New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptide Synthesis
2.2. ADMET Screening of the Cell-Penetrating Peptides and the Cationic Antimicrobial Peptides
2.3. Cell Lines and Cell Culture Conditions
2.4. In Vitro Drug Protocol
2.5. Cell Viability Assay
3. Results
3.1. Physicochemical Properties and Medicinal Chemistry
3.2. Cell Viability Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Martini, L.B.; Sulmona, C.; Brambilla, L.; Rossi, D. Cell-Penetrating Peptides as Valuable Tools for Nose-to-Brain Delivery of Biological Drugs. Cells 2023, 12, 1643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ai, S.; Yang, Z.; Li, X. Peptide-Based Supramolecular Hydrogels for Local Drug Delivery. Adv. Drug Deliv. Rev. 2021, 174, 482–503. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, S.; Denny, W.A.; Gamage, S.; Sarojini, V. Recent Developments in Anticancer Drug Delivery Using Cell Penetrating and Tumor Targeting Peptides. J. Control. Release 2017, 250, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduct. Target. Ther. 2018, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; Haratipour, P.; Lingeman, R.G.; Perry, J.J.P.; Gu, L.; Hickey, R.J.; Malkas, L.H. Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021, 10, 2908. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, J.; Nilvebrant, J.; Nygren, P.-Å.; Lehmann, F. Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules 2021, 26, 6042. [Google Scholar] [CrossRef]
- Guidotti, G.; Brambilla, L.; Rossi, D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017, 38, 406–424. [Google Scholar] [CrossRef]
- Zhu, Y.-S.; Tang, K.; Lv, J. Peptide–Drug Conjugate-Based Novel Molecular Drug Delivery System in Cancer. Trends Pharmacol. Sci. 2021, 42, 857–869. [Google Scholar] [CrossRef]
- Zhou, M.; Zou, X.; Cheng, K.; Zhong, S.; Su, Y.; Wu, T.; Tao, Y.; Cong, L.; Yan, B.; Jiang, Y. The Role of Cell-penetrating Peptides in Potential Anti-cancer Therapy. Clin. Transl. Med. 2022, 12, e822. [Google Scholar] [CrossRef]
- Komin, A.; Bogorad, M.I.; Lin, R.; Cui, H.; Searson, P.C.; Hristova, K. A Peptide for Transcellular Cargo Delivery: Structure-Function Relationship and Mechanism of Action. J. Control. Release 2020, 324, 633–643. [Google Scholar] [CrossRef]
- Ghaly, G.; Tallima, H.; Dabbish, E.; ElDin, N.B.; El-Rahman, M.K.A.; Ibrahim, M.A.A.; Shoeib, T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023, 28, 1148. [Google Scholar] [CrossRef]
- Yang, M.; Liu, S.; Zhang, C. Antimicrobial Peptides with Antiviral and Anticancer Properties and Their Modification and Nanodelivery Systems. Curr. Res. Biotechnol. 2023, 5, 100121. [Google Scholar] [CrossRef]
- Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020, 25, 2850. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Yang, P.; Lei, J.; Zhao, J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics 2023, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Răileanu, M.; Bacalum, M. Cancer Wars: Revenge of the AMPs (Antimicrobial Peptides), a New Strategy against Colorectal Cancer. Toxins 2023, 15, 459. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Ferrão, R.; Palma, P.; Patricio, T.; Parreira, P.; Anes, E.; Tonda-Turo, C.; Martins, M.C.L.; Alves, N.; Ferreira, L. Antimicrobial Peptide-Based Materials: Opportunities and Challenges. J. Mater. Chem. B 2022, 10, 2384–2429. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Babajani, A.; Sarrami Forooshani, R.; Yazdani, M.; Rezaei-Tavirani, M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front. Oncol. 2022, 12, 819563. [Google Scholar] [CrossRef]
- Guo, Z.; Peng, H.; Kang, J.; Sun, D. Cell-Penetrating Peptides: Possible Transduction Mechanisms and Therapeutic Applications. Biomed. Rep. 2016, 4, 528–534. [Google Scholar] [CrossRef]
- Xu, J.; Wang, F.; Ye, L.; Wang, R.; Zhao, L.; Yang, X.; Ji, J.; Liu, A.; Zhai, G. Penetrating Peptides: Applications in Drug Delivery. J. Drug Deliv. Sci. Technol. 2023, 84, 104475. [Google Scholar] [CrossRef]
- Correia, A.S.; Gärtner, F.; Vale, N. Drug Combination and Repurposing for Cancer Therapy: The Example of Breast Cancer. Heliyon 2021, 7, e05948. [Google Scholar] [CrossRef]
- Gilad, Y.; Gellerman, G.; Lonard, D.M.; O’Malley, B.W. Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations. Cancers 2021, 13, 669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming Cancer Therapeutic Bottleneck by Drug Repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Vale, N.; Pereira, M.; Santos, J.; Moura, C.; Marques, L.; Duarte, D. Prediction of Drug Synergism between Peptides and Antineoplastic Drugs Paclitaxel, 5-Fluorouracil, and Doxorubicin Using In Silico Approaches. Int. J. Mol. Sci. 2022, 24, 69. [Google Scholar] [CrossRef]
- Duarte, D.; Vale, N. Synergistic Interaction of CPP2 Coupled with Thiazole Derivates Combined with Clotrimazole and Antineoplastic Drugs in Prostate and Colon Cancer Cell Lines. Int. J. Mol. Sci. 2021, 22, 11984. [Google Scholar] [CrossRef] [PubMed]
- Preto, A.J.; Matos-Filipe, P.; Mourão, J.; Moreira, I.S. SYNPRED: Prediction of Drug Combination Effects in Cancer Using Different Synergy Metrics and Ensemble Learning. Gigascience 2022, 11, giac087. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes. Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Santos-Silva, A.; da Costa, J.M.C.; Vale, N. Potent Cationic Antimicrobial Peptides against Mycobacterium Tuberculosis in Vitro. J. Glob. Antimicrob. Resist. 2019, 19, 132–135. [Google Scholar] [CrossRef]
- Ramón-García, S.; Mikut, R.; Ng, C.; Ruden, S.; Volkmer, R.; Reischl, M.; Hilpert, K.; Thompson, C.J. Targeting Mycobacterium Tuberculosis and Other Microbial Pathogens Using Improved Synthetic Antibacterial Peptides. Antimicrob. Agents Chemother. 2013, 57, 2295–2303. [Google Scholar] [CrossRef]
- Available online: https://admetmesh.scbdd.com/ (accessed on 4 September 2023).
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Ghosh, J.; Lawless, M.S.; Waldman, M.; Gombar, V.; Fraczkiewicz, R. Modeling ADMET. In Silico Methods for Predicting Drug Toxicity; Humana: New York, NY, USA, 2016; pp. 63–83. [Google Scholar]
- Sohlenius-Sternbeck, A.-K.; Terelius, Y. Evaluation of ADMET Predictor in Early Discovery Drug Metabolism and Pharmacokinetics Project Work. Drug Metab. Dispos. 2022, 50, 95–104. [Google Scholar] [CrossRef]
- Naylor, M.R.; Bockus, A.T.; Blanco, M.-J.; Lokey, R.S. Cyclic Peptide Natural Products Chart the Frontier of Oral Bioavailability in the Pursuit of Undruggable Targets. Curr. Opin. Chem. Biol. 2017, 38, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Doll, C.; Bestendonk, C.; Kreutzer, K.; Neumann, K.; Pohrt, A.; Trzpis, I.; Koerdt, S.; Dommerich, S.; Heiland, M.; Raguse, J.-D.; et al. Prognostic Significance of Estrogen Receptor Alpha in Oral Squamous Cell Carcinoma. Cancers 2021, 13, 5763. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Miyamoto, H. The Role of Estrogen Receptors in Urothelial Cancer. Front. Endocrinol. 2021, 12, 643870. [Google Scholar] [CrossRef]
- Liu, S.; Hu, C.; Li, M.; An, J.; Zhou, W.; Guo, J.; Xiao, Y. Estrogen Receptor Beta Promotes Lung Cancer Invasion via Increasing CXCR4 Expression. Cell Death Dis. 2022, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cai, Y.; Wang, Z.; He, W.; Cao, S.; Xu, R.; Chen, H. Estrogen Receptors Promote NSCLC Progression by Modulating the Membrane Receptor Signaling Network: A Systems Biology Perspective. J. Transl. Med. 2019, 17, 308. [Google Scholar] [CrossRef] [PubMed]
- Balraj, S.; Selvam, P.; Pommier, Y.; Metifiot, M.; Christophe, M.; Pannecouque, C.; De Clercq, E. Investigation of Anti-HIV Activity, Cytotoxicity and HIV Integrase Inhibitory Activity of Polyherbal Formulation BH Extracts. BMC Infect. Dis. 2014, 14, O23. [Google Scholar] [CrossRef]
- Sala, M.; Spensiero, A.; Esposito, F.; Scala, M.C.; Vernieri, E.; Bertamino, A.; Manfra, M.; Carotenuto, A.; Grieco, P.; Novellino, E.; et al. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase. Front. Microbiol. 2016, 7, 845. [Google Scholar] [CrossRef]
- Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. Development and Evaluation of Peptide-Functionalized Gold Nanoparticles for HIV Integrase Inhibition. Int. J. Pept. Res. Ther. 2019, 25, 311–322. [Google Scholar] [CrossRef]
- Greenberg, L.; Ryom, L.; Neesgaard, B.; Miró, J.M.; Dahlerup Rasmussen, L.; Zangerle, R.; Grabmeier-Pfistershammer, K.; Günthard, H.F.; Kusejko, K.; Smith, C.; et al. Integrase Strand Transfer Inhibitor Use and Cancer Incidence in a Large Cohort Setting. Open Forum Infect. Dis. 2022, 9, ofac029. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Passos, D.O.; Pye, V.E.; Cherepanov, P.; Lyumkis, D.; Burke, T.R.; Hughes, S.H. HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants. ACS Infect. Dis. 2021, 7, 1469–1482. [Google Scholar] [CrossRef]
- Iqbal, S.; Jubeen, F.; Sher, F. Future of 5-Fluorouracil in Cancer Therapeutics, Current Pharmacokinetics Issues and a Way Forward. J. Cancer Res. Pract. 2019, 6, 155. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Wong, Y.-S.; Zheng, W.; Zhang, Y.; Cao, W.; Chen, T. Selenium Nanoparticles as a Carrier of 5-Fluorouracil to Achieve Anticancer Synergism. ACS Nano 2012, 6, 6578–6591. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Huang, Y.; Wang, L.; Zhou, J.; Tan, Y.; Peng, C.; Yang, P.; Peng, W.; Li, J.; Gu, Q.; et al. Cetuximab Functionalization Strategy for Combining Active Targeting and Antimigration Capacities of a Hybrid Composite Nanoplatform Applied to Deliver 5-Fluorouracil: Toward Colorectal Cancer Treatment. Biomater. Sci. 2021, 9, 2279–2294. [Google Scholar] [CrossRef] [PubMed]
- Samec, T.; Boulos, J.; Gilmore, S.; Hazelton, A.; Alexander-Bryant, A. Peptide-Based Delivery of Therapeutics in Cancer Treatment. Mater. Today Bio 2022, 14, 100248. [Google Scholar] [CrossRef]
Physicochemical Properties | CPP2 | CPP4 | CAMP1 | CAMP2 | CAMP3 | CAMP5 | CAMP7 |
---|---|---|---|---|---|---|---|
MW | 1426.810 | 2352.430 | 1313.810 | 1352.790 | 1498.830 | 1401.840 | 1296.770 |
Volume | 1446.566 | 2337.240 | 1361.332 | 1390.506 | 1508.578 | 1415.361 | 1303.851 |
Density | 0.986 | 1.006 | 0.965 | 0.973 | 0.994 | 0.990 | 0.995 |
nHA | 33 | 61 | 26 | 28 | 35 | 34 | 32 |
nHD | 27 | 46 | 23 | 25 | 32 | 32 | 28 |
nRot | 54 | 106 | 51 | 51 | 54 | 56 | 50 |
nRing | 5 | 2 | 6 | 6 | 8 | 5 | 4 |
MaxRing | 9 | 5 | 9 | 9 | 9 | 9 | 9 |
nHet | 33 | 62 | 26 | 28 | 35 | 34 | 32 |
fChar | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
nRig | 41 | 35 | 39 | 42 | 53 | 39 | 33 |
Flexibility | 1.317 | 3.029 | 1.308 | 1.214 | 1.019 | 1.436 | 1.515 |
Stereo Centers | 10 | 22 | 10 | 9 | 9 | 10 | 10 |
TPSA | 567.860 | 1016.310 | 453.360 | 496.180 | 615.170 | 609.610 | 564.780 |
logS | −3.341 | −0.969 | −2.664 | −3.268 | −3.907 | −3.197 | −3.350 |
logP | 1.171 | −0.856 | 3.632 | 2.263 | 1.127 | −0.826 | 0.123 |
logD | 0.919 | 0.127 | 3.133 | 1.710 | 0.606 | −0.105 | 0.085 |
Medicinal chemistry | |||||||
QED | 0.010 | 0.013 | 0.024 | 0.014 | 0.013 | 0.011 | 0.012 |
SAscore | 6.393 | 8.247 | 5.872 | 5.954 | 6.390 | 6.319 | 6.061 |
Fsp3 | 0.457 | 0.699 | 0.522 | 0.457 | 0.392 | 0.478 | 0.525 |
MCE-18 | 96.000 | 116.000 | 94.000 | 94.000 | 118.000 | 90.000 | 86.000 |
NPscore | 0.132 | 0.085 | 0.084 | 0.224 | 0.155 | 0.219 | 0.182 |
Lipinski Rule | Rejected | Rejected | Rejected | Rejected | Rejected | Rejected | Rejected |
Pfizer Rule | Accepted | Accepted | Accepted | Accepted | Accepted | Accepted | Accepted |
GSK Rule | Rejected | Rejected | Rejected | Rejected | Rejected | Rejected | Rejected |
Golden Triangle | Rejected | Rejected | Rejected | Rejected | Rejected | Rejected | Rejected |
PAINS | 0 alert(s) | 0 alert(s) | 0 alert(s) | 0 alert(s) | 0 alert(s) | 0 alert(s) | 0 alert(s) |
ALARM NMR Rule | 1 alert(s) | 2 alert(s) | 0 alert(s) | 1 alert(s) | 0 alert(s) | 0 alert(s) | 0 alert(s) |
Property | CPP2 | CPP4 | CAMP1 | CAMP2 | CAMP3 | CAMP5 | CAMP7 |
---|---|---|---|---|---|---|---|
Absorption | |||||||
Caco-2 permeability | −4.322 (Good permeability) | −5.992 (Low permeability) | −5.941 (Low permeability) | −5.666 (Low permeability) | −4.367 (Good permeability) | −4.935 (Good permeability) | −4.656 (Good permeability) |
Pgp inhibitor | --- | --- | - | - | --- | --- | --- |
Pgp substrate | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
Human intestinal absorption (HIA) | +++ | +++ | +++ | +++ | +++ | +++ | ++ |
Bioavailability | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
Distribution | |||||||
Plasma protein binding (PPB) | 79.405% | 38.325% | 39.841% | 42.057% | 78.992% | 43.690% | 54.342% |
Volume of distribution | 0.426 | −0.049 (low) | 0.667 | 0.611 | 0.497 | 0.556 | 0.484 |
Blood–brain barrier (BBB) | --- | --- | --- | --- | --- | --- | --- |
Fraction unbound in plasms (fu) | 6.375% | 24.403% | 38.525% | 39.135% | 12.596% | 31.970% | 26.794% |
Metabolism | |||||||
CYP 1A2/2C19/2C9/2D6/3A4 inhibitor | --- | --- | CYP3A4 | CYP3A4 | --- | --- | --- |
CYP 1A2/2C19/2C9/2D6/3A4 substrate | --- | --- | --- | --- | --- | --- | --- |
Excretion | |||||||
Clearance (CL) | 2.003 (poor) | −0.150 (poor) | 2.969 (poor) | 1.909 (poor) | 2.029 (poor) | 1.658 (poor) | 1.697 (poor) |
Half-life (T1/2) | 0.375 | 0.892 | 0.776 | 0.495 | 0.607 | 0.649 | 0.498 |
Toxicity | |||||||
hERG blockers | --- | --- | -- | -- | --- | --- | --- |
human hepatotoxicity (H-HT) | ++ | + | - | + | - | -- | + |
Drug-induced liver injury (DILI) | --- | --- | --- | --- | --- | --- | --- |
AMES Toxicity | --- | --- | -- | -- | --- | --- | --- |
Skin Sensitization | --- | --- | -- | -- | --- | --- | ------- |
Carcinogenicity | --- | --- | --- | --- | --- | --- | --- |
Respiratory Toxicity | ++ | ++ | +++ | +++ | +++ | ++ | ++ |
NR-AR | --- | --- | --- | --- | --- | --- | --- |
NR-AR-LBD | --- | --- | --- | --- | --- | --- | --- |
Aryl hydrocarbon Receptor (AhR) | --- | --- | - | --- | - | --- | --- |
NR-Aromatase | --- | --- | + | -- | -- | --- | --- |
NR-ER | --- | --- | -- | - | -- | -- | -- |
NR-ER-LBD | ++ | ++ | --- | -- | + | + | ++ |
NR-PPAR-gamma | +++ | -- | +++ | ++ | --- | --- | + |
SR-ARE | ++ | -- | ++ | + | - | + | + |
SR-ATAD5 | + | -- | +++ | --- | --- | --- | --- |
SR-HSE | + | --- | +++ | - | --- | --- | --- |
SR-MMP | ++ | - | + | + | + | ++ | + |
SR-p53 | ++ | - | +++ | ++ | - | -- | -- |
Mechanism | CPP2 | CPP4 | CAMP1 | CAMP2 | CAMP3 | CAMP5 | CAMP7 |
---|---|---|---|---|---|---|---|
HIVI-ST | 4.095 | 4.536 | 3.804 | 4.241 | 3.967 | 3.723 | 3.791 |
HIVI-TC | 4.927 | 5.363 | 4.373 | 4.517 | 4.421 | 4.386 | 4.725 |
BCRP substrate | Yes | Yes | No (51%) | Yes | Yes | Yes | Yes |
BCRP inhibition | No | No | Yes | No (60%) | No | No | No |
Drug/Peptide | Cell Line | IC50 (μM) |
---|---|---|
5-FU | UM-UC-5 | 4.21 |
A549 | 2.42 | |
CAMP1 | UM-UC-5 | >100 |
A549 | 12.39 | |
CAMP2 | UM-UC-5 A549 | 21.61 5.77 |
CAMP3 | UM-UC-5 A549 | >100 17.63 |
CAMP5 | UM-UC-5 A549 | >100 19.65 |
CAMP7 | UM-UC-5 A549 | >100 >100 |
CPP2 | UM-UC-A A549 | 5.47 >100 |
CPP4 | UM-UC-5 A549 | >100 >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vale, N.; Ribeiro, E.; Cruz, I.; Stulberg, V.; Koksch, B.; Costa, B. New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells. J. Funct. Biomater. 2023, 14, 565. https://doi.org/10.3390/jfb14120565
Vale N, Ribeiro E, Cruz I, Stulberg V, Koksch B, Costa B. New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells. Journal of Functional Biomaterials. 2023; 14(12):565. https://doi.org/10.3390/jfb14120565
Chicago/Turabian StyleVale, Nuno, Eduarda Ribeiro, Inês Cruz, Valentina Stulberg, Beate Koksch, and Bárbara Costa. 2023. "New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells" Journal of Functional Biomaterials 14, no. 12: 565. https://doi.org/10.3390/jfb14120565
APA StyleVale, N., Ribeiro, E., Cruz, I., Stulberg, V., Koksch, B., & Costa, B. (2023). New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells. Journal of Functional Biomaterials, 14(12), 565. https://doi.org/10.3390/jfb14120565