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Abstract: Additively manufactured synthetic bone scaffolds have emerged as promising candidates
for the replacement and regeneration of damaged and diseased bones. By employing optimal pore
architecture, including pore morphology, sizes, and porosities, 3D-printed scaffolds can closely
mimic the mechanical properties of natural bone and withstand external loads. This study aims to
investigate the deformation pattern exhibited by polymeric bone scaffolds fabricated using the PolyJet
(PJ) 3D printing technique. Cubic and hexagonal closed-packed uniform scaffolds with porosities
of 30%, 50%, and 70% are utilized in finite element (FE) models. The crushable foam plasticity
model is employed to analyze the scaffolds’ mechanical response under quasi-static compression.
Experimental validation of the FE results demonstrates a favorable agreement, with an average
percentage error of 12.27% ± 7.1%. Moreover, the yield strength and elastic modulus of the scaffolds
are evaluated and compared, revealing notable differences between cubic and hexagonal closed-
packed designs. The 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds exhibit significantly
higher yield strengths of 46.89%, 58.29%, and 66.09%, respectively, compared to the hexagonal closed-
packed bone scaffolds at percentage strains of 5%, 6%, and 7%. Similarly, the elastic modulus of
the 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds is 42.68%, 59.70%, and 58.18%
higher, respectively, than the hexagonal closed-packed bone scaffolds at the same percentage strain
levels. Furthermore, it is observed in comparison with our previous study the µSLA-printed bone
scaffolds demonstrate 1.5 times higher elastic moduli and yield strengths compared to the PJ-printed
bone scaffolds.

Keywords: polymeric bone scaffolds; 3D printing; mechanical response; finite element method;
deformation pattern; crushable foam plasticity model

1. Introduction

In the field of bone tissue engineering, the incorporation of biocompatible three-
dimensional porous structures is often essential. These structures function as support and
regeneration platforms [1]. When engineering synthetic bone scaffolds, the primary factors
to consider are the architectural parameters, which must be carefully adjusted to promote
effective bone regeneration while ensuring adequate mechanical strength [2]. Beam-based
3D-printed bone scaffolds demonstrate a tailored mechanical response characterized by
a lattice structure composed of beams. This fabrication method allows for precise con-
trol over the internal architecture, resulting in optimized mechanical properties including
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strength and stiffness. Such scaffolds are well-suited for applications involving mechanical
load bearing in bone tissue regeneration [3]. In contrast, TPMS (Triply Periodic Minimal
Surfaces)-based 3D-printed bone scaffolds exhibit a distinctive mechanical response rooted
in their intricate mathematical surfaces. These scaffolds leverage TPMS designs, known for
their exceptional surface area and customizable porosities. This geometric complexity influ-
ences the scaffold’s mechanical behavior, making TPMS-based constructs highly promising
for applications where specific mechanical responses, such as flexibility or compressibility,
play a crucial role in advancing bone tissue engineering [4]. Conventional manufacturing
techniques, including electrospinning, particle leaching, freeze drying, solvent casting,
and gas foaming, can be employed to develop synthetic bone scaffolds. However, these
techniques often exhibit limitations in terms of structural controllability and pore inter-
connectivity, which may adversely impact scaffold performance [5]. In contrast, additive
manufacturing techniques are gaining prominence in the fabrication of synthetic bone
scaffolds due to their ability to address the limitations of conventional techniques. Additive
manufacturing provides unmatched flexibility for creating porous scaffolds with graded
structures. This gradation can be achieved by systematically adjusting porosity, pore size,
and strut thickness. While porosity and pore size influence mechanical performance and
biological functionality, it is imperative to optimize wall or strut thickness to ensure ease
of manufacturing [6]. Additive manufacturing enables precise control over architectural
parameters, promotes suitable pore interconnectivity, and facilitates appropriate cell in-
growth capability, resulting in synthetic bone scaffolds with favorable mechanical strength
and enhanced biological responses [7]. Similar to selective laser melting and fused de-
position modeling, micro-stereolithography (µSLA) and PolyJet are additional additive
manufacturing techniques that exhibit promising potential in advancing the development
of synthetic bone scaffolds. These techniques allow for the precise definition of architec-
tural parameters and compositions, contributing to the fabrication of scaffolds with highly
controlled characteristics [8,9]. Moreover, it is possible to create mechanically robust syn-
thetic scaffolds that possess a mechanical response closely resembling that of human bone
tissues [10]. In a study by Maskery [11], the mechanical performance of lattice structures,
manufactured using selective laser melting (SLM) with uniform and functionally graded
properties, was predicted under quasi-static loading conditions. Choy [12] investigated the
mechanical response of metal-based porous structures with functionally graded properties,
which were developed using selective laser melting (SLM). Kadkhodapour [13] presented
novel structure–property relationships for metal-based scaffolds. Lancae [14] performed a
microstructural analysis using scanning electron microscopy on Ti6Al4V parts that were
3D-printed and exposed to a corrosive atmosphere. Furthermore, the influence of building
direction on 3D-printed stainless steel parts with varying layer thicknesses was examined,
and a comparison of the micro-hardness of parts fabricated using selective laser melting
(SLM) was conducted [15,16]. Conversely, there has been comparatively less examination
of the mechanical performance of polymer-based additively manufactured parts. [17]. The
mechanical properties of various additively manufactured cellular structures, including
polymers and composite materials such as foams and honeycombs, have been investi-
gated by Zangana [18] and Gibson [19]. For evaluating the mechanical properties of lattice
structures fabricated with polymer-based additive manufacturing, the two-step homoge-
nization method introduced by Park [20] was utilized. Mahshid [21] conducted a study to
explore the impact of architectural parameters on the compressive behavior of 3D-printed
structures. Additionally, various approaches, including the FE method and geometric and
mathematical models, were presented to predict the collapse strength of these structures.
Moronia [22] and Kadkhodapour [23] investigated the influence of lattice design parame-
ters on the dynamic properties and compression resistance of scaffolds fabricated using
VeroBlue photopolymer resin, respectively. Numerous studies have employed FE to assess
the architectural characteristics of synthetic bone scaffolds and examine their impact on
mechanical properties, fluid transport, and cellular responses [24,25]. In a study by Smith
et al. [26], FE models were utilized to compare computational results with compression



J. Funct. Biomater. 2023, 14, 496 3 of 19

test data on polymer-based porous structures fabricated using additive manufacturing
techniques. The study concluded that analyzing the unit cells enables accurate prediction of
the overall mechanical behavior of the developed structure. Nevertheless, there is currently
a lack of numerical analysis examining the mechanical response of additively manufactured
synthetic bone scaffolds under mechanical loadings using damage laws.

This study aims to investigate the damage behavior of 3D-printed polymeric bone
scaffolds, which consist of cubic (C) and hexagonal closed-packed (H) pore shapes and
have porosities of 30%, 50%, and 70%. FE modeling will be employed for this investigation.
To depict the deformation of polymeric bone scaffolds, a crushable plasticity model is
employed in the FE analysis. The utilization of a crushable foam plasticity model to
analyze the 3D bone scaffolds’ deformation under quasi-static compression is performed
in this study. The PolyJet (PJ) 3D printing technique is utilized to fabricate bone scaffolds
using VeroClear material. Subsequently, the 3D-printed polymeric bone scaffolds undergo
compression testing under quasi-static loading conditions to experimentally validate the
FE study.

2. Materials and Methods
2.1. Finite Element Modelling
2.1.1. Design of Polymeric Bone Scaffolds

This study involves the design of 3D FE models for bone scaffolds with porosities of
30%, 50%, and 70%. The overall dimensions of the models are 15 mm × 15 mm × 15 mm,
and they feature a pore size of 2.5 mm. This study focused on the testing of materials and
the characterization of its properties both experimentally and by modelling. For this reason,
the current dimensions are applied in order to obtained higher resolution and more loading
capacity for the principle proof and the validation of the mathematical model on wide range
of data. PTC Creo 7.0 (Boston, Massachusetts, United States) is employed for the design
process. To create the overall cubic structure of the bone scaffolds, cubic and hexagonal
unit cells with 2.5 mm pore sizes and struts set at angles of 90◦ and 60◦, respectively, are
tessellated in 3D space. The strut diameters of the 3D FE models are adjusted to achieve the
desired porosities of 30%, 50%, and 70%. These two are the most common and simple types
used in the literature and their experimental response is well understood. The validation
of these two common structures proves the efficacy of the FE model. For the hexagonal
closed-packed and cubic FE models, the pore sizes are defined as the inscribed circle and
length of sides, respectively. Figure 1 illustrates the detailed 3D FE models of the polymeric
bone scaffolds from various viewpoints.

2.1.2. Meshing

In FE analysis, the size of the mesh significantly impacts the FE results. Therefore, the
initial investigation focused on examining the influence of mesh size on the mechanical
response of polymeric bone scaffolds and, subsequently, on the damage. For this purpose,
various sizes of tetrahedral meshes were generated on a 70% porous polymeric bone
scaffold while keeping all other parameters constant. To measure convergence, the yield
strength was calculated as an output parameter for each decreasing mesh size. Table 1
provides details regarding the element size, number of tetrahedral elements, computational
time, and yield strength. The table demonstrates that reducing the element size from
5.0 mm to 0.8 mm led to a yield strength change of 7.04%. However, when further reducing
the mesh size to 0.6 mm, the yield strength only changed by 0.80%. It is important to note
that utilizing an element size of 0.6 mm required more computational power compared to
the 0.8 mm element size. As a result, a tetrahedral mesh size of 0.6 mm was generated for
each polymeric bone scaffold, as it provided FE results with good accuracy and reasonable
computational time.



J. Funct. Biomater. 2023, 14, 496 4 of 19

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 3 of 20 
 

 

photopolymer resin, respectively. Numerous studies have employed FE to assess the 
architectural characteristics of synthetic bone scaffolds and examine their impact on 
mechanical properties, fluid transport, and cellular responses [24,25]. In a study by 
Smith et al. [26], FE models were utilized to compare computational results with 
compression test data on polymer-based porous structures fabricated using additive 
manufacturing techniques. The study concluded that analyzing the unit cells enables 
accurate prediction of the overall mechanical behavior of the developed structure. 
Nevertheless, there is currently a lack of numerical analysis examining the mechanical 
response of additively manufactured synthetic bone scaffolds under mechanical 
loadings using damage laws. 

This study aims to investigate the damage behavior of 3D-printed polymeric bone 
scaffolds, which consist of cubic (C) and hexagonal closed-packed (H) pore shapes and 
have porosities of 30%, 50%, and 70%. FE modeling will be employed for this 
investigation. To depict the deformation of polymeric bone scaffolds, a crushable 
plasticity model is employed in the FE analysis. The utilization of a crushable foam 
plasticity model to analyze the 3D bone scaffolds’ deformation under quasi-static 
compression is performed in this study. The PolyJet (PJ) 3D printing technique is utilized 
to fabricate bone scaffolds using VeroClear material. Subsequently, the 3D-printed 
polymeric bone scaffolds undergo compression testing under quasi-static loading 
conditions to experimentally validate the FE study. 

2. Materials and Methods 
2.1. Finite Element Modelling 
2.1.1. Design of Polymeric Bone Scaffolds 

This study involves the design of 3D FE models for bone scaffolds with porosities of 
30%, 50%, and 70%. The overall dimensions of the models are 15 mm × 15 mm × 15 mm, 
and they feature a pore size of 2.5 mm. This study focused on the testing of materials 
and the characterization of its properties both experimentally and by modelling. For this 
reason, the current dimensions are applied in order to obtained higher resolution and 
more loading capacity for the principle proof and the validation of the mathematical 
model on wide range of data. PTC Creo 7.0 (Boston, Massachusetts, United States) is 
employed for the design process. To create the overall cubic structure of the bone 
scaffolds, cubic and hexagonal unit cells with 2.5 mm pore sizes and struts set at angles 
of 90° and 60°, respectively, are tessellated in 3D space. The strut diameters of the 3D FE 
models are adjusted to achieve the desired porosities of 30%, 50%, and 70%. These two 
are the most common and simple types used in the literature and their experimental 
response is well understood. The validation of these two common structures proves the 
efficacy of the FE model. For the hexagonal closed-packed and cubic FE models, the pore 
sizes are defined as the inscribed circle and length of sides, respectively. Figure 1 
illustrates the detailed 3D FE models of the polymeric bone scaffolds from various 
viewpoints. 

   

(a) 30%—Porosity (b) 50%—Porosity (c) 70%—Porosity 

H 

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 4 of 20 
 

 

   

(d) 30%—Porosity (e) 50%—Porosity (f) 70%—Porosity 

 
(g) 30%—Porosity (h) 50%—Porosity (i) 70%—Porosity 

 

(j) 30%—Porosity (k) 50%—Porosity (l) 70%—Porosity 

Figure 1. (a–c) The 2D views of the 3D CAD models with H unit cell; (d–f) the 3D views of the 3D 
CAD models with H unit cell; (g,h) the 2D views of the 3D CAD models with C unit cell; (j,k) the 
3D views of the 3D CAD models with C unit cell. 

2.1.2. Meshing 
In FE analysis, the size of the mesh significantly impacts the FE results. Therefore, 

the initial investigation focused on examining the influence of mesh size on the 
mechanical response of polymeric bone scaffolds and, subsequently, on the damage. For 
this purpose, various sizes of tetrahedral meshes were generated on a 70% porous 
polymeric bone scaffold while keeping all other parameters constant. To measure 
convergence, the yield strength was calculated as an output parameter for each 
decreasing mesh size. Table 1 provides details regarding the element size, number of 
tetrahedral elements, computational time, and yield strength. The table demonstrates 
that reducing the element size from 5.0 mm to 0.8 mm led to a yield strength change of 
7.04%. However, when further reducing the mesh size to 0.6 mm, the yield strength only 

Figure 1. (a–c) The 2D views of the 3D CAD models with H unit cell; (d–f) the 3D views of the 3D
CAD models with H unit cell; (g–i) the 2D views of the 3D CAD models with C unit cell; (j–l) the 3D
views of the 3D CAD models with C unit cell.



J. Funct. Biomater. 2023, 14, 496 5 of 19

Table 1. Tetrahedral entities with computational time and yield strength for convergence.

Mesh 1 Mesh 2 Mesh 3

Polymeric bone scaffold
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2.1.3. Boundary Conditions

To conduct the FE simulations, three-dimensional computer-aided design (CAD)
models of the polymeric bone scaffolds featuring cubic and hexagonal closed-packed unit
cells were saved as .STEP files and imported into the explicit dynamic’s module of ANSYS
2020 R2. In order to replicate the clamps of a compression testing machine, plates were
added at the top and bottom of the polymeric bone scaffolds.

Frictionless connections were established between the polymeric bone scaffolds and
the loading plates to mimic the realistic connection between the compression machine
clamps and the as-built polymeric bone scaffolds. The top and bottom plates were defined
as rigid bodies, while the polymeric bone scaffolds were defined as a flexible body. To
simulate compression testing, remote displacement-controlled boundary conditions were
applied to the plates. The polymeric bone scaffolds were quasi-statically compressed with
a displacement rate of 2 mm/min. The bottom plate was fixed to the ground using the
remote displacement, with all translation and rotation values set to zero. A compressive
displacement was applied in the -z direction to the top plate of each polymeric bone scaffold
to solve the FE problems. Figure 2 illustrates the FE simulation setup depicting the loading
plates, connections, and boundary conditions.
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2.1.4. Crushable Foam Plasticity Model

In order to analyze the deformation of the polymeric bone scaffolds, the crushable
foam plasticity model was used in this study. The governing factors for the crushable foam
model employing an isotropic hardening rule are the von Mises equivalent stress (q) and
the hydrostatic pressure (p) [27]. In the stress plane of p− q, the yield surface is depicted
as a centered ellipse at the origin shown in Figure 3.
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Under the hydrostatic state, the yield surface expands along the pressure axis. The
yield surface of the crushable foam model with isotropic hardening is defined as follows:

F =
√

q2 + α2 p2 − B (1)

The expression involves B, which represents the q-axis dimension of the yield ellipse.
Additionally, σuc denotes the uniaxial loading’s absolute compressive strength, while a
signifies the shape factor of the yield ellipse, and their definitions are as follows:

B = α× pc = σuc ×
√

1 +
a2

3
(2)

α = 3k/√
9− k2 (3)
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k = σ0
uc
/

p0
c

(4)

The parameters in above equations have specific meanings. α represents the shape
of the yield ellipse in the p− q stress plane, while B denotes the size of the yield ellipse.
Furthermore, pc signifies the yield strength under hydrostatic compression, k represents
the compression yield stress ratio, σ0

uc stands for the initial yield strength under uniaxial
compression, and p0

c represents the initial yield strength when subjected to hydrostatic
compression. It is important to note that, due to the challenges associated with measur-
ing hydrostatic compressive and tensile strength directly, several researchers [28] make
assumptions regarding constant ratios k based on the experiments. Therefore, the sole
parameter required to define the yield surface is the value of k. In the case of numerous
low-density foams, the parameter α was found to be close to one, allowing the value of k to
be set to unity [27] which corresponds to a value of 1. Moreover, flow potential is defined
as [29];

G =
√

q2 + β2 p2 (5)

The parameter β represents the lengths of the principal axes of the flow potential
ellipse in the p− q stress plane, and its correlation is determined by the plastic Poisson’s
ratio.

β = 3/√
2

√
1− 2vp

/
1 + vp

(6)

The geometry of the isotropic CF yield criterion in the q-p plane is determined by
these relationships. Furthermore, the linear equation below was employed to establish the
evolving yield stress’s work hardening slope (H) [29];

H =
(σe
/

σ̂
)
× hσ +

(
1− σe

/
σ̂
)
× hp (7)

σe represents the von Mises effective stress while σ̂ denotes the equivalent stress. Addi-
tionally, hσ and hp indicate the slopes of the stress versus logarithmic plastic strain curve
during uniaxial and hydrostatic compression, respectively. Several FE solvers are integrated
with the crushable foam plasticity model which requires five parameters for its complete
definition. These parameters include the modulus of elasticity, Poisson’s ratio, density,
stress–strain curve, and maximum tensile stress for tension cut-off. The values of these
parameters, as listed in Table 2, were retrieved from our previous study [8]. The previous
study focused on investigating the mechanical response of 3D-printed standard solid sam-
ples under compression. For the FE analysis in this study, the stress–strain curves obtained
from the 3D-printed standard solid samples in the z-direction were used and presented
in Section 3.1. This choice was made because the polymeric bone scaffolds utilized in this
study were printed in the same z-direction.

Table 2. Material properties for the crushable foam plasticity model used in FE modelling [8].

Parameters Values

Elastic modulus (GPa) 1.6
Poison ratio 0.32

Maximum tensile stress (MPa) 50
Density (kg/m3) 1190

2.2. Experimental Setup
2.2.1. Development of Polymeric Bone Scaffolds and Solid Samples

To facilitate the fabrication process, the 3D CAD models of the polymeric bone scaffolds
were initially converted into the widely used .stl format. Subsequently, a PolyJet printer was
employed to print the polymeric bone scaffolds using commercially available materials. The
Stratasys Objet260 Connex 1 (Stratasys, EMEA Regional Office (Baden-Baden, Germany))
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PolyJet printer is equipped with a high-capacity material cabinet capable of holding up to
eight sealed 3.6 kg cartridges. This enables the loading of three different model materials
simultaneously and facilitates hot-swapping when necessary. The printer’s net build size is
255 × 252 × 200 mm3 (10.0 × 9.9 × 7.9 in.). The printer provides exceptionally accurate
printing by providing horizontal build layers with a maximum thickness of 16 microns
(0.0006 in.). The build resolution is equally impressive with a 600-dpi resolution for
both the x and y axes and an outstanding 1600 dpi resolution for the z-axis. The printer
delivers enhanced precision, with features smaller than 50 mm falling within a range of
20–85 microns and full model sizes up to 200 microns.

VeroClear from STRATASYS was the specific material used for the printing. In this
study on bone scaffold development using PolyJet 3D printing, VeroClear is selected due to
its initial advantages. Its transparency aids in visualizing the porosity and scaffold structure
during the design and prototyping phases. Additionally, VeroClear is a popular material
for 3D printing substrates in biomedical engineering applications [30–32], which makes it a
suitable choice for our study. Its cost-effectiveness during the early stages allowed us to
focus on porosity and deformation behavior analysis, with biocompatibility enhancements
planned for future research phases. The PolyJet printer required approximately ninety
minutes to print six polymeric bone scaffolds. After printing, the support material (SUP706)
was removed using pressurized water, followed by the elimination of residual particles
using compressed air. The support material was a non-toxic gel-like photopolymer support,
manufactured and designed by Stratasys (North America—Stratasys Units). During the
PolyJet printing process, SUP 706 was simultaneously deposited alongside the model
material, but in areas where support was needed. These support structures were used to
uphold the overhanging features and complex geometries of the model. On the other hand,
in our previous study [8], in µSLA (Krämpferstraße 4, 99084 Erfurt, Germany), each scaffold
took approximately three hours and twelve minutes to print individually, with a thickness
of 0.025 mm. The support material of the as-built polymeric bone scaffolds was removed
via sonication in isopropyl alcohol (IPA) for twenty minutes, and the solid support beams
were manually removed [8]. The IPA was obtained from Sigma Aldrich, Ireland, and has
been used for the rinsing of 3D-printed parts by the co-authors previously [33]. Figure 4
provides a visual representation of the stages involved in the development of the polymeric
bone scaffolds. These same stages were followed for fabricating the standard solid samples
required for the crushable foam plasticity model in FE modeling. For the solid samples,
three replicates were created in the x-, y-, and z-directions and printed in the x-direction
using the printer depicted in Figure 5. In Figure 5, the crooked appearance of the samples
is attributed to the angular perspective from which the images were captured. It should
be noted that the build direction for the polymeric bone scaffolds was in the z-direction.
The different printing directions were utilized to assess the effect of the printing direction
on the mechanical properties of the samples and to determine the most relevant results
for the crushable foam plasticity model. A comprehensive discussion on the experimental
investigation of the 3D-printed solid samples can be found in our previous study [8].

2.2.2. Structural Characterization of Polymeric Bone Scaffolds

Following the 3D printing process, the Keyence-Digital microscope VHX-2000 (Osaka,
Japan) was utilized to capture optical microscopic images of the as-built polymeric bone
scaffolds. The purpose was to identify any variations in the architectural measurements
of the as-built scaffolds compared to the CAD-based models, as these differences could
potentially explain the disparities between the experimental and FE mechanical responses of
the scaffolds. To capture the images, the Keyence-Digital microscope VHX-2000 employed
a progressive scanning method at a rate of 28 frames per second, with a resolution of
8 million pixels. Prior to imaging, the x-y motorized stage was initialized, and adjustments
were made to the color and brightness settings. Subsequently, the x-y motorized stage
was moved and tilted to ensure optimal angles for capturing high-quality images of the
polymeric bone scaffolds.
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2.2.3. Quasi-Static Compression Testing

After the optical microscopy imaging, the as-built polymeric bone scaffolds were
subjected to compression testing using the Zwick/Roel Z50 (Zwick/Roell GmbH & Co.
KG, Ulm, Germany) universal testing machine, which was integrated with the Zwick
TestXpert III simulation software. The characterization of the as-built scaffolds followed
the ASTM D-695 standard, employing a deformation rate of 2 mm/min and a maximum
loading capacity of 50 KN. To ensure proper contact between the mating parts and minimize
potential sliding effects, a pre-loading value of 5 N was applied. In this study, the struts
are acting as short columns because the slenderness ratio is less than 9. Short columns fail
due to compression instead of buckling, which eliminates the need for bucking supports
during compression testing. The total samples were 28 and in order to determine the 95%
confidence level, three repetitions of compression tests on each sample were performed.
Therefore, a total of 84 samples (three copies of each sample) were printed to perform
compression tests. The compression test was repeated three times for each of the three
replicates of the as-built polymeric bone scaffolds. Figure 6 illustrates the different stages
of compression. The force versus displacement curves obtained from Zwick TestXpert III
were used to construct stress–strain diagrams for the as-built polymeric bone scaffolds. A
similar procedure was employed to characterize the mechanical behavior of the 3D-printed
standard solid samples [8]. The mechanical properties derived from the compression testing
of the 3D-printed solid samples were subsequently utilized in the FE analysis conducted in
this study.
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3. Results
3.1. Experimental Validation of FE Results

Figure 7 shows the mechanical behavior of polymeric bone scaffolds with porosities of
30%, 50%, and 70%, and a pore size of 2.5 mm, for experimental validation. The individual
stress–strain curve in Figure 7 is the average of the three replicates of polymeric bone
scaffold with an average percentage error of less than 1% ± 0.32). The inclusion of the solid
sample curve in Figure 7 serves as a point of comparison for the porous samples (30%, 50%,
and 70% C). By showing the solid sample curve, the author highlighted the impact of the
varying porosities (30%, 50%, and 70% C) on the material’s properties.
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the plateau region until the onset of densification. In cellular materials, strain hardening
or strain softening can occur at the beginning of the plateau region. In this study, for the
30% and 50% porous polymeric bone scaffolds with a cubic unit cell, a stress decline was
observed at the end of the first peak of the stress–strain curve, indicating strain softening
leading up to the beginning of densification. Conversely, no densification region was
observed for the 70% porous polymeric bone scaffolds with a cubic unit cell. Among the
hexagonal closed-packed unit cell types, only the 30% porous bone scaffolds exhibited
a plateau region and densification region. Densification was not observed in any other
bone scaffolds. The presence of a densification region is dependent on the deformation
and failure mechanisms that occur during the crushing stage, particularly at higher strain
values. The absence of a densification region and subsequent terminal hardening were
anticipated in cases where deformation involved the highly brittle failure of thin struts and
the delamination of the material. Furthermore, the stress–strain curves revealed that the
50% porous bone scaffolds with a hexagonal pore shape and the 70% porous bone scaffolds
with a cubic pore shape did not approach the densification region up to a strain value of
0.35 mm/mm. This behavior aligns with the findings of our previous study [8], which
examined bone scaffolds fabricated using the µSLA technique. In Figure 6, a comparison
is also presented between the mechanical responses of the 3D-printed standard solid
sample, cubic polymeric bone scaffolds, and hexagonal polymeric bone scaffolds. It can
be observed that the elastic moduli and yield strength values are higher for the cubic pore
shape compared to the hexagonal pore shape. Additionally, the mechanical response of
denser or less porous polymeric bone scaffolds closely resembles that of the solid sample,
whereas it deviates in the case of higher porosity polymeric bone scaffolds.

The mechanical properties of the polymeric bone scaffolds, as determined by the
crushable foam plasticity model, showed good agreement with the experimental data, with
an average percentage error of 12.27% ± 3.05) (% error = (measured value − numerical
value)/measured value)). A comparison between different regions of the experimental and
FE stress–strain behavior is presented in Section 3.2. The elastic regions of the experimental
and FE stress–strain curves exhibit good agreement with each other. In the plastic region,
although the magnitude of the FE stress was higher than the experimental stress, the
trend of the plateau stress matched well with the numerical results. Furthermore, the
Young’s moduli and yield strengths of the polymeric bone scaffolds, as shown in Figure 8,
demonstrate that the crushable foam plasticity model accurately predicts the maximum
and plateau stress with an overall percentage error of 12.27% when compared to the
experimental values. A similar pattern is observed for bone scaffolds fabricated through
µSLA, with a percentage error of less than 3% [8].

The disparity between the experimental and FE mechanical properties of the polymeric
bone scaffolds can be attributed to notable variations in strut diameters and deviations of
the struts from the building direction. Figure 9 presents microscopic images of the as-built
polymeric bone scaffolds, which were captured using the Keyence-Digital microscope
VHX-2000, to investigate these geometric deviations.

The variations in the architectural parameters between the as-built polymeric bone
scaffolds and the CAD-based models (actual) are summarized in Table 3. Upon geometric
characterization, it was observed that the strut diameter of the as-built polymeric bone
scaffolds gradually increased as the porosity decreased, with an average difference of
approximately 2.53% and 2.54%, respectively. The increase in strut diameters in each as-
built polymeric bone scaffold was likely due to the overcuring of the printed layers during
the fabrication process. Similarly, a deviation of approximately 2.5% was observed in the
architectural parameters between the as-built polymeric bone scaffold and the CAD-based
polymeric bone scaffolds in the case of µSLA [8].
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Table 3. Deviations in the architectural parameters of CAD-based (actual) polymeric bone scaffolds
and additively manufactured polymeric bone scaffolds.

Pore
Shapes

Porosities
(%) Diff. (%)

Pore Sizes
(mm) Diff. (%)

Strut Diameters (mm) Diff.
(%)

Actual As-Built Actual As-Built Actual As-Built

H 30 29.29 ± 4.05% 2.37 2.50 2.56 ± 5.75% 2.34 1.004 1.027 ± 1.08% 2.34

H 50 49.22 ± 3.42% 1.56 2.50 2.54 ± 4.05% 1.57 0.802 0.815 ± 0.09% 1.57

H 70 69.45 ± 3.15% 0.78 2.50 2.52 ± 4.05% 0.79 0.590 0.595 ± 0.08% 0.78

C 30 29.29 ± 1.33% 2.37 2.50 2.56 ± 4.05% 2.34 6.600 6.754 ± 0.13% 2.35

C 50 49.41 ± 1.05% 1.18 2.50 2.53 ± 4.05% 1.18 3.280 3.319 ± 0.11% 1.18

C 70 69.72 ± 0.08% 0.40 2.50 2.51 ± 4.05% 0.40 1.750 1.757 ± 0.09% 0.41
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3.2. Deformation in Polymeric Bone Scaffolds

The numerical analysis of the deformation of polymeric bone scaffolds under com-
pression levels of 40%, 60%, and 80% is depicted in Figure 10. It is observed that the 30%
porous polymeric bone scaffolds with a hexagonal pore shape exhibit deformations ap-
proximately 4% higher than those of the polymeric bone scaffolds with a cubic pore shape.
The percentage error decreases to 1% as the porosity increases from 50% to 70%. Overall,
the polymeric bone scaffolds consistently displayed outward bulging during compression,
progressing from 40% to 80%.
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In a similar manner, compressive stress contours were extracted to investigate the
stress behavior of polymeric bone scaffolds with a cubic pore shape after conducting FE
analysis, as illustrated in Figure 11. Figure 11a demonstrates the uniform deformation of
vertical struts in the elastic region for the 30% porous polymeric bone scaffolds. Following
the first peak of maximum stress in the elastic region, post-yield softening occurred, leading
to the initiation of strut breakage. Subsequently, deformation was accompanied by pore
blockage due to extensive strut failure in the plateau region, extending until the beginning
of the densification region. Eventually, the entire structure was crushed and transformed
into a disc-like shape at the end of densification. A similar failure pattern was observed for
the 50% porous polymeric bone scaffolds, as shown in Figure 11b. However, in the case
of the 70% porous polymeric bone scaffolds depicted in Figure 11c, post-yield softening
was eliminated, and the collapse of the structure occurred before reaching a strain of
0.35 (mm/mm) due to continuous buckling and breakage of micro-struts. Minor stress
fluctuations were also observed during the failure process, corresponding to the failure and
buckling of micro-struts in the plateau and densification regions.
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Polymeric bone scaffolds with a hexagonal closed-packed pore shape, featuring porosi-
ties of 30%, 50%, and 70%, exhibited distinct mechanical responses. Compressive stress
contours obtained from the FE analysis were assigned to different regions based on their
corresponding strain, as depicted in Figure 12.
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Figure 12. FE deformation mechanism through compressive stress contours of hexagonal closed-
packed pore shape at different level of strains which consisted of (a) 30%, (b) 50%, and (c) 70%
porosity in comparison with the actual deformation behavior of polymeric bone scaffolds.

Figure 12a displays the deformation behavior of the 30% porous bone scaffolds, char-
acterized by uniform deformation accompanied by strut breakage in the elastic region.
Subsequently, deformation progresses with pore blockage were observed in the plateau
region until the beginning of the densification region. Eventually, the entire structure
underwent crushing and transformed into a disc-like shape at the end of the densification.
In Figure 12b, the deformation is followed by post-yield softening, resulting in the collapse
of the structure before reaching a strain of 0.35 (mm/mm). Similarly to the 30% porous
bone scaffolds, the deformation of the 70% porous bone scaffolds, shown in Figure 12c, is
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accompanied by pore blockage in the plateau region until the beginning of the densification
region. Subsequently, the entire structure experiences crushing and transforms into a
disc-like shape at the end of densification.

4. Discussion

The fabrication of bone scaffolds with complex shapes and precise architectural pa-
rameters, as well as appropriate mechanical properties, is crucial in bone tissue engineering
applications for achieving the accurate mimicry of native tissue [34]. Additive manufactur-
ing techniques offer control over scaffold fabrication, enabling the creation of biocompatible
scaffolds with suitable mechanical properties that can serve as bone substitutes in orthope-
dics [35]. FE analysis has gained popularity in tissue engineering as a means to enhance the
design of bone scaffolds by investigating the influence of architectural parameters on their
mechanical and fluid transport properties [26]. Despite a limited number of studies on the
deformation and failure mechanisms of additively manufactured bone scaffolds, accurately
predicting their deformation and failure mechanisms remains a significant challenge. Ongo-
ing research aims to develop material models that can precisely simulate the deformation
of bone scaffolds and improve our understanding of their behavior. With the aim of investi-
gating the deformation of polymeric bone scaffolds, the authors conducted FE analysis. In
this study, six CAD-based polymeric bone scaffolds were designed and fabricated using
the PolyJet (PJ) method. To define the plastic range of the polymeric bone scaffolds, a
crushable foam plasticity model was utilized in the FE modeling. Compression testing was
performed on both standard solid samples and polymeric bone scaffolds to experimentally
validate the results obtained from the FE analysis. The observed discrepancy of 12.27%
between the experimental data and FE results may be attributed to assumptions of material
isotropy and deviations of approximately 2.5% in the architectural parameters between
the CAD-based polymeric bone scaffolds and the as-built polymeric bone scaffolds. The
strut diameters in nearly all of the as-built polymeric bone scaffolds were found to be larger
compared to the CAD-based polymeric bone scaffolds, likely due to the overcuring of
layers during the printing process. Additionally, the deviations in architectural parameters
led to a reduction in the porosity of the as-built polymeric bone scaffolds, resulting in
porosity values of approximately 29.29%, 49.41%, and 69.72%, which closely matched
those of the CAD-based polymeric bone scaffolds. This indicates the high fidelity of the
CAD-based bone scaffold models used in additive manufacturing. Therefore, it can be
expected that CAD-based FE models provide a reasonably accurate representation of the
actual porous bone scaffolds. However, there were some deviations in the architectural
parameters of the as-built bone scaffolds compared to the nominal values, which could
potentially impact the FE results. To address this, it is suggested that the as-built bone
scaffolds be reconstructed using optical microscopy images, as this approach can help
minimize discrepancies between experimental and FE results in future studies and enhance
the accuracy of the FE analysis. In this study, CAD-based polymeric bone scaffolds were
designed with various combinations of architectural parameters, and their deformation
patterns were investigated using FE analysis with a damage model. The results revealed
distinct deformation behaviors for different types of scaffolds. For the polymeric bone
scaffolds with a cubic pore shape and porosities of 30% and 50%, a stress fall was observed
after the initial peak of the stress–strain curve, indicating a softening region followed by
strut failure. The plateau region showed pore blockage leading to the beginning of the
densification region. However, in the case of the 70% porous polymeric bone scaffolds with
the same pore shape, no densification region was observed. This absence of densification
was anticipated due to the brittle failure of thin struts during deformation. Regarding
the polymeric bone scaffolds with a hexagonal closed-packed pore shape, only the 30%
porous scaffolds exhibited a plateau and densification region. The 50% and 70% porous
scaffolds experienced crushing before reaching the densification region, up to a strain
value of 0.35 mm/mm. Comparing the two pore shapes, it was noted that although the
mechanical response of the cubic pore shape was higher than that of the hexagonal closed-
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packed pore shape, the failure in the latter was more uniform. The mechanical properties
of the 50% porous scaffolds, irrespective of pore shape, closely resembled those of human
bone. Additionally, the crushable foam plasticity model proved effective in simulating
the deformation of polymeric bone scaffolds, offering valuable insights for redesigning
scaffolds to prevent damage to native tissues in bone tissue engineering applications.

5. Conclusions

This study aimed to evaluate the crushable foam plasticity model’s effectiveness
in predicting the deformation and failure mechanisms of 3D-printed polymeric bone
scaffolds through FE analysis. Experimental data revealed a discrepancy, indicating that the
crushable foam plasticity model is capable of estimating the maximum and plateau stresses
of polymeric bone scaffolds. To enhance understanding of the deformation of 3D-printed
polymeric bone scaffolds, it is necessary to develop more detailed numerical methods that
incorporate failure modes. This knowledge can then be used to redesign and develop new
structures that are more suitable for bone replacement, taking into account the observed
modes of failure and deformation patterns.
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