of Phosphorylated NF-κB p65 and Cysteine Deficiency. J. Hazard. Mater. 2021, 410, 124566. [Google Scholar] [CrossRef]
- Maurelli, M.; Gisondi, P.; Girolomoni, G. Tailored biological treatment for patients with moderate-to-severe psoriasis. Expert Rev. Clin. Immunol. 2022; in press. [Google Scholar] [CrossRef]
- Yasmeen, N.; Sawyer, L.M.; Malottki, K.; Levin, L.; Didriksen Apol, E.; Jemec, G.B. Targeted therapies for patients with moderate-to-severe psoriasis: A systematic review and network meta-analysis of PASI response at 1 year. J. Dermatol. Treat. 2022, 33, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Rapalli, V.K.; Singhvi, G.; Dubey, S.K.; Gupta, G.; Chellappan, D.K.; Dua, K. Emerging landscape in psoriasis management: From topical application to targeting biomolecules. Biomed. Pharmacother. 2018, 106, 707–713. [Google Scholar] [CrossRef]
- Gungor, S.; Rezigue, M. Nanocarriers Mediated Topical Drug Delivery for Psoriasis Treatment. Curr. Drug Metab. 2017, 18, 454–468. [Google Scholar] [CrossRef]
- Saleem, S.; Iqubal, M.K.; Garg, S.; Ali, J.; Baboota, S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis. Expert Opin. Drug Deliv. 2020, 17, 817–838. [Google Scholar] [CrossRef] [PubMed]
- Laberge, S.; Cruikshank, W.W.; Beer, D.J.; Center, D.M. Secretion of IL-16 (lymphocyte chemoattractant factor) from serotonin-stimulated CD8+ T cells in vitro. J. Immunol. 1996, 156, 310–315. [Google Scholar] [PubMed]
- Morita, T.; McClain, S.P.; Batia, L.M.; Pellegrino, M.; Wilson, S.R.; Kienzler, M.A.; Lyman, K.; Olsen, A.S.; Wong, J.F.; Stucky, C.L.; et al. HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron 2015, 87, 124–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisshaar, E.; Ziethen, B.; Gollnick, H. Can a serotonin type 3 (5-HT3) receptor antagonist reduce experimentally-induced itch? Inflamm. Res. 1997, 46, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Nordlind, K.; Thorslund, K.; Lonne-Rahm, S.; Mohabbati, S.; Berki, T.; Morales, M.; Azmitia, E.C. Expression of serotonergic receptors in psoriatic skin. Arch. Dermatol. Res. 2006, 298, 99–106. [Google Scholar] [CrossRef]
- Martins, A.M.; Ascenso, A.; Ribeiro, H.M.; Marto, J. Current and Future Therapies for Psoriasis with a Focus on Serotonergic Drugs. Mol. Neurobiol. 2020, 57, 2391–2419. [Google Scholar] [CrossRef]
- Levite, M. Killing Human Lymphoma and Leukemia Cancer Cells and Tcr-Activated Normal Human Cells by Dopamine D1r Agonists. U.S. Patent 11/997,848, 18 December 2008. [Google Scholar]
- Levite, M.; Domb, A. Fenoldopam Formulations and Pro-Drug Derivatives. U.S. Patent 8,859,001, 14 October 2014. [Google Scholar]
- Doppalapudi, S.; Jain, A.; Bulbake, U.; Khan, W.J.P.N. Nanotherapeutics: Emerging trends in management of psoriasis. Pharm. Nanotechnol. 2016, 4, 267–283. [Google Scholar] [CrossRef]
- Doppalapudi, S.; Jain, A.; Khan, W.; Domb, A.J. Fenoldopam mesylate for treating psoriasis: A new indication for an old drug. Int. J. Pharm. 2020, 573, 118726. [Google Scholar] [CrossRef]
- Pradyuth, S.; Rapalli, V.K.; Gorantla, S.; Waghule, T.; Dubey, S.K.; Singhvi, G. Insightful exploring of microRNAs in psoriasis and its targeted topical delivery. Dermatol. Ther. 2020, 33, e14221. [Google Scholar] [CrossRef]
- Lindqvist, U.; Phil-Lundin, I.; Engström-Laurent, A. Dermal distribution of hyaluronan in psoriatic arthritis; coexistence of CD44, MMP3 and MMP9. Acta Derm. Venereol. 2012, 92, 372–377. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, C.; Zhao, X.; Lin, C.; Yang, X.; Xin, X.; Zhang, L.; Qin, C.; Han, X.; Yang, L.; et al. Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells. ACS Nano 2018, 12, 1519–1536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Theranostics 2019, 9, 48–64. [Google Scholar] [CrossRef] [PubMed]
Drug | Mechanism | Biopharmaceutical Attributes | Side-Effects | Ref. |
---|---|---|---|---|
Tacrolimus | -Inhibitory action on calcineurin phosphatase; -Suppress the expression of TNF-α e in monocytes through the MAPK-ERK pathway. | -Poor aqueous solubility; -Low permeation; -Bioavailability range from 11.2 to 19.1. | -Headache; -Flu-like symptoms; -Itching sensation. | [2,31,32] |
Pimecrolimus | Macrophilin-12 (FKBP-12) and inhibits calcineurin; -Inhibits T-cell activation by inhibiting the synthesis and release of the cytokine from T-cells. | -High lipophilicity; -Insoluble in water; -Low permeation; -Low systemic absorption; -74–87% protein binding; -Undergoes hepatic metabolism. | -Burning, itching, redness, skin rash, swelling, or soreness at the application site. | [2,33,34] |
Dithranol | Up-regulation of interleukin-10 receptor expression on keratinocytes | -0% bioavailability; -Absorbed and oxidized within the skin. | -Irritation of perilesional skin and staining of the skin and household items. | [2,35,36] |
Vitamin D3 analogue | -Inhibits epidermal proliferation and promotes epidermal differentiation. | -5–6% bioavailability. | -Hypercalcemia; -Anorexia; -Pruritus. | [37] |
Salicylic acid | -Intercellular bonding, swelling, and desquamation of corneocytes; -Hydration and softening of stratum corneum. | -Readily absorbed from the skin; -50–85% of protein binding. | -Skin irritation. | [2,38,39,40] |
Urea | Antipruritic, epidermis-thinning, hydrating, hygroscopic, keratolytic, proteolytic, and penetration-enhancing effects. | -Skin irritation. | [38,41] | |
Corticosteroids Class I-Clobestol propionate, Betamethasone dipropionate, Halobetasol propionate, Diflorasonediacetate Class II-Mometasonefuroate, fluocinoloneAcetonide Class III-Triamcinolone acetonide, Betamethasone valerate | -Anti-inflammatory, immunosuppressant. -Broad range of anti-inflammatory, immunosuppressant, and vasoconstriction. -Inhibitory action of phospholipase A2 inhibitory protein (lipocortins). | -Metabolized in the liver and excreted via the kidney. -Dosage topical as 0.5–0.1% lotion/cream/ointment, apply 3–4 times daily. -Very low protein binding undergoes rapid metabolism | -Peroral dermatitis, Skin atrophy, hypertrichosis. -Skin thinning, skin atrophy, irritation, dryness, itching, folliculitis, hypertrichosis. -Folliculitis, dryness, irritation, hypertrichosis, acneiform eruptions. | [42,43,44] [45,46,47,48] [49,50] |
Combination Therapy | Drugs | Types of Psoriasis | Major Outcomes | Ref. |
---|---|---|---|---|
Calcipotriol and Corticosteroids | Calcipotriol/Betamethasone dipropionate | Stable psoriasis vulgaris | -Effective than tacalcitol in reduction in PASI. | [56] |
Calcipotriol/Betamethasone dipropionate | Psoriasis vulgaris | -The mean percentage reduction in PASI was more than 73 %. | [57] | |
Calcipotriol/Betamethasone dipropionate | Severe plaque psoriasis | -75% of patients achieved a rating of bright or almost clear. | [34] | |
Calcipotriol/Betamethasone valerate | Psoriasis vulgaris | -45% of patients show complete healing, and 32% show significant improvement. | [58] | |
Calcipotriol/Clobetasol propionate | Severe plaque psoriasis | -Significant decrease in total symptom score. | [59] | |
Calcipotriol/Clobetasol propionate | Stable plaque psoriasis | -50% reduction in the eruption score after two weeks. -Less adverse effects. | [60] | |
Calcipotriol/diflucortolonevalerate | Chronic plaque psoriasis | -More rapid clinical response. | [61] | |
Calcipotriol and Retinoids | Calcipotriol/Acitretin | Chronic plaque psoriasis | -Enhanced clinical outcome of systemic acitretin. -Complete clearance. | [62] |
Calcipotriol/Acitretin | Plaque psoriasis | -Clearance or marked improvement was achieved by 67%. -Well tolerated and safe. | [63] | |
Calcipotriol and Cyclosporine | Calcipotriol/Cyclosporine | -Severe plaque psoriasis | -90% improvement in PASI. -More effective than placebo/cyclosporine. | [64] |
Calcipotriol and Methotrexate | Calcipotriol/Methotrexate (MTX) | -Psoriasis vulgaris | -Safe and well tolerated. -Lower cumulative dosages of MTX. | [65] |
Calcipotriene and Nicotinamide | Calcipotriene/Nicotinamide | -Mild to moderate psoriasis | -Clear to an almost clear outcome. | [66] |
Corticosteroids and Tazarotene | Mometasonefuroate/Tazarotene | -Plaque psoriasis | -Better efficacy (in reducing plaque elevation) on trunk lesions. | [67] |
-Tazarotene/Fluocinonide 0.05% ointment, mometasone furoate, diflorasone diacetate 0.05% ointment). -Tazarotene/Betamethasone dipropionate, fluticasone propionate, diflorasonediacetate. | -Stable plaque psoriasis | -Within 8 weeks utmost improvements were recorded. -Tazarotene plus mometasone furoate was best tolerated therapeutic regimen. | [68] | |
Corticosteroids and Salicylic acid | Mometasonefuroate/Salicylic acid | -Psoriasis vulgaris | -Reduction in PASI score was 44%. | [69] |
Corticosteroids and Retinoids | Triamcinolone acetonide/Etretinate | -Chronic plaque psoriasis | -Excellent improvement -Fewer side-effects. | [70] |
Corticosteroids and biologic | Betamethasone with calcipotriol/Adalimumab | -Moderate to severe psoriasis | -Reduction in PASI score was 75%. -Well tolerated. | [71] |
Phototherapy and Chemotherapy | UVB/Acitretin | -Psoriasis vulgaris | -Faster response. -Psoriatic disease cleared significantly. | [72] |
PUVA/Etretinate | -Severe psoriasis | -Significantly more effective than the other treatments. -Reduction in total UVA doses to about one-third. | [73] | |
PUVA/Etretinate | -Guttate psoriasis | -Most effective outcome with 100% clearance rate. | [74] | |
UVB/Methotrexate | -Chronic plaque | -More rapid clinical improvement compared. | [75] | |
UVA1-UVB/Calcipotriol | -Plaque psoriasis | -Response to UVA1 and narrow-band UVB with Calcipotriol was better than Calcipotriol monotherapy. | [76] | |
PUVA/Calcipotriol | -Psoriasis vulgaris | -Reduced cumulative dose and improved response to psoriasis vulgaris. -More than a 90% reduction in PASI score was recorded. | [77] | |
NB-UV/Alefacept | Chronic plaque psoriasis | -Decrease (75%) in PASI score. | [78] | |
UVB/Calcitriol | Plaque psoriasis | -The greater efficacy in combined treatment. -34% reduction in exposure to total UVB. | [79] | |
Broadband UVB/Calcipotriol | Chronic psoriasis | -For the active group mean cumulative UVB dose was considerably lower. -Better reduction in PASI. | [80] | |
Broadband UVB/Calcipotriol | Chronic psoriasis | -Safe and efficacious. -Resultant in limited exposure to UVB. -Time saver and limited cumulative irradiance. | [81] |
Carrier | Drug | In Vitro/In Vivo Model | Outcomes | Ref. |
---|---|---|---|---|
Liposome | Fusidic acid | -Mouse tail model. | -Enhanced cellular uptake. -Improved efficacy. | [84] |
Liposome | Psoralen | -Imiquimod-induced psoriatic plaque model. | -Reduced psoriatic symptoms. -Reduction in TNF-α, IL-17 and IL-22. | [86] |
Ethosomes | Psoralen | -Human embryonic skin fibroblasts. | -Improved dermal and transdermal delivery. -Enhanced bioavailability. | [87] |
Liposome | RNA interference | -Intact human skin. | -Down-regulation of human beta-defensin 2. | [88] |
Liposome | Plasmid DNA | -K14-VEGF transgenic mouse. | -Enhanced anti-psoriatic effect. -Suppressed hyperplastic and inflamed vessels. | [89] |
Liposome | Methotrexate | -Porcine skin. | -Enhanced skin permeability. | [90] |
Liposome | Methotrexate | -Albino rat. | -Enhanced permeability. | [91] |
Ethosomes | Methotrexate | -Human cadaver skin. | -Enhanced permeation in deeper skin layers. -Storage stability and formulation retained their efficiency. | [92] |
Liposomal lotion | Tacrolimus | -C57BL/6 mice. | -Higher skin concentrations than systemic. -Better efficacy in the prevention of delayed hypersensitivity reactions. | [93] |
Liposome | Dithranol | -Mouse abdominal skin. | -Enhanced skin permeation. | [94] |
Liposome | Dithranol | -Human volunteer. | -Total clearance of lesions. -No reports of lesion or perilesional irritation. | [95] |
Liposome | Calcipotriol | -Rat abdominal skin. | -Augmented deposition of calcipotriol in stratum corneum layer | [96] |
Liposphere | Thymoquinone | -BALB/c mice. -RAW 264.7 cells. | -Deeper skin penetration. -Improved disease symptoms, supported by reduced ultrastructural changes, IL-17 and TNF-α in skin lesions. -Diminution of nitric oxide, IL-1β, TNF-α, IL-2, and IL-6. | [97] |
Lipogel | Cyclosporine | Human volunteer with chronic plaque psoriasis | -After eight weeks, a significant reduction (approximately 83%) in dermatological sum score (DSS) was observed. -Complete clearance/recovery at the end of the study (i.e., DSS = 0). | [102] |
Liposome | Dithranol | Human volunteer with bilaterally symmetrical stable plaque psoriasis | -Significantly reduced total severity score was observed. | [103] |
Niosomes | Diacerein | -Rat skin. | -Enhanced skin deposition. | [107] |
Niosomes | Tazarotene | -Rat skin. | -Enhanced local bioavailability. -Higher skin retention within the skin layers. | [108] |
Niosomes | Capsaicin | -Rat skin. | -Significantly higher accumulation of the drug. | [109] |
Niosomes | Combination of methotrexate and cyclosporine | -Mouse | -Reduced the systemic side effects -Good healing of psoriasis | [110] |
Nanosomes (Secosomes) | siRNA | -Bioengineered skin-humanized mouse. | -Significant improvement in the psoriatic phenotype. -Improvement in filaggrin expression, transglutaminase activity, and appearance of stratum corneum. | [111] |
Liposome | Tamoxifen | -Mice. | -Significantly enhanced efficacy of Tamoxifen. | [112] |
Niosomes | Glycyrrhizinate | -Human dermal fibroblasts. -Murine model. | -Decreased edema and nociceptive responses. | [113] |
Niosomes | Methotrexate | -Human volunteer. | -Significant reduction in total score (from 6.2378+/−1.4857 to 2.0023+/−0.1371). | [116] |
Liposome | Methotrexate | Albino mice | -Enhanced antipsoriatic activity. -No systemic toxicity. | [118] |
Liposphere | Tacrolimus and Curcumin | -BALB/c mice. | -Improved skin deposition. -Diminution of TNF-α, IL-17 and IL-22 levels. | [119] |
Niosomes | Methotrexate | -Albino rat. | -Prominent accumulation of the drug in the skin. -Safely topical applied. | [120] |
Carrier | Drug | In Vitro/In Vivo Model | Outcomes | Ref. |
---|---|---|---|---|
NLC | Fluocinolone acetonide | Rat skin | -Prominent uptake of drug in dermal/epidermal layers. -Preferred drug retention in the epidermis and reduced adverse effects connected with systemic exposure. | [36] |
SLN | Tretinoin | -Abdominal rat skin. | -Significant improvement in photostability. -Less irritation to the skin -Improved topical delivery of the drug. | [121] |
SLN | Betamethasone dipropionate Calcipotriol | -Mouse. -HaCaT cells. | -Decreased epidermal thickness. -Increased melanocyte count. -Negligible skin irritation. -Better skin tolerability. -Delayed abrupt growth of keratinocytes. | [126] |
SLN | Halobetasol propionate | -Human cadaver skins. | -Improved skin deposition. -Improved skin uptake and nonirritant. | [127] |
SLN | Mometasone furoate | -Rat skin. | -Enhanced skin deposition. | [128] |
SLN | Triamcinolone acetonide | -Abdominal rat skin. | -Improved skin deposition. | [129] |
Lipid NPs (SLN, NLC) | Capsaicin | -Rat skin. | -Improved drug accumulation in skin layers. | [130] |
SLN | Cyclosporine A | Murine model | -Improved skin penetration. -Decreased level of T helper (Th) 2, IL-4, and -5. | [132] |
NLC | Acitretin | -Human cadaver skin. | -Significantly higher skin deposition of Acitretin. -Significant improved therapeutic response. | [142] |
NLC | Methotrexate | Rat skin | -Higher skin penetration. | [143] |
NLC | Methotrexate | Mice | -Prominent diminution of PASI score with recovery skin in mice. | [144] |
NLC | Calcipotriol with Methotrexate | Mice | -Enhanced permeation in hyperproliferative skin. | [145] |
NLC | Tacrolimus | -Guinea pig. | -Less irritating. -Improved skin deposition. | [147] |
SLN | Clobetasol propionate | -Human volunteer. | -Significant reduction in inflammation and itching symptoms as compared to marketed preparation. | [155] |
Carrier | Drug | In Vitro/In Vivo Model | Outcomes | Ref. |
---|---|---|---|---|
Polymeric micelle | Tacrolimus | -Mice. | -Improved drug accumulation in skin layers. | [149] |
Polymeric NPs | Dead Sea Minerals(DSW) | -In vitro. | -High drug loading. | [160] |
Polymeric NPs | Curcumin | -Imiquimod-induced psoriatic mice. | -Higher therapeutic effect. -More powerful skin-permeating capability. -Reduction in expression of IL-6, TNF-α, NF-κB. | [161] |
Polymeric NPs | Curcumin | -Human volunteer. | -Significantly improved skin permeability. -Significantly higher reduction in PASI. | [162] |
Polymeric NPs | Dithranol | -Ex vivo rat skin. | -Improved topical bioavailability. | [165] |
Hybrid polymer-lipid NPs (PLNs) | siRNA | -Imiquimod-induced psoriatic mouse model. | -Developed a system helpful to combine silencing gene therapy and photochemical internalization for topical treatment in psoriasis. | [166] |
pH-sensitive polymeric NPs | Methotrexate | -Imiquimod-induced psoriatic mice model. | -Developed system exhibited negligible signs of hyperkeratosis and parakeratosis. | [167] |
Lecithin-chitosan hybrid NPs | Tacrolimus | -Imiquimod-induced psoriatic mouse mode.l | -Significant improvement in drug deposition in skin and in vivo anti-psoriatic activity of developed system compared to the marketed product. | [168] |
Polycaprolactone NPs | Hydrocortisone | -HaCaT cell lines. | -Developed system exhibited negligible toxicity to the keratinocyte cells compared to pure drug. | [169] |
Chitosan/hyaluronic acid NPs | Alantolactone | -Imiquimod-induced psoriatic mice model. | -Developed system minimized the STAT3 hyperactivation within keratinocytes and improved psoriatic signs/symptoms. | [170] |
Albumin NPs | Methotrexate | -Imiquimod-induced C57BL/6 mice. | -Developed system significantly decreased the erythema and minimized skin thickness. -Significantly ability for targeted delivery of methotrexate to a lymph node. | [171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.Z.; Mohammed, A.A.; Algahtani, M.S.; Mishra, A.; Ahmad, J. Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope. J. Funct. Biomater. 2023, 14, 19. https://doi.org/10.3390/jfb14010019
Ahmad MZ, Mohammed AA, Algahtani MS, Mishra A, Ahmad J. Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope. Journal of Functional Biomaterials. 2023; 14(1):19. https://doi.org/10.3390/jfb14010019
Chicago/Turabian StyleAhmad, Mohammad Zaki, Abdul Aleem Mohammed, Mohammed S. Algahtani, Awanish Mishra, and Javed Ahmad. 2023. "Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope" Journal of Functional Biomaterials 14, no. 1: 19. https://doi.org/10.3390/jfb14010019
APA StyleAhmad, M. Z., Mohammed, A. A., Algahtani, M. S., Mishra, A., & Ahmad, J. (2023). Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope. Journal of Functional Biomaterials, 14(1), 19. https://doi.org/10.3390/jfb14010019