In Vitro Biocompatibility of the Novel Ceramic Composite Baghdadite for Defect Augmentation in Revision Total Hip Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Preparation of Baghdadite
2.3. MTT Viability Assay
2.4. CFSE Proliferation Assay
2.5. Enzyme-Linked Immunosorbent Assay
2.6. pH Analysis
2.7. Statistical Analysis
3. Results
3.1. Viability
3.2. Proliferation
3.3. Proinflammatory Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, A.M.; Farley, K.X.; Guild, G.N.; Bradbury, T.L. Projections and Epidemiology of Revision Hip and Knee Arthroplasty in the United States to 2030. J. Arthroplast. 2020, 35, 79–85. [Google Scholar] [CrossRef]
- Feng, X.; Gu, J.; Zhou, Y. Primary total hip arthroplasty failure: Aseptic loosening remains the most common cause of revision. Am. J. Transl. Res. 2022, 14, 7080–7089. [Google Scholar] [PubMed]
- Wirtz, D.C.; Jaenisch, M.; Osterhaus, T.A.; Gathen, M.; Wimmer, M.; Randau, T.M.; Schildberg, F.A.; Rössler, P.P. Acetabular defects in revision hip arthroplasty: A therapy-oriented classification. Arch. Orthop. Trauma Surg. 2020, 140, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, M.; Kohlhof, K.; Kasapovic, A.; Gathen, M.; Randau, T.M.; Kabir, K.; Roessler, P.P.; Pagenstert, G.; Wirtz, D.C. Femoral defects in revision hip arthroplasty: A therapy-oriented classification. Arch. Orthop. Trauma Surg. 2023, 143, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Koob, S.; Scheidt, S.; Randau, T.M.; Gathen, M.; Wimmer, M.D.; Wirtz, D.C.; Gravius, S. Biological downsizing: Acetabular defect reconstruction in revision total hip arthroplasty. Orthopade 2017, 46, 158–167. [Google Scholar] [CrossRef]
- Gerhardt, D.M.J.M.; de Visser, E.; Hendrickx, B.W.; Schreurs, B.W.; Van Susante, J.L.C. Bone mineral density changes in the graft after acetabular impaction bone grafting in primary and revision hip surgery. Acta Orthop. 2018, 89, 302–307. [Google Scholar] [CrossRef]
- Delimar, D.; Aljinovic, A.; Bicanic, G. Failure of bulk bone grafts after total hip arthroplasty for hip dysplasia. Trauma Surg. 2014, 134, 1167–1173. [Google Scholar] [CrossRef]
- Kwong, L.M.; Jasty, M.; Harris, W.H. High failure rate of bulk femoral head allografts in total hip acetabular reconstructions at 10 years. J. Arthroplast. 1993, 8, 341–346. [Google Scholar] [CrossRef]
- Mulroy, R.D.; Harris, W.H. Failure of acetabular autogenous grafts in total hip arthroplasty. Increasing incidence: A follow-up note. J. Bone Jt. Surg. Am. 1998, 72, 1536–1540. [Google Scholar] [CrossRef]
- Hooten, J.P.; Engh, C.A.; Heekin, R.D. Structural Bulk Allografts in Acetabular Reconstruction. J. Bone Jt. Surg. Br. 1996, 78-B, 270–275. [Google Scholar] [CrossRef]
- Mohammadi, H.; Sepantafar, M.; Muhamad, N.; Sulong, A.B. How Does Scaffold Porosity Conduct Bone Tissue Regeneration? Adv. Eng. Mater. 2021, 23, 2100463. [Google Scholar] [CrossRef]
- Sadeghzade, S.; Liu, J.; Wang, H.; Li, X.; Cao, J.; Cao, H.; Tang, B.; Yuan, H. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater. Today Bio 2022, 17, 100473. [Google Scholar] [CrossRef]
- Khademhosseini, A.; Langer, R. A decade of progress in tissue engineering. Nat. Protoc. 2016, 11, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Van Rijt, S.; De Groot, K.; Leeuwenburgh, S.C.G. Calcium Phosphate and Silicate-Based Nanoparticles: History and Emerging Trends. Tissue Eng. Part A 2022, 28, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Kaplan, D.L.; Zreiqat, H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J. Mater. Chem. B 2014, 2, 7272–7306. [Google Scholar] [CrossRef]
- Mahjoory, M.; Shahgholi, M.; Karimipour, A. Investigation on the size and percentage effects of magnesium nanoparticles on thermophysical properties of reinforced calcium phosphate bone cement by molecular dynamic simulation. Heliyon 2023, 9, e18835. [Google Scholar] [CrossRef]
- Fada, R.; Shahgholi, M.; Azimi, R.; Babadi, N.F. Estimation of Porosity Effect on Mechanical Properties in Clacium Phosphate Cement Reinforced by Strontium Nitrate Nanoparticles: Fabrication and FEM Analysis. Arab. J. Sci. Eng. 2023. [Google Scholar] [CrossRef]
- No, Y.J.; Li, J.J.; Zreiqat, H. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes. Materials 2017, 10, 153. [Google Scholar] [CrossRef]
- Hoppe, A.; Mouriño, V.; Boccaccini, A.R. Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci. 2013, 1, 254–256. [Google Scholar] [CrossRef]
- Ramaswamy, Y.; Wu, C.; Van Hummel, A.; Combes, V.; Grau, G.; Zreiqat, H. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials 2008, 29, 4392–4402. [Google Scholar] [CrossRef]
- Ramaswamy, Y.; Wu, C.; Zhou, H.; Zreiqat, H. Biological response of human bone cells to zinc-modified Ca-Si-based ceramics. Acta Biomater. 2008, 4, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Schumacher Thomas, C.; Volkmann, E.; Yilmaz, R.; Wolf, A.; Treccani, L.; Rezwan, K. Mechanical evaluation of calcium-zirconium-silicate (baghdadite) obtained by a direct solid-state synthesis route. J. Mech. Behav. Biomed. Mater. 2014, 34, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Mirkhalaf, M.; Dao, A.; Schindeler, A.; Little, D.G.; Dunstan, C.R.; Zreiqat, H. Personalized Baghdadite scaffolds: Stereolithography, mechanics and in vivo testing. Acta Biomater. 2021, 132, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Schlundt, C.; Fischer, H.; Bucher, C.H.; Rendenbach, C.; Duda, G.N.; Schmidt-Bleek, K. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Acta Biomater. 2021, 133, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Gallo, J. Periprostehtic Osteolysis: Mechanisms, Prevention and Treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Haddouti, E.M.; Beckert, H.; Pariyar, S.; Rüwald, J.M.; Li, X.; Jaenisch, M.; Burger, C.; Wirtz, D.C.; Kabir, K.; et al. Investigation of Cytotoxicity, Oxidative Stress, and Inflammatory Responses of Tantalum Nanoparticles in THP-1-Derived Macrophages. Mediat. Inflamm. 2020, 2020, 3824593. [Google Scholar] [CrossRef]
- Sims, N.A. Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021, 146, 155655. [Google Scholar] [CrossRef]
- Arefpour, A.; Kasiri-Asgarani, M.; Monshi, A.; Doostmohammadi, A.; Karbasi, S. Fabrication, characterization and examination of in vitro of baghdadite nanoparticles for biomedical applications. Mater. Res. Express 2019, 6, 095411. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, G.; Roohani-Esfahani, I.; Dunstan, C.R.; Zreiqat, H. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration. Tissue Eng. Part A 2014, 20, 992–1002. [Google Scholar] [CrossRef]
- Graney, P.L.; Roohani-Esfahani, S.I.; Zreiqat, H.; Spiller, K.L. In Vitro Modulation of Macrophage Behavior by Ceramic-Based Scaffolds. 2015. Available online: https://abstracts.biomaterials.org/data/papers/2015/abstracts/259.pdf (accessed on 10 October 2023).
- Bezbradica, J.S.; Coll, R.C.; Schroder, K. Sterile signals generate weaker and delayed macrophage NLRP3 inflammasome responses relative to microbial signals. Cell. Mol. Immunol. 2017, 14, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Wu, C.; Zhang, Y. The in vivo osteogenesis of MG or Zr-modified silicate-based bioceramic spheres. J. Biomed. Mater. Res. A 2012, 100, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
- Roohani-Esfahani, S.I.; Dunstan, C.R.; Davies, B.; Pearce, S.; Williams, R.; Zreiqat, H. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomater. 2012, 8, 4162–4172. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Akey, A.; Dunstan, C.R.; Vielreicher, M.; Friedrich, O.; Bell, D.C.; Zreiqat, H. Effects of Material-Tissue Interactions on Bone Regeneration Outcomes Using Baghdadite Implants in a Large Animal Model. Adv. Healthc. Mater. 2018, 7, e1800218. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaenisch, M.; Guder, C.; Ossendorff, R.; Randau, T.M.; Gravius, S.; Wirtz, D.C.; Strauss, A.C.; Schildberg, F.A. In Vitro Biocompatibility of the Novel Ceramic Composite Baghdadite for Defect Augmentation in Revision Total Hip Arthroplasty. J. Funct. Biomater. 2023, 14, 517. https://doi.org/10.3390/jfb14100517
Jaenisch M, Guder C, Ossendorff R, Randau TM, Gravius S, Wirtz DC, Strauss AC, Schildberg FA. In Vitro Biocompatibility of the Novel Ceramic Composite Baghdadite for Defect Augmentation in Revision Total Hip Arthroplasty. Journal of Functional Biomaterials. 2023; 14(10):517. https://doi.org/10.3390/jfb14100517
Chicago/Turabian StyleJaenisch, Max, Christian Guder, Robert Ossendorff, Thomas M. Randau, Sascha Gravius, Dieter C. Wirtz, Andreas C. Strauss, and Frank A. Schildberg. 2023. "In Vitro Biocompatibility of the Novel Ceramic Composite Baghdadite for Defect Augmentation in Revision Total Hip Arthroplasty" Journal of Functional Biomaterials 14, no. 10: 517. https://doi.org/10.3390/jfb14100517
APA StyleJaenisch, M., Guder, C., Ossendorff, R., Randau, T. M., Gravius, S., Wirtz, D. C., Strauss, A. C., & Schildberg, F. A. (2023). In Vitro Biocompatibility of the Novel Ceramic Composite Baghdadite for Defect Augmentation in Revision Total Hip Arthroplasty. Journal of Functional Biomaterials, 14(10), 517. https://doi.org/10.3390/jfb14100517