New Insights in Hydrogels for Periodontal Regeneration
Abstract
:1. Introduction
2. Current Treatments
2.1. Bone Graft Materials
2.2. Guided Tissue Regeneration
2.3. Enamel Matrix Derivatives
3. Three-Dimensional Hydrogels as a Novel Treatment
3.1. Hydrogel Composition
3.1.1. Natural Polymers
Chitosan
Collagen
Gelatin Methacrylate
Hyaluronic Acid
Self-Assembling Peptides
3.1.2. Synthetic Polymers
Reference | Materials | Control | Cells | Main Results |
---|---|---|---|---|
Zang, S. et al., 2014 [57] | Chitosan, β-GP | Cell culture surface | Human PDLSC | No obvious cytotoxicity on human PDLSC was reported. |
Xu, X. et al., 2019 [59] | Chitosan, β-GP, gelatin, aspirin, erythropoietin (EPO) | Hydrogel without aspirin and EPO | Rat bone marrow MSC | The hydrogels exhibited no toxicity in vitro. Aspirin and EPO could be continuously released from the hydrogels for at least 21 days. |
Arpornmaeklong, P. et al., 2021 [60] | Chitosan, β-GP, collagen, quercetin | Hydrogel without quercetin | Human PDLSC | The quercetin hydrogels exhibited an antioxidant capacity and enhanced the growth of human PDLSC with an increasing quercetin dose. |
Divband, B. et al., 2021 [61] | Chitosan biguanidine, carboxymethylcellulose, BMP-2, VEGF | Cell culture surface | Human dental pulp stem cells (DPSC) | Hydrogels were non-toxic and significantly increased DPSC proliferation. Hydrogels with BMP-2 and VEGF showed significantly higher gene and protein expression of alkaline phosphatase (ALP), Collagen I, and osteocalcin (OC); increased ALP activity and calcium deposition. |
Malik, M. et al., 2020 [62] | Chitosan, carboxymethyl cellulose, nanohydroxyapatite (nHAP), thyroxine | Cell culture surface | Mouse pre-osteoblast cells (MC3T3-E1) | Hydrogels were non-toxic in vitro. |
Miranda, D. et al., 2016 [63] | Chitosan, hyaluronic acid (HA) | Cell culture surface | Mouse NIH3T3 and human MG63 cell lines | No significant differences in cell viability were seen between the various formulations of the hydrogels. MG63 proliferated on all the hydrogels, observed through increasing cell viability over time. |
Ammar, M. et al., 2018 [64] | Chitosan, β-GP, FDPC | Hydrogel without FDPC | Human PDLSC | All FDPC-loaded hydrogels exhibited sustained release of TGF-β1 and PDGF for two weeks. The loading of 10 and 15 mg/mL of FDPC in the hydrogels significantly increased the PDLSC viability. |
Zhang, Y. et al., 2021 [65] | PEG, chitosan, acetylsalicylic acid (ASA), PDLSC | Cell culture surface | Human PDLSC | Hydrogels with ASA enhanced cell proliferation and osteogenic differentiation, observed through a significant increase in ALP activity, calcium deposition, and in RUNX2, ALP, and OC gene expression. |
Fraser, D. et al., 2021 [75] | PEG, PEG-dithiol or matrix metalloproteinase (MMP)-degradable peptide crosslinker, arginylglycylaspartic acid (RGD) | Non-degradable hydrogels | Human PDLSC | MMP-degradable hydrogels with RGD significantly enhanced cell proliferation. MMP-degradable hydrogels showed a significant upregulation of periodontal genes and an increase in ALP activity compared to non-degradable hydrogels crosslinked with PEG-dithiol. |
Sowmya, S. et al., 2017 [78] | Chitin, poly(lactic-co-glycolic acid) (PLGA), nanobioglass ceramic (nBGC), cementum protein 1 (CP-1), PRP, FGF-2 | Hydrogels without additives | Human dental follicle stem cells | The incorporation of the additives nBGC, CP-1, PRP, and FGF-2 resulted in improved cementogenic, osteogenic, and fibrogenic differentiation of human dental follicle stem cells, similar to hydrogels without additives in induction media. |
Pan, J. et al., 2020 [67] | GelMA, PDLSC | Cell culture surface | Human PDLSC | PDLSC proliferated at a similar rate in the hydrogels and in 2D culture. |
Chen, X. et al., 2016 [68] | GelMA, nHAP | Hydrogels without nHAP | Human PDLSC | GelMA hydrogels with 2% nHAP enhanced the osteogenic differentiation of PDLSC by increasing ALP, OC, and RUNX2 gene expression. |
Ma, Y. et al., 2017 [69] | GelMA, PEGDA, PDLSC | GelMA hydrogel | Rat PDLSC | Hydrogels with a higher GelMA concentration resulted in increased ALP activity, calcium deposition, and osteogenic gene expression by PDLSC. |
Liu, S. et al., 2021 [76] | PEGDA, dithiothreitol, functional peptide module, SDF-1 | Cell culture surface | Human PDLSC | Hydrogels with SDF-1 significantly enhanced cell proliferation and increased ALP activity and calcium deposition. The hydrogels strongly inhibited the growth of Porphyromonas gingivalis. |
Koch, F. et al., 2018 [73] | 11-amino acid SAP (P11-4, P11-8, P11-13, P11-14, P11-28 and P11-29) | Cell culture surface | Human PDLSC and human calvarial osteoblasts | P11-4 and P11-8 hydrogels showed higher metabolic activity than the hydrogels with the other P11 SAP and resulted in increased ALP activity and calcium deposition compared to tissue culture polystyrene (TCP). |
Takeuchi, T. et al., 2016 [74] | SAP hydrogel RADA16 from PuraMatrix™ | Matrigel | Rat PDLSC | RADA16 showed a significant increase in cell proliferation compared to Matrigel. |
Koch, F. et al., 2020 [79] | P11-4 SAP or Collagen I | Cell culture surface | Human PDLSC | P11-4 hydrogels and TCP showed similar metabolic activity, which was higher than in collagen hydrogels. Cells migrated and deposited ECM proteins in the P11-4 hydrogels. Collagen I expression was higher in the P11-4 hydrogels than in TCP after 7 days. |
Yoshida, W. et al., 2019 [80] | SAP gel SPG-178 from PanaceaGel® | Cell culture surface | Rat PDLSC | 1.5% SPG-178 showed significantly higher cells viability/proliferation than 0.8% SPG-178. |
Babo, P. et al., 2017 [81] | Methacrylated hyaluronic acid, platelet lysate (PL) | Cell culture surface | Human PDLSC | PL release provided antimicrobial action to the hydrogels, increasing with higher PL content. Hydrogels with higher amount of PL showed increased metabolic activity of cells encapsulated or seeded in the hydrogels. |
Tan, J. et al., 2019 [82] | Nap-Phe-Phe-Tyr-OH (NapFFY), SDF-1, BMP-2 | Cell culture surface | Rat bone MSC (BMSC) | All hydrogels were not cytotoxic and stimulated cell proliferation. SDF-1 and BMP-2 significantly increased ALP gene expression. |
Xu, Y. et al., 2020 [83] | Sodium alginate (SA), cubic cuprous oxide, polydopamine-coated titanium dioxide | Cell culture surface | BMSC, human umbilical vein endothelial cells, human fibroblasts | Hydrogels doped with the additives (CTP-SA) showed increased antibacterial activity. CTP-SA hydrogels irradiated with dual light (blue and near-infrared) resulted in a significant increase in ALP activity and in OC and RUNX2 gene expression by BMSC. |
Juriga, D. et al. 2022 [84] | Polyaspartic acid, dopamine (DA) | Hydrogel without DA | Human PDLSC and SH-SY5Y human neuroblastoma cell line | Hydrogels with DA at a higher concentration showed lower cell viability. Both cell types proliferated and migrated in the hydrogels. Hydrogels with a DA concentration of 1/20 showed vertical cell penetration from the top of the hydrogel in the depth, with PDLSC having a slightly higher migration potential. |
Reference | Materials | Control | Model | Main Results |
---|---|---|---|---|
Palma, P. et al., 2017 [54] | Chitosan, sodium hyaluronate, or pectin | Autologous blood clot | Immature dog teeth with apical periodontitis | The incorporation of chitosan hydrogels in dogs did not improve the formation of new mineralized tissues along the root canal walls or the histologic evidence of the regeneration of a pulp-dentin complex. Moreover, they demonstrated optimal properties for bone tissue engineering applications. |
Chien, K. et al., 2018 [55] | Chitosan, gelatin, GP, BMP-6, induced pluripotent stem cells (iPSC) | Hydrogel without BMP-6 and iPSC | Rat periodontal defect model | Synergistic effects of iPSC and BMP-6 increased both bone and cementum formation. BMP-6/iPSC-loaded hydrogels showed reduced levels of inflammatory cytokines, new periodontal ligament formation, and new bone synthesis, observed through a significantly higher bone volume fraction and trabecular number. |
Yan, X. et al., 2015 [56] | Chitosan, PDLSC | Untreated defect | Rat intrabony periodontal defect | Gels with and without cell loading showed no differences in periodontal regeneration. All hydrogels were biodegradable and improved periodontal regeneration in terms of functional ligament length. |
Zang, S. et al., 2014 [57] | Chitosan, β-GP | Untreated defect | Dog class III furcation defect | These hydrogels promoted periodontal tissue regeneration, observed through significantly increased new bone and cementum formation. |
Zang, S. et al., 2019 [58] | Chitosan, β-GP, BMP-7, ornidazole (ORN) | Sham surgery | Beagle dog class III furcation defect model | Hydrogels loaded with ORN exhibited antimicrobial activity against P. gingivalis. Defects treated with BMP-7 loaded hydrogels showed significantly more new bone and cementum and less connective tissue. |
Xu, X. et al., 2019 [59] | Chitosan, β-GP, gelatin, aspirin, EPO | Untreated defect | Rat periodontitis model | Hydrogels exhibited no toxicity in vivo. Aspirin/EPO-loaded hydrogels showed significant anti-inflammatory effects and resulted in improved bone regeneration with significantly higher bone volume/tissue volume and bone mineral density. |
Malik, M. et al., 2020 [62] | Chitosan, carboxymethyl cellulose, nHAP, thyroxine | Hydrogel without thyroxine | Fertilized chicken eggs | Hydrogels containing a lower amount of thyroxine showed maximum neovascularization, as assessed through the chick chorioallantoic membrane assay. Blood vessels penetrated all thyroxine-loaded hydrogels. |
Zhang, Y. et al., 2021 [65] | PEG, chitosan, ASA, PDLSC | Untreated defect | Mouse calvarial bone defect | ASA significantly improved bone regeneration, and PDLSC-laden hydrogels with ASA resulted in the highest amount of newly formed bone. |
Abdelrasoul, M. et al., 2022 [85] | Alginate, chitosan, β-TCP, melatonin | Sham surgery | Mongrel dogs class II furcation defect model | Melatonin-loaded hydrogels accelerated the formation of new bone and enhanced the quality of newly formed bone, allowing complete periodontal regeneration. The scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects. |
Xu, Y. et al., 2020 [83] | SA, cubic cuprous oxide, polydopamine-coated titanium dioxide | Untreated defect | Mouse periodontal bone defect | CTP-SA hydrogels irradiated with dual light (blue and near-infrared) resulted in significantly improved bone regeneration in vivo. CTP-SA hydrogels irradiated with blue light showed significantly less inflammatory cells and decreased Tumour necrosis factor (TNF- α) expression. |
Sato, Y. et al., 2004 [66] | Collagen, FGF-2 | Hydrogel without FGF-2 | Beagle dog cementum defect of the root surface | At 4 weeks post-surgery, random periodontal ligament fibers were bound to dentin. At 8 weeks post-surgery, the use of hydrogels with FGF-2 resulted in the formation of dense fibers bound to alveolar bone and significantly more newly synthesized cementum. |
Pan, J. et al., 2020 [67] | GelMA, PDLSC | Untreated defect | Rat alveolar bone defect | Hydrogels with PDLSC showed significantly improved bone regeneration at 4 and 8 weeks post-surgery compared to pure GelMA hydrogels. |
Chen, X. et al., 2016 [68] | GelMA, nHAP | Hydrogel without nHAP | Subcutaneous implantation in nude mice | Hydrogels with 2% nHAP increased mineralized tissue formation with abundant vascularization compared to hydrogels with 0%, 1%, and 3% nHAP. |
Ma, Y. et al., 2017 [69] | GelMA, PEGDA, PDLSC | Saline and GelMA/PEGDA hydrogel | Rat alveolar bone defect model | PDLSC-laden hydrogels significantly increased new bone formation in the defects. |
Liu, S. et al., 2021 [76] | PEGDA, dithiothreitol, functional peptide module, SDF-1 | Untreated defect | Rat periodontitis model | SDF-1 loaded hydrogels showed improved bone regeneration, decreased TNF-α and IL-1β expression, and facilitated the recruitment of CD90+/CD34− stromal cells. |
Sowmya, S. et al., 2017 [78] | Chitin, PLGA, nBGC, CP-1, PRP | Sham surgery | Rabbit maxillary periodontal defect model | Complete defect closure and healing; formation of new cementum, fibrous periodontal ligament, and alveolar bone with well-defined bony trabeculae. |
Kinoshita, A. et al., 1997 [86] | Gelatin, PLGA, BMP-2 | Hydrogel without BMP-2 | Beagle dog premolar furcation defect model | BMP-2 hydrogels showed apparent periodontal tissue regeneration occupying the majority of the defects and resulted in a significantly greater amount of new bone and cementum. |
Shen, S. et al., 2021 [87] | HA, PLGA microspheres, 6-Bromoindir- ubin-3′-oxime (BIO) | Untreated defect | Mouse periodontitis model | HA-PLGA-BIO hydrogels significantly enhanced bone regeneration and the expression of osteogenic markers ALP, RUNX2, and OC, resulting in lower infiltration of inflammatory cells. |
Fawzy El-Sayed, K. et al., 2015 [71] | HA, gelatin, gingival MSC, interleukin-1 receptor antagonist (IL-1ra) | Untreated defect | Miniature swine periodontal defect model | Cell-laden hydrogels with and without IL-1ra resulted in a significantly higher periodontal attachment level and clinical attachment level, reduced junctional epithelium length, improved bleeding on probing, and increased cementum and bone regeneration. |
El-Sayed, B. et al., 2020 [72] | P11-4 SAP | Untreated defect | Rat periodontal defect model | Defects treated using P11-4 hydrogels showed a greater organization of periodontal fibers, a significant increase in functional periodontal ligament length, and a reduction in epithelial down growth. |
Takeuchi, T. et al., 2016 [74] | SAP hydrogel RADA16 from PuraMatrix™ | Untreated defect | Rat periodontal defect model | RADA16 resulted in significantly increased bone volume, trabecular thickness, and reduced trabecular separation compared to Matrigel-treated and untreated defects. The angulation of fiber bundles was also significantly greater with RADA16 and closer to the natural periodontal ligament. |
Yoshida, W. et al., 2019 [80] | SAP gel SPG-178 from PanaceaGel® | Untreated defect | Rat periodontal defect | Parathyroid hormone used as an adjuvant with SPG-178 improved bone regeneration and resulted in greater fiber angulation similar to natural periodontal ligament and an increased number of VEGF- and OSX-positive cells. |
Tan, J. et al., 2019 [82] | NapFFY, SDF-1, BMP-2 | Untreated defect | Rat maxillary critical-sized periodontal bone defect | Synergistic effects of SDF-1 and BMP-2 were observed. The NapFFY/SDF-1/BMP-2 hydrogel showed a significant increase in bone regeneration compared to NapFFY, NapFFY/SDF-1, and NapFFY/BMP-2. |
Tanongpitchayes, K. et al. 2021 [77] | Polyacrylamide, nHAP | No control | Dog periodontitis model | Radiographic grading, alveolar bone height, and intensity continuously showed significant increases in the weeks following the treatment of post-extraction sockets using the hydrogels. |
Struillou, X. et al., 2011 [88] | Hydroxypropyl methyl cellulose, biphasic calcium phosphate (BCP) | Untreated defect | Canine fenestration and premolar furcation defects | BCP granules were retained in the defect during the healing phase. The hydrogels promoted new bone formation 3 months after implantation in the defects. |
3.2. Methods of Fabrication
3.2.1. Three-Dimensional Bioprinting
3.2.2. In Situ Gel Formation
3.3. Clinical Studies on the Application of Hydrogels for Periodontal Repair
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Li, X.; Wang, J.; He, X.-T.; Sun, H.-H.; Chen, F.-M. Concise Review: Periodontal Tissue Regeneration Using Stem Cells: Strategies and Translational Considerations. Stem Cells Transl. Med. 2019, 8, 392–403. [Google Scholar] [CrossRef]
- Richards, S. Periodontal Disease. Aust. Dent. J. 2021, 6, 280. [Google Scholar] [CrossRef]
- Sassano, P.; Gennaro, P.; Chisci, G.D.; Gabriele, G.; Aboh, I.V.; Mitro, V.; di Curzio, P. Calvarial Onlay Graft and Submental Incision in Treatment of Atrophic Edentulous Mandibles: An Approach to Reduce Postoperative Complications. J. Craniofacial Surg. 2014, 25, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; D’Aiuto, F.; Deanfield, J.; Fernandez-Avilés, F. European workshop in periodontal health and cardiovascular disease--scientific evidence on the association between periodontal and cardiovascular diseases: A review of the literature. Eur. Heart J. Suppl. 2010, 12, B3–B12. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Rahal, S.C.; Mesquita, L.D.R.; Castilho, M.S.; Kano, W.T.; Mamprim, M.J. Mandibulectomy for treatment of fractures associated with severe periodontal disease. Can. Vet. J. 2015, 56, 292–294. [Google Scholar]
- Woo, H.N.; Cho, Y.J.; Tarafder, S.; Lee, C.H. The recent advances in scaffolds for integrated periodontal regeneration. Bioact. Mater. 2021, 6, 3328–3342. [Google Scholar] [CrossRef]
- Mg, G.; Hv, W. Regeneration in Intrabony Defects (Review) the Cochrane Collaboration ®.Review Literature and Arts of the Americas, No. 1. 2010. Available online: www.cochranelibrary.com (accessed on 22 August 2023). [CrossRef]
- Liang, Y.; Luan, X.; Liu, X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact. Mater. 2020, 5, 297–308. [Google Scholar] [CrossRef]
- Stavropoulos, A.; Sculean, A. Current Status of Regenerative Periodontal Treatment. Curr. Oral Health Rep. 2017, 4, 34–43. [Google Scholar] [CrossRef]
- Fraser, D.; Caton, J.; Benoit, D.S.W. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. Front. Dent. Med. 2022, 3, 815810. [Google Scholar] [CrossRef]
- Vaquette, C.; Pilipchuk, S.P.; Bartold, P.M.; Hutmacher, D.W.; Giannobile, W.V.; Ivanovski, S. Tissue Engineered Constructs for Periodontal Regeneration: Current Status and Future Perspectives. Adv. Health Mater. 2018, 7, e1800457. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, A.; Bertl, K.; Spineli, L.M.; Sculean, A.; Cortellini, P.; Tonetti, M. Medium- and long-term clinical benefits of periodontal regenerative/reconstructive procedures in intrabony defects: Systematic review and network meta-analysis of randomized controlled clinical studies. J. Clin. Periodontol. 2021, 48, 410–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, A.; Liu, S.; Lv, M.; Chen, S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen. Ther. 2021, 18, 88–96. [Google Scholar] [CrossRef]
- Ayala-Ham, A.; López-Gutierrez, J.; Bermúdez, M.; Aguilar-Medina, M.; Sarmiento-Sánchez, J.I.; López-Camarillo, C.; Sanchez-Schmitz, G.; Ramos-Payan, R. Hydrogel-Based Scaffolds in Oral Tissue Engineering. Front. Mater. 2021, 8, 708945. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Holiel, A.A.; Mahmoud, E.M.; Abdel-Fattah, W.M. Tomographic evaluation of direct pulp capping using a novel injectable treated dentin matrix hydrogel: A 2-year randomized controlled clinical trial. Clin. Oral Investig. 2021, 25, 4621–4634. [Google Scholar] [CrossRef]
- de Santana, R.B.; de Santana, C.M.M. Human intrabony defect regeneration with rhFGF-2 and hyaluronic acid—A randomized controlled clinical trial. J. Clin. Periodontol. 2015, 42, 658–665. [Google Scholar] [CrossRef]
- Tibbitt, M.W.; Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103, 655–663. [Google Scholar] [CrossRef]
- Jung, R.E.; Hälg, G.A.; Thoma, D.S.; Hämmerle, C.H.F. A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants. Clin. Oral Implant. Res. 2009, 20, 162–168. [Google Scholar] [CrossRef]
- Iviglia, G.; Kargozar, S.; Baino, F. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration. J. Funct. Biomater. 2019, 10, 3. [Google Scholar] [CrossRef]
- Yilmaz, S.; Efeoğlu, E.; Noyan, U.; Kuru, B.; Kiliç, A.R.; Kuru, L. The evolution of clinical periodontal therapy. J. Marmara Univ. Dent. Fac. 1994, 2, 414–423. [Google Scholar]
- Larsson, L.; Decker, A.; Nibali, L.; Pilipchuk, S.; Berglundh, T.; Giannobile, W. Regenerative Medicine for Periodontal and Peri-implant Diseases. J. Dent. Res. 2016, 95, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Yang, R.; Cooper, P.R.; Khurshid, Z.; Shavandi, A.; Ratnayake, J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021, 26, 3007. [Google Scholar] [CrossRef] [PubMed]
- Ramseier, C.A.; Rasperini, G.; Batia, S.; Giannobile, W.V. Advanced reconstructive technologies for periodontal tissue repair. Periodontology 2000 2012, 59, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Titsinides, S.; Agrogiannis, G.; Karatzas, T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn. Dent. Sci. Rev. 2019, 55, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Ausenda, F.; Rasperini, G.; Acunzo, R.; Gorbunkova, A.; Pagni, G. New perspectives in the use of biomaterials for periodontal regeneration. Materials 2019, 12, 2197. [Google Scholar] [CrossRef]
- Pilipchuk, S.P.; Plonka, A.B.; Monje, A.; Taut, A.D.; Lanis, A.; Kang, B.; Giannobile, W.V. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent. Mater. 2015, 31, 317–338. [Google Scholar] [CrossRef]
- Abshagen, K.; Schrodi, I.; Gerber, T.; Vollmar, B. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone®. J. Biomed. Mater. Res. Part A 2009, 91A, 557–566. [Google Scholar] [CrossRef]
- Fairbairn, P.; Leventis, M. Protocol for Bone Augmentation with Simultaneous Early Implant Placement: A Retrospective Multicenter Clinical Study. Int. J. Dent. 2015, 2015, 589135. [Google Scholar] [CrossRef] [PubMed]
- Pikos, M.A. Block Autografts for Localized Ridge Augmentation: Part II. The Posterior Mandible. Implant Dent. 2000, 9, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, R.; Issa, J.P.M.; Iyomasa, M.M.; Oporto, G.; Prieto, R.; Borie, E. The Behavior of Demineralized Bone Matrix (DBM) in Post-Extraction Sockets. Int. J. Morphol. 2012, 30, 394–398. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Khalil, M.M.; El Halawani, G.N. Evaluation of Anterior Maxillary Horizontal Ridge Augmentation With Simultanous Implant Placement Using Cerabone® Versus Cerabone® Combined with Platelet Rich Plasma (Randomized Clinical Trial). Alex. Dent. J. 2022, 47, 1–8. [Google Scholar] [CrossRef]
- Christian, S.; Doris, M.; Alexis, S.; Georgios, L.; Else, S.; Franz, K.; Karl, D.; Rolf, E. The fluorohydroxyapatite (FHA) FRIOS® Algipore® is a suitable biomaterial for the reconstruction of severely atrophic human maxillae. Clin. Oral Implant. Res. 2003, 14, 743–749. [Google Scholar] [CrossRef]
- Kakar, A.; Rao, B.H.S.; Hegde, S.; Deshpande, N.; Lindner, A.; Nagursky, H.; Patney, A.; Mahajan, H. Ridge preservation using an in situ hardening biphasic calcium phosphate (β-TCP/HA) bone graft substitute-a clinical, radiological, and histological study. Int. J. Implant. Dent. 2017, 3, 25. [Google Scholar] [CrossRef]
- Szabó, G.; Suba, Z.; Barabás, J. Use of Bioplant HTR Synthetic bone to eliminate major jawbone defects: Long-term human histological examinations. J. Cranio-Maxillofac. Surg. 1997, 25, 63–68. [Google Scholar] [CrossRef]
- Di Stefano, D.A.; Greco, G.; Gherlone, E. A Preshaped Titanium Mesh for Guided Bone Regeneration with an Equine-Derived Bone Graft in a Posterior Mandibular Bone Defect: A Case Report. Dent. J. 2019, 7, 77. [Google Scholar] [CrossRef]
- McKay, W.F.; Peckham, S.M.; Badura, J.M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int. Orthop. 2007, 31, 729–734. [Google Scholar] [CrossRef]
- Alves, L.; Machado, V.; Botelho, J.; Mendes, J.J.; Cabral, J.M.S.; da Silva, C.L.; Carvalho, M.S. Enhanced Proliferative and Osteogenic Potential of Periodontal Ligament Stromal Cells. Biomedicines 2023, 11, 1352. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, K.-H.; Lee, Y.-M.; Seol, Y.-J. Advanced engineering strategies for periodontal complex regeneration. Materials 2016, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Bottino, M.C.; Thomas, V.; Schmidt, G.; Vohra, Y.K.; Chu, T.-M.G.; Kowolik, M.J.; Janowski, G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent. Mater. 2012, 28, 703–721. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Yee, M.; Sheng, Z.L.J.; Amirul, A.; Naing, M.W. Decellularization systems and devices: State-of-the-art. Acta Biomater. 2020, 115, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Kasaj, A.; Reichert, C.; Götz, H.; Röhrig, B.; Smeets, R.; Willershausen, B. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration. Head Face Med. 2008, 4, 22. [Google Scholar] [CrossRef]
- Bottino, M.C.; Pankajakshan, D.; Nör, J.E. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration. Dent. Clin. N. Am. 2017, 61, 689–711. [Google Scholar] [CrossRef]
- Sculean, A.; Schwarz, F.; Becker, J.; Brecx, M. The application of an enamel matrix protein derivative (Emdogain®) in regenerative periodontal therapy: A review. Med. Princ. Pract. 2007, 16, 167–180. [Google Scholar] [CrossRef]
- Hirooka, H. The biologic concept for the use of enamel matrix protein: True periodontal regeneration. Quintessence Int. 1998, 29, 621–630. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9922759 (accessed on 22 August 2023).
- Kulakauskienė, R.; Aukštakalnis, R.; Šadzevičienė, R. Enamel matrix derivate induces periodontal regeneration by activating growth factors: A review. Stomatologija 2020, 21, 49–53. [Google Scholar]
- Wang, H.H.; Sarmast, N.D.; Shadmehr, E.; Angelov, N.; Shabahang, S.; Torabinejad, M. Application of Enamel Matrix Derivative (Emdogain) in Endodontic Therapy: A Comprehensive Literature Review. J. Endod. 2018, 44, 1066–1079. [Google Scholar] [CrossRef]
- De Ry, S.P.; Roccuzzo, A.; Lang, N.P.; Sculean, A.; Salvi, G.E. Long-term clinical outcomes of periodontal regeneration with enamel matrix derivative: A retrospective cohort study with a mean follow-up of 10 years. J. Periodontol. 2021, 93, 548–559. [Google Scholar] [CrossRef]
- Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.; Bartold, P. Multiphasic Scaffolds for Periodontal Tissue Engineering. J. Dent. Res. 2014, 93, 1212–1221. [Google Scholar] [CrossRef]
- Bartold, P.M.; McCulloch, C.A.G.; Narayanan, A.S.; Pitaru, S. Tissue engineering: A new paradigm for periodontal regeneration based on molecular and cell biology. Periodontology 2000, 24, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.J.; Ramos, J.C.; Martins, J.B.; Diogenes, A.; Figueiredo, M.H.; Ferreira, P.; Viegas, C.; Santos, J.M. Histologic Evaluation of Regenerative Endodontic Procedures with the Use of Chitosan Scaffolds in Immature Dog Teeth with Apical Periodontitis. J. Endod. 2017, 43, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.-H.; Chang, Y.-L.; Wang, M.-L.; Chuang, J.-H.; Yang, Y.-C.; Tai, M.-C.; Wang, C.-Y.; Liu, Y.-Y.; Li, H.-Y.; Chen, J.-T.; et al. Promoting Induced Pluripotent Stem Cell-driven Biomineralization and Periodontal Regeneration in Rats with Maxillary-Molar Defects using Injectable BMP-6 Hydrogel. Sci. Rep. 2018, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-Z.; Beucken, J.J.v.D.; Cai, X.; Yu, N.; Jansen, J.A.; Yang, F.; Jose, L.H.S.; Stephens, P.; Song, B.; Barrow, D.; et al. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading. Tissue Eng. Part A 2015, 21, 1066–1076. [Google Scholar] [CrossRef]
- Zang, S.; Dong, G.; Peng, B.; Xu, J.; Ma, Z.; Wang, X.; Liu, L.; Wang, Q. A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr. Polym. 2014, 113, 240–248. [Google Scholar] [CrossRef]
- Zang, S.; Mu, R.; Chen, F.; Wei, X.; Zhu, L.; Han, B.; Yu, H.; Bi, B.; Chen, B.; Wang, Q.; et al. Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. Mater. Sci. Eng. C 2019, 99, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gu, Z.; Chen, X.; Shi, C.; Liu, C.; Liu, M.; Wang, L.; Sun, M.; Zhang, K.; Liu, Q.; et al. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019, 86, 235–246. [Google Scholar] [CrossRef]
- Arpornmaeklong, P.; Sareethammanuwat, M.; Apinyauppatham, K.; Boonyuen, S. Characteristics and biologic effects of thermosensitive quercetin-chitosan/collagen hydrogel on human periodontal ligament stem cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1656–1670. [Google Scholar] [CrossRef]
- Divband, B.; Aghazadeh, M.; Al-Qaim, Z.H.; Samiei, M.; Hussein, F.H.; Shaabani, A.; Shahi, S.; Sedghi, R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Carbohydr. Polym. 2021, 273, 118589. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.H.; Shahzadi, L.; Batool, R.; Safi, S.Z.; Khan, A.S.; Khan, A.F.; Chaudhry, A.A.; Rehman, I.U.; Yar, M. Thyroxine-loaded chitosan/carboxymethyl cellulose/hydroxyapatite hydrogels enhance angiogenesis in in-ovo experiments. Int. J. Biol. Macromol. 2020, 145, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Miranda, D.G.; Malmonge, S.M.; Campos, D.M.; Attik, N.G.; Grosgogeat, B.; Gritsch, K. A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.M.; Waly, G.H.; Saniour, S.H.; Moussa, T.A. Growth factor release and enhanced encapsulated periodontal stem cells viability by freeze-dried platelet concentrate loaded thermo-sensitive hydrogel for periodontal regeneration. Saudi Dent. J. 2018, 30, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dou, X.; Zhang, L.; Wang, H.; Zhang, T.; Bai, R.; Sun, Q.; Wang, X.; Yu, T.; Wu, D.; et al. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioact. Mater. 2022, 11, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kikuchi, M.; Ohata, N.; Tamura, M.; Kuboki, Y. Enhanced Cementum Formation in Experimentally Induced Cementum Defects of the Root Surface with the Application of Recombinant Basic Fibroblast Growth Factor in Collagen Gel In Vivo. J. Periodontol. 2004, 75, 243–248. [Google Scholar] [CrossRef]
- Pan, J.; Deng, J.; Yu, L.; Wang, Y.; Zhang, W.; Han, X.; Camargo, P.H.C.; Wang, J.; Liu, Y. Investigating the repair of alveolar bone defects by gelatin methacrylate hydrogels-encapsulated human periodontal ligament stem cells. J. Mater. Sci. Mater. Med. 2020, 31, 3. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Bai, S.; Li, B.; Liu, H.; Wu, G.; Liu, S. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Int. J. Nanomed. 2016, 11, 4707–4718. [Google Scholar] [CrossRef]
- Ma, Y.; Ji, Y.; Zhong, T.; Wan, W.; Yang, Q.; Li, A.; Zhang, X.; Lin, M. Bioprinting-Based PDLSC-ECM Screening for in Vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels. ACS Biomater. Sci. Eng. 2017, 3, 3534–3545. [Google Scholar] [CrossRef]
- Dahiya, P.; Kamal, R. Hyaluronic acid: A boon in periodontal therapy. N. Am. J. Med. Sci. 2013, 5, 309–315. [Google Scholar] [CrossRef]
- El-Sayed, K.M.F.; Mekhemar, M.K.; Beck-Broichsitter, B.E.; Bähr, T.; Hegab, M.; Receveur, J.; Heneweer, C.; Becker, S.T.; Wiltfang, J.; Dörfer, C.E. Periodontal regeneration employing gingival margin-derived stem/progenitor cells in conjunction with IL-1ra-hydrogel synthetic extracellular matrix. J. Clin. Periodontol. 2015, 42, 448–457. [Google Scholar] [CrossRef]
- El-Sayed, B.; Davies, R.P.W.; El-Zehery, R.R.; Ibrahim, F.M.; Grawish, M.E.; Kirkham, J.; El-Gendy, R. An in-vivo Intraoral Defect Model for Assessing the Use of P11-4 Self-Assembling Peptide in Periodontal Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 559494. [Google Scholar] [CrossRef]
- Koch, F.; Wolff, A.; Mathes, S.; Pieles, U.; Saxer, S.S.; Kreikemeyer, B.; Peters, K. Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro. Int. J. Nanomed. 2018, 13, 6717–6733. [Google Scholar] [CrossRef]
- Takeuchi, T.; Bizenjima, T.; Ishii, Y.; Imamura, K.; Suzuki, E.; Seshima, F.; Saito, A. Enhanced healing of surgical periodontal defects in rats following application of a self-assembling peptide nanofibre hydrogel. J. Clin. Periodontol. 2016, 43, 279–288. [Google Scholar] [CrossRef]
- Fraser, D.; Nguyen, T.; Benoit, D.S. Matrix Control of Periodontal Ligament Cell Activity Via Synthetic Hydrogel Scaffolds. Tissue Eng. Part A 2021, 27, 733–747. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.-N.; Ma, B.; Shao, J.; Liu, H.; Ge, S. Gingipain-Responsive Thermosensitive Hydrogel Loaded with SDF-1 Facilitates In Situ Periodontal Tissue Regeneration. ACS Appl. Mater. Interfaces 2021, 13, 36880–36893. [Google Scholar] [CrossRef]
- Tanongpitchayes, K.; Randorn, C.; Lamkhao, S.; Chokethawai, K.; Rujijanagul, G.; Na Lampang, K.; Somrup, L.; Boonyapakorn, C.; Thongkorn, K. Effectiveness of a nanohydroxyapatite-based hydrogel on alveolar bone regeneration in post-extraction sockets of dogs with naturally occurring periodontitis. Vet. Sci. 2022, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, S.; Mony, U.; Jayachandran, P.; Reshma, S.; Kumar, R.A.; Arzate, H.; Nair, S.V.; Jayakumar, R. Tri-Layered Nanocomposite Hydrogel Scaffold for the Concurrent Regeneration of Cementum, Periodontal Ligament, and Alveolar Bone. Adv. Health Mater. 2017, 6, 1601251. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.; Meyer, N.; Valdec, S.; Jung, R.E.; Mathes, S.H. Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health 2020, 20, 148. [Google Scholar] [CrossRef]
- Yoshida, W.; Matsugami, D.; Murakami, T.; Bizenjima, T.; Imamura, K.; Seshima, F.; Saito, A. Combined effects of systemic parathyroid hormone (1–34) and locally delivered neutral self-assembling peptide hydrogel in the treatment of periodontal defects: An experimental in vivo investigation. J. Clin. Periodontol. 2019, 46, 1030–1040. [Google Scholar] [CrossRef]
- Babo, P.S.; Pires, R.L.; Santos, L.; Franco, A.; Rodrigues, F.; Leonor, I.; Reis, R.L.; Gomes, M.E. Platelet Lysate-Loaded Photocrosslinkable Hyaluronic Acid Hydrogels for Periodontal Endogenous Regenerative Technology. ACS Biomater. Sci. Eng. 2017, 3, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zhang, M.; Hai, Z.; Wu, C.; Lin, J.; Kuang, W.; Tang, H.; Huang, Y.; Chen, X.; Liang, G. Sustained Release of Two Bioactive Factors from Supramolecular Hydrogel Promotes Periodontal Bone Regeneration. ACS Nano 2019, 13, 5616–5622. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, S.; Weng, Z.; Zhang, W.; Wan, X.; Cui, T.; Ye, J.; Liao, L.; Wang, X. Jelly-Inspired Injectable Guided Tissue Regeneration Strategy with Shape Auto-Matched and Dual-Light-Defined Antibacterial/Osteogenic Pattern Switch Properties. ACS Appl. Mater. Interfaces 2020, 12, 54497–54506. [Google Scholar] [CrossRef] [PubMed]
- Juriga, D.; Kalman, E.E.; Toth, K.; Barczikai, D.; Szöllősi, D.; Földes, A.; Varga, G.; Zrinyi, M.; Jedlovszky-Hajdu, A.; Nagy, K.S. Analysis of Three-Dimensional Cell Migration in Dopamine-Modified Poly(aspartic acid)-Based Hydrogels. Gels 2022, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Abdelrasoul, M.; El-Fattah, A.A.; Kotry, G.; Ramadan, O.; Essawy, M.; Kamaldin, J.; Kandil, S. Regeneration of critical-sized grade II furcation using a novel injectable melatonin-loaded scaffold. Oral Dis. 2022. [Google Scholar] [CrossRef]
- Kinoshita, A.; Oda, S.; Takahashi, K.; Yokota, S.; Ishikawa, I. Periodontal Regeneration by Application of Recombinant Human Bone Morphogenetic Protein-2 to Horizontal Circumferential Defects Created by Experimental Periodontitis in Beagle Dogs. J. Periodontol. 1997, 68, 103–109. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, Y.; Zhang, S.; Wang, B.; Shang, L.; Shao, J.; Lin, M.; Cui, Y.; Sun, S.; Ge, S. 6-Bromoindirubin-3′-oxime Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells and Facilitates Bone Regeneration in a Mouse Periodontitis Model. ACS Biomater. Sci. Eng. 2021, 7, 232–241. [Google Scholar] [CrossRef]
- Struillou, X.; Boutigny, H.; Badran, Z.; Fellah, B.H.; Gauthier, O.; Sourice, S.; Pilet, P.; Rouillon, T.; Layrolle, P.; Weiss, P.; et al. Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J. Mater. Sci. Mater. Med. 2011, 22, 1707–1717. [Google Scholar] [CrossRef]
- Chung, H.J.; Park, T.G. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 2009, 4, 429–437. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Akagi, T.; Shima, F.; Akashi, M. Fabrication of orientation-controlled 3D tissues using a layer-by-layer technique and 3D printed a thermoresponsive gel frame. Tissue Eng. Part C Methods 2017, 23, 357–366. [Google Scholar] [CrossRef]
- Chun, H.J.; Park, K.; Kim, C.H.; Khang, G. (Eds.) Novel Biomaterials for Regenerative Medicine, Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; Volume 1077, pp. 197–224. [Google Scholar] [CrossRef]
- Bryant, S.J.; Vernerey, F.J. Programmable hydrogels for cell encapsulation and neo-tissue growth to enable personalized tissue engineering. Adv. Health Mater. 2016, 7, 1700605. [Google Scholar] [CrossRef]
- Miao, G.; Liang, L.; Li, W.; Ma, C.; Pan, Y.; Zhao, H.; Zhang, Q.; Xiao, Y.; Yang, X. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Biomolecules 2023, 13, 1062. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Y.; Wang, X.; Yuan, S.; Huo, F.; Yi, G.; Zhang, J.; Yang, B.; Tian, W. A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration. Adv. Sci. 2023, 10, 2205041. [Google Scholar] [CrossRef]
- Garala, K.; Joshi, P.; Patel, J.; Ramkishan, A.; Shah, M. Formulation and evaluation of periodontal in situ gel. Int. J. Pharm. Investig. 2013, 3, 29–41. [Google Scholar] [CrossRef]
- Gopalakrishna, P.K.; Jayaramu, R.A.; Boregowda, S.S.; Eshwar, S.; Suresh, N.V.; Abu Lila, A.S.; Moin, A.; Alotaibi, H.F.; Obaidullah, A.J.; Khafagy, E.-S. Piperine-Loaded In Situ Gel: Formulation, In Vitro Characterization, and Clinical Evaluation against Periodontitis. Gels 2023, 9, 577. [Google Scholar] [CrossRef]
- Swain, G.P.; Patel, S.; Gandhi, J.; Shah, P. Development of Moxifloxacin Hydrochloride loaded in-situ gel for the treatment of periodontitis: In-vitro drug release study and antibacterial activity. J. Oral Biol. Craniofacial Res. 2019, 9, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Ranch, K.M.; Maulvi, F.A.; Koli, A.R.; Desai, D.T.; Parikh, R.K.; Shah, D.O. Tailored Doxycycline Hyclate Loaded In Situ Gel for the Treatment of Periodontitis: Optimization, In Vitro Characterization, and Antimicrobial Studies. AAPS PharmSciTech 2021, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bi, F.; Guo, W. Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels 2023, 9, 245. [Google Scholar] [CrossRef]
- Olszewska-Czyz, I.; Kralik, K.; Prpic, J. Biomolecules in Dental Applications: Randomized, Controlled Clinical Trial Evaluating the Influence of Hyaluronic Acid Adjunctive Therapy on Clinical Parameters of Moderate Periodontitis. Biomolecules 2021, 11, 1491. [Google Scholar] [CrossRef]
- Toshiyuki, T.; Shigetoshi, Y.; Yohei, K.; Yukihiko, K.; Yasuhiko, T.; Goichi, M. Periodontal Regeneration Using Gelatin Hydrogels Incorporating Basic Fibroblast Growth Factor. Biomed. J. Sci. Tech. Res. 2018, 4, 3820–3824. [Google Scholar] [CrossRef]
- Gad, H.A.; Kamel, A.O.; Ezzat, O.M.; El Dessouky, H.F.; Sammour, O.A. Doxycycline hydrochloride-metronidazole solid lipid microparticles gels for treatment of periodontitis: Development, in-vitro and in-vivo clinical evaluation. Expert Opin. Drug Deliv. 2017, 14, 1241–1251. [Google Scholar] [CrossRef]
- Mensah, A.; Rodgers, A.M.; Larrañeta, E.; McMullan, L.; Tambuwala, M.; Callan, J.F.; Courtenay, A.J. Treatment of Periodontal Infections, the Possible Role of Hydrogels as Antibiotic Drug-Delivery Systems. Antibiotics 2023, 12, 1073. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; De Leon-Oliva, D.; Boaru, D.L.; Fraile-Martinez, O.; García-Montero, C.; Diaz, R.; Coca, S.; Barrena-Blázquez, S.; Bujan, J.; García-Honduvilla, N.; et al. Unraveling the New Perspectives on Antimicrobial Hydrogels: State-of-the-Art and Translational Applications. Gels 2023, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xu, H.; Wang, X.; Dong, S.; Guo, L.; Zhang, S.; Yang, X.; Liu, C.; Jiang, X.; Kan, M.; et al. Advances in preparation and application of antibacterial hydrogels. J. Nanobiotechnology 2023, 21, 300. [Google Scholar] [CrossRef] [PubMed]
Component | Type of Component | Examples |
---|---|---|
Cellular | Fibroblasts | Gingival fibroblasts, periodontal ligament fibroblasts |
Osteogenic cells | Osteoblasts, osteoclasts, cementoblasts | |
Immune cells | Neutrophils, macrophages, lymphocytes | |
Molecular | Growth factors (GF) | Bone morphogenetic proteins, chlorella GF, epidermal GF, fibroblast GF, insulin-like GF, platelet-derived GF |
ECM proteins | Bone sialoprotein, collagen, enamel matrix proteins, fibronectin, hyaluron, laminin, osteocalcin, osteopontin, proteoglycans, osteonectin, tenascin |
Type of Graft | Material Source | Examples |
---|---|---|
Natural | Autogenous | Extra-oral: cranium, iliac crest, fibula, radius, rib, tibia. Intra-oral: anterior maxillary sinus, anterior nasal-spine, ascending ramus, coronoid process, incisive fossa, palate, torus [33]. |
Allogeneic | Freeze-dried bone matrix, demineralized bone matrix [34]. | |
Xenogeneic | Chitosan, silk, bovine-, porcine-, and equine-derived bone substitutes [35]. | |
Plant-based | Gusuibu, Algae-, and coral-based bone substitutes [36]. | |
Synthetic | Calcium phosphate | Hydroxyapatite, tricalcium phosphate, biphasic calcium phosphate, bioglass [37]. |
Polymers | Polylactic acid, polyglycolic acid, polycaprolactone, polymethyl metacrylate [38]. | |
Metals | Nickel–titanium, magnesium [39]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.S.; dos Santos, A.B.; Carvalho, M.S. New Insights in Hydrogels for Periodontal Regeneration. J. Funct. Biomater. 2023, 14, 545. https://doi.org/10.3390/jfb14110545
Santos MS, dos Santos AB, Carvalho MS. New Insights in Hydrogels for Periodontal Regeneration. Journal of Functional Biomaterials. 2023; 14(11):545. https://doi.org/10.3390/jfb14110545
Chicago/Turabian StyleSantos, Mafalda S., Alexandra B. dos Santos, and Marta S. Carvalho. 2023. "New Insights in Hydrogels for Periodontal Regeneration" Journal of Functional Biomaterials 14, no. 11: 545. https://doi.org/10.3390/jfb14110545
APA StyleSantos, M. S., dos Santos, A. B., & Carvalho, M. S. (2023). New Insights in Hydrogels for Periodontal Regeneration. Journal of Functional Biomaterials, 14(11), 545. https://doi.org/10.3390/jfb14110545