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Abstract: Antimicrobial peptides (AMPs) have emerged as a promising class of bioactive molecules
with the potential to combat infections associated with medical implants and biomaterials. This
review article aims to provide a comprehensive analysis of the role of antimicrobial peptides in
medical implants and biomaterials, along with their diverse clinical applications. The incorporation
of AMPs into various medical implants and biomaterials has shown immense potential in mitigating
biofilm formation and preventing implant-related infections. We review the latest advancements
in biomedical sciences and discuss the AMPs that were immobilized successfully to enhance their
efficacy and stability within the implant environment. We also highlight successful examples of
AMP coatings for the treatment of surgical site infections (SSIs), contact lenses, dental applications,
AMP-incorporated bone grafts, urinary tract infections (UTIs), medical implants, etc. Additionally,
we discuss the potential challenges and prospects of AMPs in medical implants, such as effectiveness,
instability and implant-related complications. We also discuss strategies that can be employed to
overcome the limitations of AMP-coated biomaterials for prolonged longevity in clinical settings.
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1. Introduction

Antimicrobial resistance (AMR) poses a significant global threat to public health, as it
renders conventional antibiotics ineffective against bacterial infections [1]. The overuse and
misuse of antibiotics have accelerated the emergence of drug-resistant strains, leading to
increased morbidity, mortality, and healthcare costs. In the search for alternative therapeutic
options, antimicrobial peptides (AMPs) have emerged as promising candidates due to
their unique properties and ability to overcome cellular resistance mechanisms [2]. This
resistance can be intrinsic, acquired through genetic mutations or horizontal gene transfer,
and can spread rapidly within and between species [3]. The misuse of antibiotics in clinical
and agricultural settings, inadequate infection control measures, and poor surveillance
contribute to the proliferation of resistant strains [4]. The consequences of AMR are far-
reaching and affect both individual patients and global healthcare systems [5]. Infections
caused by drug-resistant pathogens are associated with higher rates of treatment failure,
prolonged illness, and increased mortality. Additionally, the economic burden of AMR
is substantial, with increased healthcare costs, extended hospital stays, and a reduction
in productivity. If left unaddressed, AMR could potentially reverse the progress made in
modern medicine, leading to a future where common infections become life-threatening
once again. Another challenge is that there is an intricate relationship between AMR
and some life-threatening diseases such as sepsis, highlighting the implications of AMR
in sepsis management and the urgent need for comprehensive strategies to combat this
dual crisis. Resistant bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA)
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or extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, are common
culprits in sepsis cases [6].

Sepsis is a critical condition that occurs as a result of an uncontrolled systemic in-
flammatory response to an infection. Lipopolysaccharide (LPS), also known as endotoxin,
initially binds to the LPS binding protein (LBP). The LPS-LBP complex then binds to Toll-
like receptor 4 (TLR4) and CD14, initiating a series of signaling events, leading to the
activation of transcription factors, including nuclear factor-kappa B (NF-κB) [7]. Activation
of these transcription factors results in the production and release of pro-inflammatory
cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and
interleukin-6 (IL-6) [8–10] (Figure 1A).
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Figure 1. Multifaceted functions of (AMPs): (A) Depiction of the signaling pathway involved in 
Gram-negative bacteria-induced infection caused by lipopolysaccharides (LPS). (B) AMPs bind di-
rectly to LPS, leading to the inhibition of LPs-mediated inflammation. (C) Cationic AMPs bind to 
the negatively charged phosphatidyl serine (PS) heads on cancer cell membranes. 

AMPs hold promise as a potential treatment for sepsis as they not only possess direct 
antimicrobial activity but also exhibit anticancer and immunomodulatory properties [11]. 

Figure 1. Multifaceted functions of (AMPs): (A) Depiction of the signaling pathway involved in
Gram-negative bacteria-induced infection caused by lipopolysaccharides (LPS). (B) AMPs bind
directly to LPS, leading to the inhibition of LPs-mediated inflammation. (C) Cationic AMPs bind to
the negatively charged phosphatidyl serine (PS) heads on cancer cell membranes.

AMPs hold promise as a potential treatment for sepsis as they not only possess direct
antimicrobial activity but also exhibit anticancer and immunomodulatory properties [11].
They can modulate the immune response by enhancing the function of immune cells,
promoting the clearance of pathogens, and regulating the release of pro-inflammatory cy-



J. Funct. Biomater. 2023, 14, 539 3 of 22

tokines. Many AMPs directly bind to LPS and inhibit downstream signaling [12] (Figure 1B).
Interestingly, numerous antimicrobial peptides also interact with cancer cell membranes in
a manner akin to their bacterial membrane targeting, owing to the anionic properties of
cancer cell membranes [13] (Figure 1C).

The global market for peptide therapeutics is anticipated to reach a value of USD 44.43 billion
by 2026, with a compound annual growth rate (CAGR) of 6.95% during the period from
2022 to 2026. Presently, over 80 peptide-based drugs are commercially available, addressing
diverse health conditions such as cancer, osteoporosis, and diabetes [14]. Remarkably,
the pipeline for peptide drugs is robust, with an estimated 400–600 peptides undergoing
preclinical trials. This underscores the significant growth potential and expanding role of
peptide therapeutics in addressing various medical challenges.

Table 1. Examples of Biomedical Applications of Antimicrobial Peptides.

Sl No Biomedical Application Peptide

1 Surgical site infection (SSI) LL-37 [15], hBD2&3 [16], Protegrins [17], Histatins [18], Ranalexin [19], Pexiganan [20],
Magainin [21], HNP1 [22]

2 Contact lens-associated microbial
keratitis (CLMK) α-MSH [23], Melimine [24], Pexiganan [25], Bacitracin [26], Dermcidin [27]

3 Dental applications LL-37 [28], Dermaceptin [29], Nisin, Histatins [30], hBD1 [31], human beta-defensin-3 [32],
human beta-defensin-5, Cateslytin [33], Myxinidin [34], HHC-36 [34]

4 Bone-graft applications KLD [35], E14LKK [36]

5 Tissue generation DermaceptinS4 [37], Thanatin [38], LLKKK18 [39], DPK-060 [40], SMAP-29 [41], G3KL [42],
G3R, MSI-78

6 Anticancer agents pAntp [43], KT2 [44], RT2 [45], LL37 [46], LTX-315, [46] melittin [47]

Table 2. Antimicrobial Peptide Names and Corresponding Sequences Discussed in the Review.

Sl. No Peptide Name Peptide Sequence Reference Clinical Tril ID
(If Available) *

1 HNP-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC [48]

2 Drosocin GKPRPYSPRPTSHPRPIRV [49]

3 Melittin GIGAVLKVLTTGLPALISWIKRKRQQ [47] NCT02364349

4 LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES [15] NCT02225366

5 HBD-2 GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP [16]

6 HBD-3 GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK [16]

7 Protegrin-1 RGGRLCYCRRRFCVCVGR [17]

8 Ranalexin FLGGLIKIVPAMICAVTKKC [19]

9 Pexiganan GIGKFLKKAKKFGKAFVKILKK [20] NCT01594762

10 α-MSH SYSMEHFRWGKPV [23]

11 Melimine TLISWIKNKRKQRPRVSRRRRRRGGRRRR [24]

12 Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS [21] NCT00563433

13 Dermcidin SSLLEKGLDGAKKAVGGLGKLGKDAVEDLESVGKGAVHDVKDVLDSV [27]

14 Dermaceptin ALWKTMLKKLGTMALHAGKAALGAAADTISQGTQ [29]

15 Nisin A ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK [36] NCT02928042

16 Omiganan (Indolicidin
derivative) ILRWPWWPWRRK [50,51] NCT03071679

17 HBD-1 DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK [31]

18 HBD-5 GLDFSQPFPSGEFAVCESCKLGRGKCRKECLENEKPDGNCRLNF
LCCRQRI [52]

19 Cateslytin RSMRLSFRARGYGFR [33]

20 GH-12 GLLWHLLHHLLH [53]

21 Myxinidin GIHDILKYGKPS [54]

22 HHC-36 KRWWKWWRR [55]
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Table 2. Cont.

Sl. No Peptide Name Peptide Sequence Reference Clinical Tril ID
(If Available) *

23 KLD-12 KLDLKLDLKLDL [35]

24 E14LKK LKLLKKLLKLLKKL [56]

25 Dermaseptin-S4 ALWMTLLKKVLKAAAKAALNAVLVGANA [57]

26 Ib-AMP4 QWGRRCCGWGPGRRYCRRWC

27 LLKKK18 KEFKRIVKRIKKFLRKLV [39]

28 DPK-060 GKHKNKGKKNGKHNGWKWWW [40] NCT01522391

29 SMAP-29 RGLRRLGRKIAHGVKKYGPTVLRIIRIAG [37]

30 MSI-78 GIGKFLKKAKKFGKAFVKILKK NCT00563394

31 Bac2A RLCRIVVIRVCR [58]

32 Chain201D KWIVWRWRFKR [59]

33 E6 RRWRIVVIRVRRC [60]

34 Yao et al.
(Unnamed Peptide) (RWRWRWC–NH2) [61]

35 SESB2V [(RGRKVVRR)2K]2KK [62]

36 Temporin-1CEa FVDLKKIANIINSIF [63]

37 Esc(1–21) GIFSKLAGKKIKNLLISGLKG-NH2 [64]

38 18-mer LLKKK KLFKRIVKRILKFLRKLV [65]

39 Thanatin GSKKPVPIIYCNRRTGKCQRM [38]

40 Histatins Sequence Differs Across Subtypes With Conserved Cationic Nature [18,30]

41 BmKn2 FIGAIARLLSKIFGKR [66]

42 Microcin E492 GETDPNTQLLNDLGNNMAWGAALGAPGGLGSAALGAAGGAL
QTVGQGLIDHGPVNVFIPVLIGPSWNGSGSGYNSATSSSGSGS [67]

43 BR2 RAGLQFPVGRLLRRLLR [68]

44 pAntp RQIKIWFQNRRMKWKK [69]

45 pTAT RKKRRQRRR [70]

46 KT2 NGVQPKYKWWKWWKKWW [44]

47 RT2 NGVQPKYRWWRWWRRWW [45]

48 LTX-315 KKWWKKWDip ** K [71] NCT04796194

* Source: Clinicaltrials.gov. ** Dip is β-diphenylalanine.

1.1. Discovery of AMPs

The discovery of AMPs has been a fascinating journey spanning several decades. It
began with early observations of antimicrobial properties in natural substances used by
ancient civilizations. In the 1980s, researchers stumbled upon a class of cationic peptides
called defensins in rabbit leukocytes, marking the first identification of AMPs [72,73]. One
of the earliest defensins to be discovered was human neutrophil peptide 1 (HNP-1), also
known as alpha-defensin 1, which was identified in 1985 from human neutrophils [74].
Shortly after the discovery of HNP-1, several other defensins were identified in different
organisms. For example, plant defensins were discovered in the late 1980s, and insect
defensins were discovered in the early 1990s. Scientists then embarked on systematic
screening efforts, exploring various sources including humans, animals, plants, and mi-
croorganisms to identify new AMPs. Advances in molecular biology techniques, such as
cloning and DNA sequencing, allowed for the characterization of genes encoding AMPs
and the production of large quantities of peptides for further study. Drosocin and melittin
are examples of peptides that were identified using the above-mentioned approaches [75].
Drosocin was identified when researchers studying Drosophila melanogaster noticed that the
flies had a robust immune response to bacterial infections [49]. They then extracted peptides
from fly samples and later purified them using chromatography and mass spectrometry.
The purified peptides were then subjected to further characterization to determine their
chemical structure, activity, and mode of action [76,77]. A similar approach was followed
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for melittin as well [78]. After the confirmation of the antimicrobial and cytolytic activ-
ity in the bioassays, the active fraction was further purified using techniques such as
high-performance liquid chromatography (HPLC) and mass spectrometry. The purified
melittin was tested again for its antimicrobial, cytolytic, or other activities to confirm that
it matched the initial observations and demonstrated the characteristic effects associated
with melittin [79].

Bioinformatics, genomics, and computational tools are also pivotal to predict and
analyze peptide sequences with antimicrobial potential. Moreover, natural product peptide
libraries and high-throughput screening methods have contributed to the discovery of
novel AMPs as well. The latest in silico approaches to discovering AMPs include several
computational methods that play a crucial role in the discovery of AMPs [80]. Researchers
use various software tools and algorithms to predict and screen for potential antimicrobial
peptides based on their sequence, structure, physicochemical properties, and known AMP
databases. Examples of such tools include CAMPR3, AntiBP2, and CAMP2.0 [81,82]. In
advanced machine learning techniques, deep learning and artificial neural networks are
being increasingly employed to identify new AMPs [83]. These models are trained on
large datasets of known AMPs and non-AMPs to recognize patterns and make predictions.
Screening large libraries of peptides or peptide fragments is another strategy for identi-
fying potential AMPs. Techniques like peptide arrays, phage display, and combinatorial
chemistry are also commonly employed for this purpose. Other approaches include DNA
sequencing technologies and structural biology approaches. In the former approach, the
genetic information is analyzed, and by utilizing that knowledge, the researchers identify
potential AMP-encoding genes and subsequently validate the antimicrobial activity of the
corresponding peptides [84]. In structural biology approaches, rational designs of small
α-helical peptides have been utilized to design AMPs with broad-spectrum activity against
multidrug-resistant pathogens [85]. Techniques such as X-ray crystallography (X-ray), nu-
clear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM) are
used to elucidate the structures of AMPs and their interactions with microbial targets [86].
Antimicrobial and other bioactive peptides have also been derived from naturally occurring
proteins and have been reported to possess both immunomodulatory and anticancer prop-
erties [87–89]. Tables 1 and 2 present a comprehensive overview of all the discussed AMPs
in this review. Various factors, such as net charge and hydrophobicity, govern the activity of
AMPs [90]. The antimicrobial peptide database (https://aps.unmc.edu/database (accessed
on 15th June 2023)) reveals that the majority of AMPs possess distinct levels of cationicity
and hydrophobicity (Figure 2).
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1.2. Harnessing Antimicrobial Peptides for Advanced Biomaterials
1.2.1. Next-Level Surgical Innovation: Antimicrobial Peptide-Enhanced Sutures

Surgical site infections (SSIs) pose a significant challenge in modern healthcare, lead-
ing to increased patient morbidity, extended hospital stays, and substantial healthcare
costs [91]. Antimicrobial peptides (AMPs) have emerged as a potential solution to combat
SSIs due to their broad-spectrum antimicrobial activity and unique mechanisms of action.
In recent years, researchers have explored the incorporation of AMPs into surgical sutures
to create antimicrobial peptide-impregnated sutures (AMPIS). The incorporation of AMPs
into sutures offers several advantages in the prevention of SSIs. Firstly, AMPs used in
sutures are originally selected for their minimal cytotoxicity and immunogenicity, ensuring
biocompatibility and compatibility with wound healing processes [92]. In addition, due to
their broad-spectrum activity on drug-resistant strains, AMPs are suitable for combating
polymicrobial infections. In addition to this, AMPs can disrupt biofilm formation, which
gets embedded within a protective matrix [93]. By preventing biofilm formation, AMPIS
can impede bacterial adhesion and subsequent colonization. This also reduces the infec-
tion rates. Studies have demonstrated that the use of AMPIS can significantly reduce the
incidence of SSIs compared to traditional sutures.

LL-37 is a naturally occurring human cathelicidin that possesses broad-spectrum an-
timicrobial activity against bacteria, fungi, and viruses. It also exhibits immunomodulatory
properties and promotes wound healing. Its incorporation into sutures can prevent surgical
site infections [94]. Several members of the β-defensin family, such as HBD-2 and HBD-3,
have been utilized in antimicrobial peptide-impregnated sutures. Other examples include
the incorporation of Protegrin-1 and Histatins. While the former enhances the antimicro-
bial efficacy and helps prevent postoperative infections, the latter exhibits activity against
various oral pathogens, including Candida albicans, Streptococcus mutans, and Porphyromonas
gingivalis. The histatin-impregnated sutures are particularly useful in oral and maxillofacial
surgeries [30,95]. Ranalexin is another antimicrobial peptide that was originally isolated
from the skin secretions of the northern leopard frog. It possesses antimicrobial activity
against various bacteria, including antibiotic-resistant strains. Ranalexin-based coatings
have been investigated for their ability to inhibit wound and systemic MRSA infections [19].

Pexiganan is another example of an AMP that can be utilized for the incorporation
of AMPs into sutures. It is a synthetic analog of the AMP magainin 2 and displays potent
antimicrobial activity against both Gram-positive and Gram-negative bacteria, including
MRSA. Pexiganan-infused collagen matrices have been shown to facilitate wound healing
in rat models of infection [96]. Similarly, HNP-1-impregnated sutures have shown efficacy
in preventing surgical site infections in various surgical procedures [97].

1.2.2. Antimicrobial Peptide-Based Contact Lenses: The Future of Eye Care

Contact lenses have revolutionized vision correction, providing a convenient and com-
fortable alternative to traditional eyeglasses. However, despite their numerous advantages,
contact lenses pose a risk of infection due to microbial colonization on their surfaces [98].
This concern has led to significant efforts in developing novel contact lens materials with
built-in antimicrobial properties. Contact lens-associated microbial keratitis (CLMK) is a
serious condition that can lead to vision loss if left untreated [99]. The risk of CLMK arises
from bacterial adhesion, biofilm formation, and subsequent infection on the lens surface.
Traditional contact lenses, although effective in vision correction, lack inherent antimicro-
bial properties, making them susceptible to microbial colonization. Therefore, there is a
pressing need for contact lenses that actively combat microbial growth to minimize the risk
of infections. Researchers have focused on developing strategies to immobilize AMPs onto
contact lens surfaces, ensuring sustained release and prolonged antimicrobial efficacy. One
such approach involves the covalent attachment of AMPs to the lens material, allowing for
controlled release over time. Another method utilizes hydrogels with AMPs encapsulated
within, enabling a slow release of the peptide. These approaches not only provide antimi-
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crobial properties but also maintain the biocompatibility and optical properties required
for comfortable vision correction (Figure 3).
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Figure 3. AMPs to fight against contact lens-associated microbial keratitis (CLMK). (A): Illustrates
the process of microbial attachment to a contact lens, leading to microbial keratitis and eye infections.
(B): Demonstrates the application of AMPs immobilized on contact lenses, effectively inhibiting
microbial proliferation on the lens surface, thereby contributing to the maintenance of ocular health.

By inhibiting biofilm formation, AMPs prevent the accumulation of pathogens, ensur-
ing a healthier lens surface. Furthermore, AMPs can combat multidrug-resistant microor-
ganisms, which are becoming increasingly prevalent in healthcare settings.

Further advancements in AMP design, formulation, and delivery systems will un-
doubtedly enhance their antimicrobial efficacy and biocompatibility. Additionally, the
integration of AMPs with other innovative technologies, such as smart materials or drug-
delivery systems, may offer new possibilities for multifunctional contact lenses. As we
move forward, extensive research, preclinical and clinical trials, and collaborations be-
tween scientists, engineers, and ophthalmologists are necessary to bring antimicrobial
peptide-based contact lenses from the lab to the market. While challenges remain, ongoing
research and technological advancements hold great promise for the development of safe
and effective antimicrobial peptide-based contact lenses, benefiting countless individuals
who rely on contact lenses for vision correction. α-MSH: α-melanocyte-stimulating hor-
mone (α-MSH) is a naturally occurring peptide with immunomodulatory and antimicrobial
properties. It has been incorporated into contact lenses to provide antimicrobial activity
and promote ocular surface healing [100]. Another example of successful use of an AMPs
in ocular health is temporins. Temporins are originally a group of antimicrobial peptides
derived from the skin of frogs. Various temporin peptides have been investigated for
their antimicrobial activity and have been incorporated into contact lenses to inhibit the
growth of bacteria and fungi. Besides naturally occurring AMPs, there are certain synthetic
peptides that were designed and synthesized and have been used for AMP-based contact
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lenses. A synthetic peptide melimine was produced by combining portions of the antimi-
crobial cationic peptides mellitin and protamine and has been studied for its potential
in promoting wound healing and preventing infections when incorporated into contact
lenses [101]. Pexiganan has been utilized in antimicrobial peptide-based contact lenses to
enhance their antibacterial properties and prevent microbial colonization [102]. Apart from
this, some cyclic peptide antibiotics such as Bacitracin have shown promise in their usage
as antimicrobial formulations [103]. They have been used in contact lens solutions, due to
their efficacy against Gram-positive bacteria. On similar lines, Dermcidin, an AMP found
in human sweat has been explored for its potential in contact lens applications to prevent
microbial contamination and infection [104].

1.2.3. Antimicrobial Peptide-Conjugated Nanoparticles for Dental Applications: A
Promising Approach for Combatting Oral Infections

Dentistry, as a branch of medicine, is no exception to antimicrobial resistance chal-
lenges [105]. Oral infections, such as dental caries and periodontal diseases, pose significant
challenges to dental health worldwide. Conventional treatment methods often fall short in
effectively targeting and eliminating microbial pathogens associated with these infections.
In recent years, the development of antimicrobial peptide (AMP)-conjugated nanoparticles
has emerged as a promising strategy for enhancing the antimicrobial efficacy and delivery
of therapeutic agents in the field of dentistry [58]. The nanoparticle carrier enhances the
antimicrobial efficacy of AMPs by increasing their local concentration at the site of infection,
allowing for sustained release and reducing the required therapeutic dose. The nanoparti-
cles can also facilitate the internalization of AMPs into microbial cells, leading to increased
disruption of microbial membranes and inhibition of intracellular processes (Figure 4A,B).
LL-37 has been investigated for its antimicrobial activity against oral pathogens and its
potential application in dental materials, including composites [106]. Dermaseptins are a
group of antimicrobial peptides found in the skin secretions of amphibians. They possess
potent antimicrobial activity against a broad spectrum of microorganisms and have been
utilized in dental applications as peptide-conjugated nanoparticles and fatty acids [29].
Nisin is a naturally occurring antimicrobial peptide produced by certain strains of Lacto-
coccus lactis. It has potent antimicrobial activity against Gram-positive bacteria, including
oral pathogens. Nisin has been conjugated to nanoparticles for dental applications to
enhance their antimicrobial efficacy [107]. Indolicidin-coated silver nanoparticles have
shown potent antibacterial activities in oral diseases [108]. The defensins viz. hBD-1, 3,
5 exert antibacterial activity against microbes involved in root canal infections, includ-
ing Enterococcus faecalis, Fusobacterium. nucleatum, Tannerella forsythia, Eikenella corrodens,
and Candida albicans [109–111]. Human β-defensin 3 (HBD3) peptide exhibits more an-
tibacterial activity against mature multispecies biofilms containing Actinomyces naeslundii,
Ligilactobacillus salivarius, and Enterococcus faecalis than either calcium hydroxide or 2%
chlorhexidine solution [111].

Cateslytin is another AMP that is derived from the venom of the Brazilian scorpion
Tityus catesbeianus. It exhibits antimicrobial activity against oral pathogens and can be used
in dental applications as peptide-conjugated nanoparticles for its antibacterial effects [112].
GH-12 peptide polymers have been studied for the treatment of secondary caries and the
enhanced durability of dental composite restorations [113]. Myxinidin is an antimicro-
bial peptide isolated from the mucus of hagfish. It exhibits potent antimicrobial activity
against various bacteria and fungi including oral pathogens like Pseudomonas aeruginosa
(Gram-negative bacteria) and Candida albicans [34]. Chen et al. demonstrated a method to
construct antimicrobial titanium implants of HHC36 peptide that displayed remarkable
antibacterial activity against both Staphylococcus aureus and Escherichia coli after only 2.5 h
of incubation [114].
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1.2.4. Antimicrobial Peptide-Incorporated Bone Grafts: Revolutionizing
Orthopedic Treatment

In the field of orthopedic surgery, bone grafts play a pivotal role in promoting bone
regeneration and restoring skeletal integrity. However, the risk of postoperative infections
remains a significant concern, leading to prolonged hospital stays, increased healthcare
costs, and potential complications. To address this challenge, researchers have turned to
AMPs as a promising solution. Bone grafts are widely used in orthopedic surgeries to repair
fractures, promote bone healing, and reconstruct skeletal defects. They can be classified
into autografts (taken from the patient’s own body), allografts (harvested from a donor of
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the same species), and synthetic grafts. While these grafts provide structural support and
scaffolding for new bone formation, they are not inherently antimicrobial. Infection is a
major concern following orthopedic surgeries, particularly in the context of bone grafts.
Bacterial contamination can lead to implant-associated infections, which are challenging
to treat due to the formation of biofilms and limited antibiotic penetration. Traditional
strategies such as prophylactic antibiotic use have shown limitations, including antibiotic
resistance and side effects. Therefore, there is a need for innovative approaches to combat
infection. To harness the antimicrobial properties of AMPs, researchers have explored
their incorporation into bone grafts. This involves either directly immobilizing AMPs
onto graft surfaces or incorporating them into the graft matrix during the manufacturing
process (Figure 4C,D). The goal is to create a localized, sustained release of AMPs to prevent
infection while promoting bone healing. Incorporating AMPs into bone grafts offers several
advantages. Firstly, it provides an immediate defense against potential pathogens at the
surgical site, reducing the risk of infection. Secondly, AMPs have been shown to exhibit
synergistic effects with conventional antibiotics, enhancing their efficacy and potentially
reducing the required dosage. Thirdly, AMPs can aid in the promotion of bone regeneration
by modulating inflammatory responses and enhancing angiogenesis. Several studies
have demonstrated the efficacy of AMP-incorporated bone grafts in preclinical models.
For example, one study showed that AMP-coated titanium implants reduced bacterial
colonization and enhanced bone healing in a rat model [115]. As host cells and bacterial
cells vie for control over the implant surface, the introduction of antimicrobial peptides
onto the implant surfaces can tip the scales, thwarting implant infections. Yucesoy et al.
pioneered a groundbreaking chimeric peptide designed to enhance the functionality of
implant materials. This innovative peptide boasts a dual-purpose design, with one segment
binding to the surface of a titanium alloy implant through a titanium-binding domain,
while the other segment exhibits potent antimicrobial properties [116].

The KLD-12 peptide has also been studied for its bone-healing properties. It has been
shown that the addition of arginine at the N-terminus converts it into an antimicrobial
peptide [117]. Magainin-derived peptides such as E14LKK have also been investigated for
their potential use in total-joint replacement prostheses [36]. Further research is needed to
optimize AMP selection, develop reliable delivery systems, and evaluate long-term out-
comes. Additionally, exploring the potential of AMPs in combination with other bioactive
agents, such as growth factors or stem cells, could enhance bone regeneration and infection
prevention synergistically.

1.2.5. Antimicrobial Peptide-Based Scaffolds: Enhancing Tissue Regeneration with
Antimicrobial Properties

Scaffolds play a crucial role in tissue engineering and regenerative medicine by pro-
viding a supportive framework for tissue regeneration. In recent years, the integration
of antimicrobial peptides (AMPs) into scaffolds has emerged as a promising approach
to enhance the antimicrobial properties of these constructs. By incorporating AMPs into
scaffolds, researchers aim to prevent infections that may hinder successful tissue regenera-
tion. The scaffolds serve as three-dimensional templates for cell attachment, proliferation,
and differentiation in tissue engineering. They mimic the extracellular matrix (ECM) and
provide structural support to regenerate damaged tissues. However, scaffolds alone are
vulnerable to microbial colonization, which can lead to infections and impede the heal-
ing process. The incorporation of AMPs into scaffolds offers a synergistic approach by
combining the regenerative capabilities of the scaffold with the antimicrobial properties of
AMPs. Covalent attachment, physical adsorption, electrostatic interactions, and peptide
amphiphiles are among the techniques utilized to ensure the retention and sustained release
of AMPs from the scaffold structure. These strategies aim to maintain an effective concen-
tration of AMPs at the scaffold–tissue interface, preventing microbial colonization without
compromising cell viability or function. Antimicrobial peptide-based scaffolds offer sev-
eral advantages over traditional scaffolds in tissue engineering. Firstly, they provide a
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controlled release of AMPs, ensuring a localized antimicrobial effect while minimizing sys-
temic exposure. Secondly, AMPs can be tailored to exhibit selective antimicrobial activity,
targeting specific pathogens without disrupting the commensal microbiota. Additionally,
the incorporation of AMPs into scaffolds can facilitate faster wound healing, reduce the
risk of post-operative infections, and enhance the success of tissue regeneration procedures.
In skin tissue engineering, they have been employed to combat wound infections and
promote re-epithelialization. Also, AMP-based scaffolds show potential in addressing
chronic wounds, where infections can severely impede healing progress. Dermaseptin-S4
(S4) and its analogues have been studied for their potent antimicrobial activity and have
been investigated as scaffolds for the development of novel AMP-based scaffolds [118].
Similarly, thanatin has been used as a scaffold for the development of peptide-based scaf-
folds with enhanced antimicrobial activity and stability [119]. Ib-AMPs (insect-derived
antimicrobial peptides) are a diverse group of AMPs found in insects. Various ib-AMPs
have been studied and used as scaffolds for the development of antimicrobial peptide-based
scaffolds. LL-37 has also been used as a scaffold to design novel AMP-based scaffolds with
enhanced antimicrobial activity and tissue injury healing [120]. LLKKK18, an engineered
variant of the LL-37 peptide, has been designed to enhance its antimicrobial potency. It has
been utilized in wound healing scaffolds for its broad-spectrum antimicrobial activity [39].
Similarly, DPK-060, a synthetic antimicrobial peptide, has been incorporated into wound
healing scaffolds [121,122]. Another example of AMPs that are used in scaffolds is SMAP-29
(sheep myeloid antimicrobial peptide 29). SMAP-29, due to its strong antimicrobial activity
against bacteria and fungi, can be used in wound healing scaffolds [122]. Abdel-Sayed et al.
revealed the capacity of polycationic dendrimers to exert antiangiogenic effects on burn
wounds. They synthesized peptide dendrimers using the amino acid residues L-lysine
(G3KL) and L-arginine (G3R) distributed within the branches, resulting in two antimi-
crobial polycationic dendrimers (AMPDs). These AMPDs, specifically G3KL and G3R,
were safely employed in combination with biological bandages comprising progenitor
skin cells. This innovative approach effectively thwarted Pseudomonas aeruginosa infections
and significantly enhanced wound healing in keratinocytes and endothelial cells [123].
MSI-78, a Magainin 2 analog, also possesses antimicrobial activity and has been used
in wound healing scaffolds for its antimicrobial properties [124]. Wang and colleagues
explored the formation of nanoparticles using MSI-78 and methoxy poly(ethylene glycol)-
b-poly(α-glutamic acid). Their findings indicated a reduction in the hemolytic activity of
the peptide on human red blood cells within the nanoparticle structure, while the peptide’s
antibacterial effectiveness remained intact [125]. With continued advancements in this field,
antimicrobial peptide-based scaffolds have the potential to revolutionize the field of tissue
engineering, facilitating the development of safer and more effective therapeutic strategies
for tissue regeneration.

1.2.6. Antimicrobial Peptide-Coated Urinary Catheters: An Approach to Prevent
Catheter-Associated Infections

Urinary tract infections (UTIs) are a prevalent healthcare-associated infection, and
catheter-associated urinary tract infections (CAUTIs) contribute significantly to their oc-
currence [126]. UTIs are responsible for substantial morbidity, increased healthcare costs,
and prolonged hospital stays. The emergence of antimicrobial resistance has limited the
effectiveness of conventional antibiotics, necessitating the exploration of alternative strate-
gies. CAUTIs are primarily caused by the introduction of bacteria into the urinary tract
through the insertion of a catheter [127]. The longer the duration of catheterization, the
greater the risk of infection. Several techniques have been developed to coat urinary
catheters with AMPs, including physical adsorption, covalent binding, and incorporation
into polymer coatings (Figure 5A,B). The choice of coating technique depends on factors
such as stability, durability, and the release kinetics of AMPs. Li et al. demonstrated that
arginine/lysine/tryptophan-rich antimicrobial peptides possess broad-spectrum antimicro-
bial properties and salt-tolerant characteristics on silicone surfaces, addressing the issue of
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catheter-associated urinary tract infections (CAUTIs) [128]. Through a process confirmed by
X-ray photoelectron spectroscopy and water contact angle analyses, the researchers immobi-
lized these peptides onto polydimethylsiloxane and urinary catheter surfaces using an allyl
glycidyl ether (AGE) polymer brush interlayer. The resulting peptide-coated silicone sur-
faces exhibited remarkable antimicrobial efficacy against bacteria and fungi present in urine
and phosphate-buffered saline solution. This effect was enhanced by the synergistic actions
of the AGE polymer brush and AMPs, which not only prevented biofilm formation but also
repelled cell adhesion. Importantly, the peptide-coated surface demonstrated no toxicity
towards smooth muscle cells [128]. Bac2A is a synthetic antimicrobial peptide derived from
the cathelicidin family. It has been evaluated for its antimicrobial efficacy and potential
use in preventing biofilm formation on urinary catheters [129,130]. Monteiro et al. studied
the peptide Chain201D (KWIVWRWRFKR) where they bound the peptide to ((1-mercapto-
11-undecyl)-(tetra(ethylene glycol) (EG4)) terminated self-assembled monolayers (SAMs),
(EG4-SAMs), activated by 1,1′-Carbonyldiimidazole (CDI) at different concentrations. The
study showed the potential of utilizing the Chain201D peptide for the development of
antimicrobial urinary catheters [59].
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Yu et al. showed the potential of the E6 (RRWRIVVIRVRRC) peptide in treating
CAUTIs. The E6 peptide, featuring a cysteine label at its C-terminus, was harnessed to
coat polyurethane (PU) surfaces, revealing expansive antimicrobial capabilities [131]. This
approach effectively thwarted catheter-associated infections in a mouse urinary infection
model. Along similar lines, Yao et al. explored an AMP (RWRWRWC–NH2) and incor-
porated a thiol group into the cysteine residue, integrating it into a Cu2+-coordinated
polydopamine coating on PU ureteral stents. The stents featuring the AMP coating demon-
strated remarkable suppression of bacterial growth and biofilm formation, all while exhibit-
ing negligible toxicity [61]. A synthetic peptide, CD4-PP, constructed through dimerization



J. Funct. Biomater. 2023, 14, 539 13 of 22

and backbone cyclization of the antimicrobial region from human cathelicidin LL-37, effec-
tively inhibited uropathogens such as Escherichia coli, Pseudomonas aeruginosa, and Klebsiella
pneumoniae. Additionally, catheter fragments coated with saline fluid enriched with CD4-
PP showcased reduced E. coli attachment and dissolution of mature biofilm produced by
these pathogens [132]. Thus, compared to traditional catheters, AMP-coated catheters have
shown superior efficacy in reducing the risk of CAUTIs. They significantly inhibit bacterial
adhesion, colonization, and biofilm formation, leading to a reduced incidence of infections.
Antimicrobial peptide-coated urinary catheters hold great promise in preventing catheter-
associated infections. Their unique mechanism of action, broad-spectrum activity, and low
propensity for resistance make them an attractive alternative to conventional antibiotics.
Despite challenges in selecting appropriate AMPs, overcoming resistance, and ensuring
cost-effectiveness, the development and implementation of AMP-coated catheters offer
significant potential to reduce the burden of CAUTIs and improve patient outcomes. Con-
tinued research and collaboration among scientists, clinicians, and regulatory authorities
are crucial for the successful translation of this innovative technology into clinical practice.

1.2.7. Using Antimicrobial Peptides as Anticancer Agents

Cancer treatment remains a formidable challenge in global public health, character-
ized by a high mortality rate. Existing therapeutic approaches, encompassing surgery,
radiotherapy, chemotherapy, or a combination thereof, aim to extend patient life expectancy.
Antimicrobial peptides (AMPs) and anticancer peptides (ACPs) share common features,
such as positive net charge, high hydrophobicity, and an amphipathic structure, enhancing
their affinity for cell membranes. The similarities in characteristics prompt investigations
into the antitumor activities of certain AMPs, potentially facilitating the improved de-
sign of ACPs. Notably, due to their distinct features, ACPs present a valuable resource
with a reduced tendency for the development of cancer cell resistance, especially given
the higher negative charge of cancer cell membranes. Various AMPs have demonstrated
therapeutic efficacy against urinary bladder and colon cancers by influencing intracellular
pathways, disrupting cell membranes, and directly inhibiting tumor cell proliferation. The
scorpion-derived BmKn2 peptide exhibited cytotoxic effects against human colon cancer
cells, while intratumoral administration of microcin E492 from Klebsiella pneumonia signif-
icantly reduced colorectal tumor cell mass in a zebrafish model. Combining AMPs with
chemotherapeutic drugs, such as Gramicidin A and doxorubicin, displayed synergistic
effects in colorectal cancer spheroids. Cell-penetrating peptides (CPPs), namely the BR2
peptide developed by Lim et al., exhibited noteworthy anticancer properties. In vitro
experiments have demonstrated the BR2 peptide’s toxic effects on human cervical cancer
and colon cancer cells. Furthermore, in vivo studies in a mice model of melanoma have
underscored its anticancer efficacy. The CPPs typically consist of 30 or fewer amino acids,
predominantly featuring positively charged amino acids such as lysine, arginine, or histi-
dine. Notably, widely studied CPPs like pAntp and pTAT have found extensive application
in delivering various therapeutic agents, including anticancer drugs, oligonucleotides,
peptides, proteins, and viruses, into cells [69,70]. Similarly, KT2 [44] and RT2 [45] peptides,
in combination with the chemotherapeutic drug 5-FU, exhibited enhanced efficacy against
metastatic colon cancer cells. Clinical trials, like NCT02225366 and NCT01058616, have
assessed the intratumoral administration of AMPs like LL37 and LTX-315, evaluating their
antineoplastic effects and safety profiles. Notably, ongoing studies explore the combination
of AMPs with immunotherapeutic agents, exemplified by the administration of LTX-315
with pembrolizumab in melanoma and triple-negative breast cancer (NCT04796194).

1.2.8. The Hurdles Ahead: Constraints of Antimicrobial Peptide Biomaterials

While AMP-coated biomaterials offer promising solutions, it is important to recognize
their limitations and challenges that may hinder their widespread use and effectiveness.
Some AMP-coated biomaterials suffer from a limited spectrum of activity.
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When modifying the surface of medical implants, whether chemically (e.g., covalently)
or physically, several problems can arise: in some cases, implant site infection due to
bacterial colonization may lead to aseptic and septic loosening [133]. Ionization of the
implant materials can cause a reaction with the biological host system, resulting in bone
nonunion and implant loosening. Poor osseointegration can lead to implant failure, as
the implant may not integrate well with the surrounding bone tissue [134]. Some surface
modification techniques may increase the risk of inflammation, which can negatively affect
the implant’s performance. Surface modification techniques can also lead to poor cell adhe-
sion where metal implants, due to their smooth surfaces and high surface energy, create a
poor environment for cell adhesion [135]. Additionally, the proteolytic enzymes present
in biological fluids and tissues pose a challenge, as they can degrade AMPs, limiting their
therapeutic potential. Temperature sensitivity is another critical factor, as AMPs may un-
dergo conformational changes or lose their activity under extreme temperature conditions.
Striking a delicate balance between these factors is essential for optimizing the performance
of AMPs in therapeutic applications. When introduced into the bloodstream, AMPs may
bind to various serum proteins, forming complexes that alter their pharmacokinetics and
bioavailability. This interaction can lead to reduced concentrations of free, active AMPs,
impacting their ability to combat microbial threats effectively.

More than 3000 AMPs have been reported and characterized, but in their natural state,
most are not suitable as drugs for human medicine. FDA approvals are very limited due to
the lack of cell selectivity, safety profile, and unexpected side effects.

This limitation raises concerns regarding the reliability and long-term efficacy of AMP-
coated biomaterials, as they may fail to protect against a wide range of microbial threats.
Nisin, for example, exhibited potent activity against Gram-positive bacteria, including
various strains of Staphylococcus and Streptococcus [136,137]. However, its effectiveness
against Gram-negative bacteria is limited due to the outer membrane barrier possessed by
these organisms [136]. Another major concern is with peptide stability and degradation.
AMPs are susceptible to enzymatic degradation and can be inactivated by various factors
present in the physiological environment. The instability of these peptides can significantly
impact their antimicrobial activity and longevity on the biomaterial surface. Factors such
as pH, temperature, and the presence of proteases can cause peptide degradation, leading
to a decrease in their effectiveness over time [138,139]. This limitation poses challenges
for maintaining sustained antimicrobial activity on the coated biomaterials throughout
the intended duration of use. Several proline-rich peptides, such as Bac7 and Bac5, have
shown antimicrobial activity. However, their stability and vulnerability to proteolytic
degradation have posed challenges in developing AMP-coated biomaterials [140]. Biofilm
formation is another common challenge associated with the use of biomaterials, and an-
timicrobial peptide coatings may not be effective in preventing or eradicating biofilms.
While AMP coatings may have some impact on preventing initial bacterial adhesion, their
effectiveness against established biofilms remains limited. Besides this, there are concerns
about antimicrobial peptide-coated biomaterials having the potential for cytotoxicity and
immunogenic reactions. Some AMPs can exhibit toxicity towards host cells, impairing
the healing process and causing adverse effects on surrounding tissues. Additionally, the
immune response to the presence of antimicrobial peptides may lead to inflammation or
hypersensitivity reactions. Moreover, the lack of standardized testing methods and criteria
for evaluating antimicrobial activity and long-term performance poses hurdles in assessing
and comparing the effectiveness of different coatings. These regulatory challenges can
delay the translation of antimicrobial peptide-coated biomaterials into clinical practice.
Formulating stable and bioactive AMP-based formulations suitable for administration
represents a significant hurdle, as issues like aggregation and loss of bioactivity during
formulation, storage, and administration can compromise their efficacy. Furthermore, the
diverse physicochemical properties of AMPs influence their interactions with delivery ve-
hicles and biological systems, necessitating meticulous optimization to balance therapeutic
potency with delivery efficiency. Achieving efficient penetration of AMPs through barriers
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such as tissues, cellular membranes, and biofilm matrices adds further complexity to their
effective delivery.

1.2.9. From Resistance to Resilience: Innovative Strategies to Overcome Limitations of
Antimicrobial Peptide Coating Biomaterials

The therapeutic efficacy of AMPs can be achieved through chemical modifications in
constituent amino acids [141,142]. Some common strategies include incorporating D-amino
acids instead of L-amino acids, introducing non-natural amino acids, or substituting specific
amino acids known to be prone to degradation or enzymatic cleavage [143]. The sulfide
bridges can provide structural stability to AMPs [144]. By introducing cysteine residues into
the peptide sequence and allowing them to form disulfide bonds, the stability of the peptide
can be enhanced. This method can be particularly effective for cyclic peptides. Cyclization
is another chemical modification that reduces susceptibility to proteolysis and enhances
resistance to chemical degradation [42]. Adding lipid moieties to AMPs can enhance
their stability and membrane-binding properties. Lipidation can be achieved by attaching
fatty acid chains or lipid-like groups to the peptide sequence, improving the peptide’s
resistance to enzymatic degradation and increasing its overall amphipathicity [145]. The
identification of new structural motifs present in AMPs can be used to immobilize them on
the biomaterial surfaces. Introducing non-natural amino acids into the peptide sequence
can enhance stability and resistance to proteolytic degradation. Unnatural amino acids
with modified side chains or increased chemical stability can be utilized to improve peptide
characteristics [146]. Some stabilizing agents can be incorporated into AMP formulations to
enhance their stability. For example, protease inhibitors, metal chelators, or antioxidants can
be added to protect AMPs from degradation by enzymes or reactive oxygen species [147].
Optimization of pharmacokinetic properties and the method validation of peptides can
also help to prevent AMP-coating failures and degradation in clinical applications [148].
Materials with properties such as high surface area, stability, and compatibility should
be used in coating applications. Examples of potential materials include metal oxides
(e.g., silver, copper), carbon-based nanomaterials (e.g., graphene oxide), or polymer-based
nanoparticles. Nanoparticles have effectively demonstrated their capacity to encapsulate
established drugs used in the treatment of specific diseases, including certain types of
cancer [149]. The interactions between the AMPs and chosen materials/nanoparticles
should be well characterized and optimized (Figure 6).

In 2017, Casciaro et al. documented the first report of a covalent linkage between the an-
timicrobial peptide esculentin-1a (which exhibits potent activity against Pseudomonas aerugi-
nosa and soluble gold nanoparticles (AuNPs) via a polyethylene glycol (PEG) linker. The re-
sultant compound, AuNPs@Esc(1-21), displayed nearly 15-fold increased antipseudomonal
activity compared to Esc(1-21) alone, without inducing toxicity in human cells [150]. Chaud-
hari et al. conducted an assessment of the toxicity and antimicrobial efficacy of various
antimicrobial peptides (TP359, TP226, and TP557) when incorporated onto silver-coated
carbon nanotubes (CNTs). This investigation focused on combating Staphylococcus aureus
infection within a three-dimensional human skin model of full thickness [151]. Nord-
ström et al. showed that significant quantities of cationic antimicrobial peptides LL-37
and DPK-060 can be encapsulated within anionic poly(ethyl acrylate-co-methacrylic acid)
microgels. These microgels demonstrated the ability to shield the enclosed peptides from
degradation by infection-associated proteases, especially when a high microgel charge
density was utilized [121]. Zetterberg et al. explored the application of PEG-stabilized
liposomes as carriers for AMPs [152]. They examined the susceptibility of the melittin
liposome to proteases and its antimicrobial efficacy in comparison to free melittin. Through
repeated exposure to Escherichia coli, the melittin liposomes displayed notable bactericidal
activity upon secondary exposure, outperforming free melittin. This effect was attributed
to the time-dependent release of AMP from the liposomes. Interestingly, the liposome-
encapsulated melittin was completely shielded from trypsin degradation, highlighting its
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enhanced stability [152]. Likewise, in various other investigations, cyclodextrins, hydrogels,
and dendritic systems have been employed as carriers for antimicrobial peptides.
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2. Conclusions

In conclusion, AMPs represent a promising avenue for combating infectious diseases
and addressing the growing issue of antibiotic resistance. These small molecules, derived
from natural sources, have shown potent antimicrobial activity against a wide range of
pathogens, including bacteria, fungi, and even some viruses. By integrating AMPs onto
the surface of biomaterials such as medical implants, wound dressings, or catheters, we
can effectively inhibit the colonization and growth of harmful microorganisms, reducing
the risk of infections. The use of AMP-coated biomaterials offers several advantages
over traditional antimicrobial strategies. Furthermore, AMP-coated biomaterials have
shown promising results in terms of biocompatibility and reduced cytotoxicity. Studies
have demonstrated that AMPs can selectively kill pathogens while preserving host cells,
minimizing the risk of adverse reactions or tissue damage. This makes them suitable for
long-term use in medical devices and implants, where compatibility with the human body
is crucial. Although there are still challenges to overcome, such as optimizing the stability
and delivery of AMPs, as well as addressing potential manufacturing and regulatory
hurdles, the development of AMP-coated biomaterials holds great promise. Continued
research and innovation in this field will pave the way for new and effective strategies
in combating infections and improving patient outcomes. In conclusion, antimicrobial
peptides and their integration into AMP-coated biomaterials offer a compelling solution
to the global challenge of antimicrobial resistance. Through further advancements and
collaborations between researchers, healthcare professionals, and industry partners, we can
harness the power of these naturally occurring molecules to develop innovative therapies
and biomedical devices that effectively combat infections and enhance human health.
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