Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Leeuw, R.; Klasser, G.D. Orofacial Pain: Guidelines for Assessment, Diagnosis, and Management; Quintessence: Hanover Park, IL, USA, 2018. [Google Scholar]
- Okeson, J.P.; de Leeuw, R. Differential diagnosis of temporomandibular disorders and other orofacial pain disorders. Dent. Clin. N. Am. 2011, 55, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Miyamoto, Y. Isolation and characterization of synovial cells from the human temporomandibular joint. J. Oral Pathol. Med. 2006, 35, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Craane, B.; De Laat, A. Physical therapy for the management of patients with temporomandibular disorders and related pain. Cochrane Database Syst. Rev. 2018, 2018, CD005621. [Google Scholar] [CrossRef]
- Valesan, L.F.; Da-Cas, C.D. Prevalence of temporomandibular joint disorders: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 441–453. [Google Scholar] [CrossRef]
- Slade, G.D.; Ohrbach, R. Painful Temporomandibular Disorder: Decade of Discovery from OPPERA Studies. J. Dent. Res. 2016, 95, 1084–1092. [Google Scholar] [CrossRef]
- Reis, P.H.F.; Laxe, L.A.C. Distribution of anxiety and depression among different subtypes of temporomandibular disorder: A systematic review and meta-analysis. J. Oral Rehabil. 2022, 49, 754–767. [Google Scholar] [CrossRef]
- Dos Santos, E.A.; Peinado, B.R.R. Association between temporomandibular disorders and anxiety: A systematic review. Front. Psychiatry 2022, 13, 990430. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.V.; Cotti, P.C.R.; Barbosa, J.S. Statement of the 1st consensus on temporomandibular disorders and orofacial pain. Dental Press J. Orthod. 2010, 15, 114–120. [Google Scholar] [CrossRef]
- Durham, J.; Newton-John, T.R. Temporomandibular disorders. BMJ Clin. Res. Ed. 2015, 350, h1154. [Google Scholar] [CrossRef] [PubMed]
- Minervini, G.; Del Mondo, D. Stem Cells in Temporomandibular Joint Engineering: State of Art and Future Persectives. J. Craniofac. Surg. 2022, 33, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Ferrillo, M.; Gallo, V. The 50 most-cited articles on temporomandibular disorders: A bibliometric analysis. J. Back Musculoskelet. Rehabil. 2022, 1–19, pre-press. [Google Scholar] [CrossRef]
- Abouelhuda, A.M.; Khalifa, A.K. Non-invasive different modalities of treatment for temporomandibular disorders: Review of literature. J. Korean Assoc. Oral Maxillofac. Surg. 2018, 44, 43–51. [Google Scholar] [CrossRef]
- Minervini, G.; Fiorillo, L. Prosthodontic Treatment in Patients with Temporomandibular Disorders and Orofacial Pain and/or Bruxism: A Review of the Literature. Prosthesis 2022, 4, 253–262. [Google Scholar] [CrossRef]
- Pagotto, L.E.C.; de Santana Santos, T. The efficacy of mesenchymal stem cells in regenerating structures associated with the temporomandibular joint: A systematic review. Arch. Oral Biol. 2021, 125, 105104. [Google Scholar] [CrossRef]
- Zhang, S.; Yap, A.U. Stem Cells for Temporomandibular Joint Repair and Regeneration. Stem Cell Rev. Rep. 2015, 11, 728–742. [Google Scholar] [CrossRef]
- Gong, S.; Emperumal, C.P. Regeneration of temporomandibular joint using in vitro human stem cells: A review. J. Tissue Eng. Regen. Med. 2022, 16, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Chęciński, M.; Chęcińska, K.; Turosz, N.; Kamińska, M.; Nowak, Z.; Sikora, M.; Chlubek, D. Autologous Stem Cells Transplants in the Treatment of Temporomandibular Joints Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Cells 2022, 11, 2709. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, J.; Li, Y.; Huang, J.; Wang, R.; Liang, Y.; He, C.; Liu, S. Global trends and hotspots in research on osteoporosis rehabilitation: A bibliometric study and visualization analysis. Front. Public Health 2022, 10, 1022035. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, A.; Chastang, J.F. The bibliographic impact of epidemiological studies: What can be learnt from citations? Occup. Environ. Med. 2010, 67, 213–216. [Google Scholar] [CrossRef]
- Liu, J.; Gao, J.; Niu, Q.; Wu, F.; Wu, Z.; Zhang, L. Bibliometric and visualization analysis of mesenchymal stem cells and rheumatoid arthritis (from 2012 to 2021). Front. Immunol. 2022, 13, 1001598. [Google Scholar] [CrossRef]
- Machado, N.A.; Lima, F.F. Current panorama of temporomandibular disorders’ field in Brazil. J. Appl. Oral Sci. 2014, 22, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Bai, X. Mapping research trends of temporomandibular disorders from 2010 to 2019: A bibliometric analysis. J. Oral Rehabil. 2021, 48, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Al-Sharaee, Y.; Al-Moraissi, E.A. Top 100 Cited Publications in the Field of Temporomandibular Disorders: A Bibliometric Analysis. Front. Oral Health 2022, 3, 864519. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y. Bibliometric and visual analysis of mesenchymal stem cells in the treatment of osteoporosis based on CiteSpace software. Medicine 2022, 101, e31859. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y. An Overview of Current Research on Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Bibliometric Analysis From 2009 to 2021. Front. Bioeng. Biotechnol. 2022, 10, 1109. [Google Scholar] [CrossRef]
- Sun, Y.P.; Lu, Y.Y. Effects of interleukin 1β on long noncoding RNA and mRNA expression profiles of human synovial fluid derived mesenchymal stem cells. Sci. Rep. 2022, 12, 8432. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.T.; Sun, J.D. Histone deacetylase inhibitors attenuated interleukin-1β-induced chondrogenesis inhibition in synovium-derived mesenchymal stem cells of the temporomandibular joint. Bone Jt. Res. 2022, 11, 40–48. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Y. MicroRNA-26b regulates BMSC osteogenic differentiation of TMJ subchondral bone through β-catenin in osteoarthritis. Bone 2022, 162, 116448. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Sun, J. Knockdown of long non coding RNA AK094629 attenuates the interleukin 1β induced expression of interleukin 6 in synovium derived mesenchymal stem cells from the temporomandibular joint. Mol. Med Rep. 2020, 22, 1195–1204. [Google Scholar] [CrossRef]
- Sun, J.; Liao, W. Suberoylanilide Hydroxamic Acid Attenuates Interleukin-1β-Induced Interleukin-6 Upregulation by Inhibiting the Microtubule Affinity-Regulating Kinase 4/Nuclear Factor-κB Pathway in Synovium-Derived Mesenchymal Stem Cells from the Temporomandibular Joint. Inflammation 2020, 43, 1246–1258. [Google Scholar] [CrossRef]
- Kim, Y.H.; Bang, J.I. Protective effects of extracorporeal shockwave on rat chondrocytes and temporomandibular joint osteoarthritis; preclinical evaluation with in vivo99mTc-HDP SPECT and ex vivo micro-CT. Osteoarthr. Cartl. 2019, 27, 1692–1701. [Google Scholar] [CrossRef]
- Xu, T.; Wu, M. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int. J. Mol. Med. 2012, 30, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Fujikawa, K. An in situ hybridization study of MMP-2, -9, -13, -14, TIMP-1, and -2 mRNA in fetal mouse mandibular condylar cartilage as compared with limb bud cartilage. Gene Expr. Patterns 2019, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bibb, C.A.; Pullinger, A.G.; Baldioceda, F. The relationship of undifferentiated mesenchymal cells to TMJ articular tissue thickness. J. Dent. Res. 1992, 71, 1816–1821. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, Z. The pilot study of fibrin with temporomandibular joint derived synovial stem cells in repairing TMJ disc perforation. BioMed Res. Int. 2014, 2014, 454021. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y. GDF11 inhibits abnormal adipogenesis of condylar chondrocytes in temporomandibular joint osteoarthritis. Bone Jt. Res. 2022, 11, 453–464. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y. Synovial macrophages in cartilage destruction and regeneration-lessons learnt from osteoarthritis and synovial chondromatosis. Biomed. Mat. 2021, 17, 012001. [Google Scholar] [CrossRef]
- Katagiri, W.; Endo, S. Conditioned medium from mesenchymal stem cells improves condylar resorption induced by mandibular distraction osteogenesis in a rat model. Heliyon 2021, 7, e06530. [Google Scholar] [CrossRef]
- Zhang, P.P.; Liang, S.X. Differences in the biological properties of mesenchymal stromal cells from traumatic temporomandibular joint fibrous and bony ankylosis: A comparative study. Anim. Cells Syst. 2021, 25, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, X. Elder Mice Exhibit More Severe Degeneration and Milder Regeneration in Temporomandibular Joints Subjected to Bilateral Anterior Crossbite. Front. Physiol. 2021, 12, 2039. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Lee, S.M. Enhanced Circadian Clock in MSCs-Based Cytotherapy Ameliorates Age-Related Temporomandibular Joint Condyle Degeneration. Int. J. Mol. Sci. 2021, 22, 10632. [Google Scholar] [CrossRef]
- Helgeland, E.; Pedersen, T.O. Angiostatin-functionalized collagen scaffolds suppress angiogenesis but do not induce chondrogenesis by mesenchymal stromal cells in vivo. J. Oral Sci. 2020, 62, 371–376. [Google Scholar] [CrossRef]
- Yoshitake, H.; Kayamori, K. Biomarker expression related to chondromatosis in the temporomandibular joint. Cranio J. Craniomandib. Pract. 2021, 39, 362–366. [Google Scholar] [CrossRef]
- Yang, M.C.; Wang, D.H. Role of Link N in Modulating Inflammatory Conditions. J. Oral Facial Pain Headache 2019, 33, 114–122. [Google Scholar] [CrossRef]
- Karic, V.; Chandran, R. Photobiomodulation and Stem Cell Therapy for Temporomandibular Joint Disc Disorders. Photobiomodulation Photomed. Laser Surg. 2020, 38, 398–408. [Google Scholar] [CrossRef]
- AbuBakr, N.; Fares, A.E. Mesenchymal stem cells-derived microvesicles versus platelet-rich plasma in the treatment of monoiodoacetate-induced temporomandibular joint osteoarthritis in Albino rats. Heliyon 2022, 8, e10857. [Google Scholar] [CrossRef]
- Zhang, J.; Pi, C. PTHrP promotes subchondral bone formation in TMJ-OA. Int. J. Oral Sci. 2022, 14, 37. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints. Front. Bioeng. Biotechnol. 2022, 10, 1026911. [Google Scholar] [CrossRef] [PubMed]
- Thamm, J.R.; Jounaidi, Y. Temporomandibular Joint Fibrocartilage Contains CD105 Positive Mouse Mesenchymal Stem/Progenitor Cells with Increased Chondrogenic Potential. J. Maxillofac. Oral Surg. 2022, 1–12. [Google Scholar] [CrossRef]
- Putnová, B.; Hurník, P. Effect of human adipose-derived regenerative cells on temporomandibular joint healing in immunodeficient rabbits. Acta Vet. Brno 2019, 88, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Lavi, A.; Pelled, G. Isolation and characterization of mesenchymal stromal progenitors from the temporomandibular joint disc. J. Tissue Eng. Regen. Med. 2017, 11, 1553–1561. [Google Scholar] [CrossRef]
- Yu, X.; Hu, Y. A bilayered scaffold with segregated hydrophilicity-hydrophobicity enables reconstruction of goat hierarchical temporomandibular joint condyle cartilage. Acta Biomater. 2021, 121, 288–302. [Google Scholar] [CrossRef]
- Ruscitto, A.; Scarpa, V. Notch Regulates Fibrocartilage Stem Cell Fate and Is Upregulated in Inflammatory TMJ Arthritis. J. Dent. Res. 2020, 99, 1174–1181. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M. Profiling of Stem/Progenitor Cell Regulatory Genes of the Synovial Joint by Genome-Wide RNA-Seq Analysis. BioMed. Res. Int. 2018, 2018, 9327487. [Google Scholar] [CrossRef]
- Lin, Y.; Umebayashi, M. Combination of polyetherketoneketone scaffold and human mesenchymal stem cells from temporomandibular joint synovial fluid enhances bone regeneration. Sci. Rep. 2019, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Xiao, E. Osteoclast Deficiency Contributes to Temporomandibular Joint Ankylosed Bone Mass Formation. J. Dent. Res. 2015, 94, 1392–1400. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, M. Inhibition of Ihh Reverses Temporomandibular Joint Osteoarthritis via a PTH1R Signaling Dependent Mechanism. Int. J. Mol. Sci. 2019, 20, 3797. [Google Scholar] [CrossRef] [PubMed]
- Dashnyam, K.; Lee, J.H. Intra-articular biomaterials-assisted delivery to treat temporomandibular joint disorders. J. Tissue Eng. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Ciocca, L.; Donati, D. Mesenchymal stem cells and platelet gel improve bone deposition within CAD-CAM custom-made ceramic HA scaffolds for condyle substitution. BioMed Res. Int. 2013, 2013, 549762. [Google Scholar] [CrossRef]
- Li, N.; Hua, J. Interações entre células-tronco mesenquimais e o sistema imunológico. Cell. Mol. Life Sci. 2017, 74, 2345–2360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tuan, R.S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 2015, 11, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Pitsouni, E.I. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Vincent Abbott, P. Uma análise bibliométrica dos 50 artigos mais citados publicados na revista Dental Traumatology. Dent. Traumatol. 2020, 36, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Melo, W.W.P.; Aragão, W.A.B. Effects of Photobiomodulation on Oral Mucositis: Visualization and Analysis of Knowledge. Life 2020, 12, 1940. [Google Scholar] [CrossRef]
- Bakkalbasi, N.; Bauer, K. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomed. Digit. Libr. 2006, 3, 7. [Google Scholar] [CrossRef]
- Li, T.H.; Li, Z.M. Global Analyses and Latest Research Hot Spots of Adipose-Derived Stem Cells in Fat Grafting: A Bibliometric and Visualized Review. Aesth. Plast. Surg. 2022, 1–13. [Google Scholar] [CrossRef]
- Fardi, A.; Kodonas, K.; Economides, N. Top-cited articles in endodontic journals. J. Endod. 2011, 37, 1183–1190. [Google Scholar] [CrossRef]
- Schwarz, G.M.; Hajdu, S. The top fifty most influential articles on hip fractures. Int. Orthop. 2022, 46, 2437–2453. [Google Scholar] [CrossRef]
- Sumarta, N.P.M.; Kamadjaja, D.B. Human umbilical cord mesenchymal stem cells over platelet rich fibrin scaffold for mandibular cartilage defects regenerative medicine. Pesqui. Bras. Odontopediatria Clínica Integr. 2021, 21, e0034. [Google Scholar] [CrossRef]
- Gomez, M.; Wittig, O. Mesenchymal Stromal Cell Transplantation Induces Regeneration of Large and Full-Thickness Cartilage Defect of the Temporomandibular Joint. Cartilage 2021, 13, 18145–18215. [Google Scholar] [CrossRef]
- Cheng, M.S.; Yi, X. Overexpression of HIF-1alpha in Bone Marrow Mesenchymal Stem Cells Promote the Repair of Mandibular Condylar Osteochondral Defect in a Rabbit Model. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2021, 79, 345.e1–345.e15. [Google Scholar] [CrossRef]
- Köhnke, R.; Ahlers, M.O. Temporomandibular Joint Osteoarthritis: Regenerative Treatment by a Stem Cell Containing Advanced Therapy Medicinal Product (ATMP)—An In Vivo Animal Trial. Int. J. Mol. Sci. 2021, 22, 443. [Google Scholar] [CrossRef] [PubMed]
- Simmons, P.; McElroy, T. A Bibliometric Review of Artificial Extracellular Matrices Based on Tissue Engineering Technology Literature: 1990 through 2019. Materials 2020, 13, 2891. [Google Scholar] [CrossRef]
- Vîrlan, M.J.R.; Costea, D.E. Degenerative bony changes in the temporal component of the temporomandibular joint—Review of the literature. Rom. J. Morphol. Embryol. 2022, 63, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R. Orofacial Pain Special Interest Group, International Association for the Study of Pain. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [PubMed]
- Alzahrani, A.; Yadav, S. Incidental findings of temporomandibular joint osteoarthritis and its variability based on age and sex. Imaging Sci. Dent. 2020, 50, 245–253. [Google Scholar] [CrossRef]
- Lee, Y.H.; Park, H.K. Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 1541. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, Y. A new frontier in temporomandibular joint osteoarthritis treatment: Exosome-based therapeutic strategy. Front. Bioeng. Biotechnol. 2022, 10, 1074536. [Google Scholar] [CrossRef]
- Xia, D.; Wu, J. Mapping Thematic Trends and Analysing Hotspots Concerning the Use of Stem Cells for Cartilage Regeneration: A Bibliometric Analysis From 2010 to 2020. Front. Pharmacol. 2022, 12, 3563. [Google Scholar] [CrossRef]
- Al-Moraissi, E.A.; Christidis, N. Publication performance and trends in temporomandibular disorders research: A bibliometric analysis. J. Stomatol. Oral Maxillofac. Surg. 2022, 101273, in press. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, J. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling. J. Dent. Res. 2015, 94, 803–812. [Google Scholar] [CrossRef]
- Sun, J.L.; Yan, J.F. Conditional deletion of Adrb2 in mesenchymal stem cells attenuates osteoarthritis-like defects in temporomandibular joint. Bone 2020, 133, 115229. [Google Scholar] [CrossRef]
- Sun, J.L.; Yan, J.F. MicroRNA-29b Promotes Subchondral Bone Loss in TMJ Osteoarthritis. J. Dent. Res. 2020, 99, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Jiang, Y. Inhibition of notch signaling pathway temporally postpones the cartilage degradation progress of temporomandibular joint arthritis in mice. J. Craniomaxillofac. Surg. 2018, 46, 1132–1138. [Google Scholar] [CrossRef]
- Quinelato, V.; Bonato, L.L. PAX7 gene polymorphism in muscular temporomandibular disorders as potentially related to muscle stem cells. BMC Musculoskelet. Disord. 2021, 22, 959. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.L.; Kimura, H.A. Human Synovial Mesenchymal Stem Cells Good Manufacturing Practices for Articular Cartilage Regeneration. Tissue Eng. Part C Methods 2018, 24, 709–716. [Google Scholar] [CrossRef]
- Tian, J.; Chen, W. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory osteolysis by modulating macrophage polarization and osteoclastogenesis. Bioact. Mater. 2022, 22, 326–342. [Google Scholar] [CrossRef]
- Nuti, N.; Corallo, C. Multipotent Differentiation of Human Dental Pulp Stem Cells: A Literature Review. Stem Cell Ver. Rep. 2016, 12, 511–523. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Posa, F. NURR1 Downregulation Favors Osteoblastic Differentiation of MSCs. Stem Cells Int. 2017, 2017, 7617048. [Google Scholar] [CrossRef]
- Ballini, A.; Di Benedetto, A. Stemness genes expression in naïve vs. osteodifferentiated human dental-derived stem cells. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2916–2923. [Google Scholar] [PubMed]
- Shi, X.; Mao, J.; Liu, Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl. Med. 2020, 9, 445–464. [Google Scholar] [CrossRef]
- Cui, S.J.; Zhang, T. DPSCs Attenuate Experimental Progressive TMJ Arthritis by Inhibiting the STAT1 Pathway. J. Dent. Res. 2020, 99, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Seo, B.M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Menicanin, D.; Mrozik, K.M. Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev. 2014, 23, 1001–1011. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, F. Periodontal ligament mesenchymal stromal cells increase proliferation and glycosaminoglycans formation of temporomandibular joint derived fibrochondrocytes. BioMed Res. Int. 2014, 2014, 410167. [Google Scholar] [CrossRef] [PubMed]
- Koyama, N.; Okubo, Y. Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sci. 2011, 89, 741–747. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zheng, Y.H. Synovium fragment-derived cells exhibit characteristics similar to those of dissociated multipotent cells in synovial fluid of the temporomandibular joint. PLoS ONE 2014, 9, e101896. [Google Scholar] [CrossRef]
- El-Bialy, T.; Uludag, H. In vivo ultrasound-assisted tissue-engineered mandibular condyle: A pilot study in rabbits. Tissue Eng. Part C Methods 2010, 16, 1315–1323. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, H. Matrix replenishing by BMSCs is beneficial for osteoarthritic temporomandibular joint cartilage. Osteoarthr. Cartl. 2017, 25, 1551–1562. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front. Cell Dev. Biol. 2021, 9, 656153. [Google Scholar] [CrossRef]
- Carboni, A.; Amodeo, G. Temporomandibular Disorders Clinical and Anatomical Outcomes After Fat-Derived Stem Cells Injection. J. Craniofac. Surg. 2019, 30, 793–797. [Google Scholar] [CrossRef] [PubMed]
Characteristics of the In Vitro Studies Analyzed | Absolute Frequency | Relative Frequency (%) |
---|---|---|
Source of origin of mesenchymal stem cells | ||
Animal origin | ||
Bone marrow stroma | 14 | 37.8 |
Fibrocartilage | 1 | 2.7 |
Synovial fluid | 1 | 2.7 |
Myelomonocytes | 1 | 2.7 |
Human origin | ||
Synovial fluid | 9 | 24.3 |
Bone marrow | 6 | 16.2 |
Adipose tissue | 3 | 8.1 |
Mandibular condylar chondrocytes | 1 | 2.7 |
Wharton jam | 1 | 2.7 |
Periodontal ligament | 1 | 2.7 |
Cell types differentiated from stem cells | ||
Chondrocytes | 16 | 43.2 |
Osteoblasts | 8 | 21.6 |
Adipocytes | 7 | 18.9 |
Neural | 3 | 8.1 |
Chondroblasts | 3 | 8.1 |
Fibroblasts | 2 | 5.4 |
Fibrochondrocytes | 2 | 5.4 |
Osteoclasts | 1 | 2.7 |
Macrophages | 1 | 2.7 |
Purpose of TMD treatment | ||
Osteoarthritis | 8 | 21.6 |
Osteochondral Neoformation/remodeling | 4 | 10.8 |
Fibrous ankylosis | 2 | 5.4 |
Bone ankylosis | 2 | 5.4 |
Subchondral bone resorption | 1 | 2.7 |
Joint inflammation | 1 | 2.7 |
Anterior disc displacement | 1 | 2.7 |
In Vivo Studies Characteristics | Absolute Frequency | Relative Frequency (%) |
---|---|---|
Source of origin of mesenchymal stem cells | ||
Animal origin | 6 | 10.5 |
Femoral bone | 4 | 7 |
Tibia | 3 | 5.2 |
Ilium | 1 | 1.7 |
TMJ subchondral bones | 1 | 1.7 |
Synovial fluid | 1 | 1.7 |
Condyle | 1 | 1.7 |
Glenoid fossa | ||
Human origin | 2 | 3.5 |
The umbilical cord | 1 | 1.7 |
Dental pulp | 1 | 1.7 |
Condylar cartilage | 1 | 1.7 |
TMJ bone changes | ||
Osteoarthritis | 16 | 28 |
Condylar cartilage defect | 5 | 8.7 |
Joint ankylosis | 2 | 3.5 |
Unilateral excision of condyle | 1 | 1.7 |
Subchondral bone deteriorationn | 1 | 1.7 |
Hemimandible excision | 1 | 1.7 |
Osteochondral defects | 1 | 1.7 |
Condylar head excision | 1 | 1.7 |
Hemifacial microsomia | 1 | 1.7 |
Malocclusions | ||
Anterior crossbite | 5 | 8.7 |
Muscles disorders | ||
Muscular hypertrofy | 2 | 3.5 |
Lateral pterygoid hyperfunction | 1 | 1.7 |
Masseter myofascial pain | 1 | 1.7 |
Age-related joint disorders | ||
Condylar postnatal growth | 1 | 1.7 |
Postnatal growth of Craniomandibular articular disk | 1 | 1.7 |
Condylar aging | 1 | 1.7 |
Biomarkers | Expression/Inhibition | Relationship |
---|---|---|
Ror2 | Expression | Induction of osteoclast formation |
Tn-C | Expression | Chondrocyte formation |
Sox9 | Expression | Chondrocyte formation/cartilaginous regeneration |
Proteoglycan 4 (Prg4)-null | Expression | Ectopic formation of mineralized tissues and osteophytes in the articular disc, mandibular condyle and glenoid fossa |
TRPS1 | Expression | Participates in ATM development |
Notch1 | Inhibition | Temporary delay in the progress of cartilage degradation |
TNF-α | Expression | Inflammatory factor that delays improvement in osteoarthritis |
IFN-γ | Expression | Inflammatory factor that delays improvement in osteoarthritis |
Adrb2 | Expression | Induces subchondral bone loss in osteoarthritis |
HIF-1alfa | Expression | May induce stem cells to promote chondrogenic repair of condylar cartilage and inhibit bone sclerosis |
GDF11 | Expression | Inhibits chondrocyte adipogenesis |
ki67 | Expression | Cartilaginous regeneration |
FGF 18 | Expression | Cartilaginous regeneration |
MicroRNA-29b | Expression | Increased subchondral bone loss and osteoclast hyperfunction |
Norepinefrina | Expression | Degenerative changes of the condylar subchondral bone |
Osteopontina | Expression | Induction in the differentiation of chondrogenic and osteogenic cells |
Colágeno tipo I | Expression | Cartilaginous regeneration |
Colágeno tipo II | Expression | Induction in the differentiation of chondrogenic and osteogenic cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, Z.A.; Melo, W.W.P.; Ferreira, H.H.N.; Lima, R.R.; Souza-Rodrigues, R.D. Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. J. Funct. Biomater. 2023, 14, 103. https://doi.org/10.3390/jfb14020103
da Silva ZA, Melo WWP, Ferreira HHN, Lima RR, Souza-Rodrigues RD. Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. Journal of Functional Biomaterials. 2023; 14(2):103. https://doi.org/10.3390/jfb14020103
Chicago/Turabian Styleda Silva, Zuleni Alexandre, Wallacy Watson Pereira Melo, Hadassa Helez Neves Ferreira, Rafael Rodrigues Lima, and Renata Duarte Souza-Rodrigues. 2023. "Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells" Journal of Functional Biomaterials 14, no. 2: 103. https://doi.org/10.3390/jfb14020103
APA Styleda Silva, Z. A., Melo, W. W. P., Ferreira, H. H. N., Lima, R. R., & Souza-Rodrigues, R. D. (2023). Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. Journal of Functional Biomaterials, 14(2), 103. https://doi.org/10.3390/jfb14020103