Preparation of Self-Assembled, Curcumin-Loaded Nano-Micelles Using Quarternized Chitosan–Vanillin Imine (QCS-Vani Imine) Conjugate and Evaluation of Synergistic Anticancer Effect with Cisplatin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of QCS-Vani Imine Conjugate
2.2.1. Preparation of Glycidyl Trimethyl Ammonium–Quarternized Chitosan (GTMAC-QCS)
2.2.2. Vanillin Conjugation on GTMAC-QCS by Schiff Base Reaction
2.3. Characterization of QCS-Vani Imine Conjugate
2.3.1. 1H NMR, FTIR and Spectrophotometric Analysis
2.3.2. Degree of Substitution of Quaternary Groups (DQ) on Glycidyltrimethylammonium–Chitosan (GTMAC-QCS)
- ;
- = volume of 0.01 M AgNO3 at end point (mL);
- = molarity of AgNO3 (M);
- w = mass of Q-CS (g), M1 = molecular weight of glucosamine = 169.4; and
- M2 = molecular weight of QCS = 152.6.
2.3.3. Degree of Substitution of Vanillin on QCS-Vani Imine Conjugate
2.4. Preparation of Nano-Micelles
2.4.1. Preparation of Curcumin-Loaded QCS-Vani Imine Nano-Micelles
2.4.2. Preparation of Curcumin-Loaded QCS-Vani Imine Nano-Micelles Powders
2.5. Characterization of Nano-Micelles
2.5.1. Critical Micelle Concentration (CMC)
2.5.2. Size and Zeta Potential
2.5.3. The Entrapment Efficiency (%EE) and Loading Capacity (%LC) Determination of Curcumin-Loaded QCS-Vani Imine Nano-Micelles
2.5.4. Morphology Observation
2.6. Differentials Scanning Calorimetry (DSC) Analysis
2.7. Stability Study of the Curcumin-Loaded QCS-Vani Imine Nano-Micelle Powders
2.8. Study of In Vitro Drug Release
High-Pressure Liquid Chromatography (HPLC) System
2.9. Evaluation of Cytotoxic Potential
2.9.1. Cell Culture
2.9.2. 3-[4,5-Dimethylthiazol-2-yl]-2,5-Diphenyl Tetrazolium Bromide (MTT) Assay
2.10. Cellular Uptake Using Confocal Laser Scanning Microscopy (CLSM)
2.11. Cell Apoptosis Study Using Flow Cytometry
2.12. Cell Cycle Study
2.13. Evaluation of the Synergistic Effect of Cisplatin with Curcumin-Loaded QCS-Vani Imine
2.14. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of QCS-Vani Imine Conjugate
3.2. Curcumin-Loaded QCS-Vani Imine Nano-Micelles
3.3. Characterization of Curcumin-Loaded QCS-Vani Imine Nano-Micelles
3.3.1. CMC of QCS-Vani Imine Nano-Micelles
3.3.2. Particle Size Analysis, Zeta Potential and Polydispersity Index (PDI)
3.3.3. Percent Entrapment Efficiency (%EE) and Drug-Loading Capacity
3.3.4. Morphological Study Using Transmission Electron Microscopy (TEM)
3.4. Stability Study of the Curcumin-Loaded Loaded QCS-Vani Imine Nano-Micelles Powders
3.5. DSC Analysis
3.6. In Vitro Drug Release
3.7. Anticancer Evaluation
3.8. Cellular Uptake
3.9. Evaluation of the Effect of QCS-Vani Imine on Cell Apoptosis
3.10. Evaluation of Effect of QCS-Vani Imine on Cell Cycle
3.11. Evaluation of Synergistic Effect of Cisplatin in Combination with Curcumin and Curcumin-Loaded QCS-Vani Imine Nano-Micelles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riudavets, M.; de Herreros, M.G.; Besse, B.; Mezquita, L. Radon and lung cancer: Current trends and future perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Hu, Y.; Chen, J.; He, Y.; Gao, X.; Zhang, Y. Co-delivery of doxorubicin and curcumin via cRGD-peptide modified PEG-PLA self-assembly nanomicelles for lung cancer therapy. Chin. Chem. Lett. 2022, 33, 2507–2511. [Google Scholar] [CrossRef]
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef]
- US National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 11 October 2022).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Cooley, M.E.; Mazzola, E.; Xiong, N.; Hong, F.; Lobach, D.F.; Braun, I.M.; Halpenny, B.; Rabin, M.S.; Johns, E.; Finn, K. Clinical Decision Support for Symptom Management in Lung Cancer Patients: A Group RCT. J. Pain Symptom Manag. 2022, 63, 572–580. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Dasari, S.; Noubissi, F.K.; Ray, P.; Kumar, S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J. Exp. Pharmacol. 2021, 13, 303–328. [Google Scholar] [CrossRef]
- Mehta, H.J.; Patel, V.; Sadikot, R.T. Curcumin and lung cancer–A review. Target. Oncol. 2014, 9, 295–310. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Najafi, M.; Makvandi, P.; Zarrabi, A.; Farkhondeh, T.; Samarghandian, S. Versatile role of curcumin and its derivatives in lung cancer therapy. J. Cell. Physiol. 2020, 235, 9241–9268. [Google Scholar] [CrossRef]
- Ye, M.-X.; Li, Y.; Yin, H.; Zhang, J. Curcumin: Updated molecular mechanisms and intervention targets in human lung cancer. Int. J. Mol. Sci. 2012, 13, 3959–3978. [Google Scholar] [CrossRef]
- Pillai, G.R.; Srivastava, A.S.; Hassanein, T.I.; Chauhan, D.P.; Carrier, E. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett. 2004, 208, 163–170. [Google Scholar] [CrossRef]
- Chen, H.-W.; Lee, J.-Y.; Huang, J.-Y.; Wang, C.-C.; Chen, W.-J.; Su, S.-F.; Huang, C.-W.; Ho, C.-C.; Chen, J.J.; Tsai, M.-F. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res. 2008, 68, 7428–7438. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Huang, S.-Y.; Zhou, D.-D.; Xiong, R.-G.; Zhao, C.-N.; Fang, A.-P.; Zhang, Y.-J.; Li, H.-B.; Zhu, H.-L. Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants 2022, 11, 1481. [Google Scholar] [CrossRef]
- Hassanizadeh, S.; Shojaei, M.; Bagherniya, M.; Orekhov, A.N.; Sahebkar, A. Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. BioFactors 2023, 49, 512–533. [Google Scholar] [CrossRef]
- Lelli, D.; Pedone, C.; Majeed, M.; Sahebkar, A. Curcumin and lung cancer: The role of microRNAs. Curr. Pharm. Des. 2017, 23, 3440–3444. [Google Scholar] [CrossRef]
- Lin, S.-S.; Lai, K.-C.; Hsu, S.-C.; Yang, J.-S.; Kuo, C.-L.; Lin, J.-P.; Ma, Y.-S.; Wu, C.-C.; Chung, J.-G. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and-9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009, 285, 127–133. [Google Scholar] [CrossRef]
- Khan, F.B.; Singh, P.; Jamous, Y.F.; Ali, S.A.; Uddin, S.; Zia, Q.; Jena, M.K.; Khan, M.; Owais, M.; Huang, C.Y. Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers 2023, 15, 249. [Google Scholar] [CrossRef]
- Abadi, A.J.; Mirzaei, S.; Mahabady, M.K.; Hashemi, F.; Zabolian, A.; Hashemi, F.; Raee, P.; Aghamiri, S.; Ashrafizadeh, M.; Aref, A.R. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res. 2022, 36, 189–213. [Google Scholar] [CrossRef]
- Khan, S.; Akhtar, N.; Minhas, M.U.; Shah, H.; Khan, K.U.; Thakur, R.R.S. A difunctional Pluronic® 127-based in situ formed injectable thermogels as prolonged and controlled curcumin depot, fabrication, in vitro characterization and in vivo safety evaluation. J. Biomater. Sci. Polym. Ed. 2021, 32, 281–319. [Google Scholar] [CrossRef]
- Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M. Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 2011, 34, 660–665. [Google Scholar] [CrossRef]
- Tabanelli, R.; Brogi, S.; Calderone, V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics 2021, 13, 1715. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control Release 2019, 316, 359–380. [Google Scholar] [CrossRef]
- Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv. 2012, 9, 1347–1364. [Google Scholar] [CrossRef]
- Ipar, V.S.; Dsouza, A.; Devarajan, P.V. Enhancing curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 459–480. [Google Scholar] [CrossRef]
- Li, Z.; Shi, M.; Li, N.; Xu, R. Application of functional biocompatible nanomaterials to improve curcumin bioavailability. Front. Chem. 2020, 8, 589957. [Google Scholar] [CrossRef]
- Bose, A.; Roy Burman, D.; Sikdar, B.; Patra, P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol. 2021, 15, 19–27. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Yang, R. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int. J. Biol. Macromol. 2015, 75, 378–387. [Google Scholar] [CrossRef]
- Huang, C.; Liao, H.; Liu, X.; Xiao, M.; Liao, S.; Gong, S.; Yang, F.; Shu, X.; Zhou, X. Preparation and characterization of vanillin-chitosan Schiff base zinc complex for a novel Zn2+ sustained released system. Int. J. Biol. Macromol. 2022, 194, 611–618. [Google Scholar] [CrossRef]
- Kong, X. Simultaneous determination of degree of deacetylation, degree of substitution and distribution fraction of–COONa in carboxymethyl chitosan by potentiometric titration. Carbohydr. Polym. 2012, 88, 336–341. [Google Scholar] [CrossRef]
- Shen, F.; Zhong, H.; Ge, W.; Ren, J.; Wang, X. Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability. Carbohydr. Polym. 2020, 234, 115927. [Google Scholar] [CrossRef]
- Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym. 2019, 203, 10–18. [Google Scholar] [CrossRef]
- Lu, X.; Du, G.; Zhang, Z.; Gong, G.; Cai, W.; Wu, L.; Zhao, G. Fabrication of Redox-and pH-Sensitive Self-Assembled Nano-Micelles with Pegylated β-Cyclodextrin for Codelivery of Doxorubicin and Cyclopalladated Ferrocene. Eur. J. Inorg. Chem. 2022, 2022, e202101061. [Google Scholar] [CrossRef]
- Wu, R.; Tian, M.; Shu, C.; Zhou, C.; Guan, W. Determination of the critical micelle concentration of surfactants using fluorescence strategies. Soft Matter 2022, 18, 8920–8930. [Google Scholar] [CrossRef]
- Sripetthong, S.; Eze, F.N.; Sajomsang, W.; Ovatlarnporn, C. Development of pH-Responsive N-benzyl-N-O-succinyl Chitosan Micelles Loaded with a Curcumin Analog (Cyqualone) for Treatment of Colon Cancer. Molecules 2023, 28, 2693. [Google Scholar] [CrossRef]
- Patra, A.; Satpathy, S.; Shenoy, A.K.; Bush, J.A.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomed. 2018, 13, 2869. [Google Scholar] [CrossRef]
- Mapoung, S.; Pitchakarn, P.; Yodkeeree, S.; Ovatlarnporn, C.; Sakorn, N.; Limtrakul, P. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells. Chem. Biol. Interact. 2016, 244, 140–148. [Google Scholar] [CrossRef]
- Packialakshmi, P.; Gobinath, P.; Ali, D.; Alarifi, S.; Gurusamy, R.; Idhayadhulla, A.; Surendrakumar, R. New chitosan polymer scaffold Schiff bases as potential cytotoxic activity: Synthesis, molecular docking, and physiochemical characterization. Front. Chem. 2022, 9, 796599. [Google Scholar] [CrossRef]
- Kamaraj, S.; Palanisamy, U.M.; Mohamed, M.S.B.K.; Gangasalam, A.; Maria, G.A.; Kandasamy, R. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur. J. Pharm. Sci. 2018, 116, 48–60. [Google Scholar] [CrossRef]
- da Silva, R.L.; Bernardinelli, O.D.; Frachini, E.C.; Ulrich, H.; Sabadini, E.; Petri, D.F. Vanillin crosslinked chitosan films: The states of water and the effect of carriers on curcumin uptake. Carbohydr. Polym. 2022, 292, 119725. [Google Scholar] [CrossRef]
- Wang, Y.; Khan, A.; Liu, Y.; Feng, J.; Dai, L.; Wang, G.; Alam, N.; Tong, L.; Ni, Y. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydr. Polym. 2019, 223, 115061. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, T.; Chen, X.; Tian, D.; Wang, L.; Gao, R. Preparation and characterization of vanillin-conjugated chitosan-stabilized emulsions via a Schiff-base reaction. Food Sci. Biotechnol. 2023, 32, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, K.; Li, Q.; Huang, C. pH responsive release of paclitaxel by self-assembling Chitosan-ethyl vanillin@ GNRs nanocomposites. Int. J. Pharm. 2021, 607, 121047. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, L.; Qin, W.; Loy, D.A.; Wu, Z.; Chen, H.; Zhang, Q. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 2022, 281, 119080. [Google Scholar] [CrossRef]
- Chen, S.; Wu, J.; Tang, Q.; Xu, C.; Huang, Y.; Huang, D.; Luo, F.; Wu, Y.; Yan, F.; Weng, Z. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydr. Polym. 2020, 228, 115398. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Min, T. Curcumin, curcumin nanoparticles and curcumin nanospheres: A review on their pharmacodynamics based on monogastric farm animal, poultry and fish nutrition. Pharmaceutics 2020, 12, 447. [Google Scholar] [CrossRef]
- Ombredane, A.S.; Silva, V.R.; Andrade, L.R.; Pinheiro, W.O.; Simonelly, M.; Oliveira, J.V.; Pinheiro, A.C.; Goncalves, G.F.; Felice, G.J.; Garcia, M.P. In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment: A systematic review. Front. Oncol. 2021, 11, 612903. [Google Scholar] [CrossRef]
- Wongwanakul, R.; Aueviriyavit, S.; Furihata, T.; Gonil, P.; Sajomsang, W.; Maniratanachote, R.; Jianmongkol, S. Quaternization of high molecular weight chitosan for increasing intestinal drug absorption using Caco-2 cells as an in vitro intestinal model. Sci. Rep. 2023, 13, 7904. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, X.; Jin, Z.; Xu, W.; Zhao, K. Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic palmitic acid-grafted-quaternized chitosan with enhanced cytotoxic, antimicrobial and antioxidant properties. Int. J. Biol. Macromol. 2022, 222, 2855–2867. [Google Scholar] [CrossRef]
- Cridge, B.J.; Larsen, L.; Rosengren, R.J. Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers. Oncol. Discov. 2013, 1, 6. [Google Scholar] [CrossRef]
- Jena, S.K.; Samal, S.K.; Kaur, S.; Chand, M.; Sangamwar, A.T. Potential of amphiphilic graft copolymer α-tocopherol succinate-g-carboxymethyl chitosan in modulating the permeability and anticancer efficacy of tamoxifen. Eur. J. Pharm. Sci. 2017, 101, 149–159. [Google Scholar] [CrossRef]
- Jan, R. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019, 9, 205. [Google Scholar] [CrossRef]
- Marsoni, S.; Damia, G. Molecular targeting: New therapeutic strategies to improve tumour apoptosis. Ann. Oncol. 2004, 15, iv229–iv231. [Google Scholar] [CrossRef]
- Martin, S.J.; Green, D.R. Apoptosis as a goal of cancer therapy. Curr. Opin. Oncol. 1994, 6, 616–621. [Google Scholar] [CrossRef]
- Chamberlin, S.R.; Blucher, A.; Wu, G.; Shinto, L.; Choonoo, G.; Kulesz-Martin, M.; McWeeney, S. Natural product target network reveals potential for cancer combination therapies. Front. Pharmacol. 2019, 10, 557. [Google Scholar] [CrossRef]
- Chen, P.; Li, J.; Jiang, H.-G.; Lan, T.; Chen, Y.-C. Curcumin reverses cisplatin resistance in cisplatin-resistant lung caner cells by inhibiting FA/BRCA pathway. Tumor Biol. 2015, 36, 3591–3599. [Google Scholar] [CrossRef]
Sample | The Volume of 4 mg/mL QCS-Vani Imine Solution (mL) | Volume of 10 mg/mL Curcumin (mL) | The Volume of DMSO (mL) | Amount of Curcumin (mg) |
---|---|---|---|---|
Blank micelles | 7.5 | 0 | 2.5 | 0 |
Curcumin 0.1 mg/mL | 7.5 | 0.1 | 2.4 | 1 |
Curcumin 0.3 mg/mL | 7.5 | 0.3 | 2.2 | 3 |
Curcumin 0.4 mg/mL | 7.5 | 0.4 | 2.1 | 4 |
Curcumin 0.45 mg/mL | 7.5 | 0.45 | 2.05 | 4.5 |
Curcumin (mg/mL) | Size (nm) | Zeta Potential (mV) | PDI | %Entrapment Efficiency | %Drug-Loading Capacity |
---|---|---|---|---|---|
0.1 | 283.15 ± 5.13 | 36.95 ± 1.77 | 0.232 ± 0.01 | 42.36 ± 2.57 | 1.32 ± 0.07 |
0.3 | 218.61 ± 2.12 | 37.35 ± 1.20 | 0.184 ± 0.01 | 67.61 ± 5.00 | 6.15 ± 0.41 |
0.4 | 208.65 ± 2.33 | 38.40 ± 1.56 | 0.181 ± 0.02 | 40.64 ± 7.30 | 4.78 ± 0.77 |
0.45 | 219.55 ± 4.74 | 38.35 ± 1.20 | 0.245 ± 0.04 | 40.39 ± 2.32 | 5.27 ± 0.27 |
Sample | A549 IC50 (µM) | H9C2 IC50 (µM) | Selectivity (Fold) |
---|---|---|---|
Curcumin | 86.69 ± 4.45 | 32.32 ± 2.34 | 0.37 |
Curcumin-loaded QCS-Vani imine nano-micelles | 32.84 ± 2.6 | 52.44 ± 3.78 | 1.60 |
Sample | Time (h) | Fluorescence Intensity |
---|---|---|
Curcumin | 2 | 0.629 |
Cur QCS-Vani imine nano-micelles | 2 | 5.127 |
Curcumin | 6 | 1.198 |
Cur QCS-Vani imine nano-micelles | 6 | 6.998 |
Curcumin | 24 | 0.893 |
Cur QCS-Vani imine nano-micelles | 24 | 5.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sripetthong, S.; Nalinbenjapun, S.; Basit, A.; Surassmo, S.; Sajomsang, W.; Ovatlarnporn, C. Preparation of Self-Assembled, Curcumin-Loaded Nano-Micelles Using Quarternized Chitosan–Vanillin Imine (QCS-Vani Imine) Conjugate and Evaluation of Synergistic Anticancer Effect with Cisplatin. J. Funct. Biomater. 2023, 14, 525. https://doi.org/10.3390/jfb14100525
Sripetthong S, Nalinbenjapun S, Basit A, Surassmo S, Sajomsang W, Ovatlarnporn C. Preparation of Self-Assembled, Curcumin-Loaded Nano-Micelles Using Quarternized Chitosan–Vanillin Imine (QCS-Vani Imine) Conjugate and Evaluation of Synergistic Anticancer Effect with Cisplatin. Journal of Functional Biomaterials. 2023; 14(10):525. https://doi.org/10.3390/jfb14100525
Chicago/Turabian StyleSripetthong, Sasikarn, Sirinporn Nalinbenjapun, Abdul Basit, Suvimol Surassmo, Warayuth Sajomsang, and Chitchamai Ovatlarnporn. 2023. "Preparation of Self-Assembled, Curcumin-Loaded Nano-Micelles Using Quarternized Chitosan–Vanillin Imine (QCS-Vani Imine) Conjugate and Evaluation of Synergistic Anticancer Effect with Cisplatin" Journal of Functional Biomaterials 14, no. 10: 525. https://doi.org/10.3390/jfb14100525
APA StyleSripetthong, S., Nalinbenjapun, S., Basit, A., Surassmo, S., Sajomsang, W., & Ovatlarnporn, C. (2023). Preparation of Self-Assembled, Curcumin-Loaded Nano-Micelles Using Quarternized Chitosan–Vanillin Imine (QCS-Vani Imine) Conjugate and Evaluation of Synergistic Anticancer Effect with Cisplatin. Journal of Functional Biomaterials, 14(10), 525. https://doi.org/10.3390/jfb14100525