Effect of the Combination of Torsional and Tensile Stress on Corrosion Behaviors of Biodegradable WE43 Alloy in Simulated Body Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Modified WE43 Alloys
2.2. Phase Analysis and Microscopic Observation
2.3. In Vitro Static and Dynamic Immersion Test
2.4. Slow Strain Rate Tensile (SSRT) Test in Air and SBF Solution
2.5. Immersion Test in SBF Solution under Torsional and Tensile Stress
3. Results and Discussions
3.1. Microstructure and Phase Constitution of Modified WE43 Alloy
3.2. Degradation Behavior during the Static and Dynamic Immersion Tests
3.3. SSRT Tests in Different Environments
3.4. In Vitro Immersion Test under the Combination of Tensile and Torsional Stress
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhary, L.; Szmerling, J.; Goldwasser, R.; Raman, R.S. Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment. Procedia Eng. 2011, 10, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.N.; Zhou, W.R.; Zheng, Y.F.; Cheng, Y.; Wei, S.C.; Zhong, S.P.; Xi, T.F.; Chen, L.J. Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—In simulated body fluid. Acta Biomater. 2010, 6, 4605–4613. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhang, Z.; Dai, J.; Li, X.; Bai, J.; Huang, Z.; Guo, C.; Xue, F.; Chu, C. In vitro bio-corrosion behaviors of biodegradable AZ31B magnesium alloy under static stresses of different forms and magnitudes. J. Magnes. Alloy, 2021; in press. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Z.; Dai, J.; Li, X.; Bai, J.; Huang, Z.; Guo, C.; Xue, F.; Chu, C. The influence of alternating cyclic dynamic loads with different low frequencies on the bio-corrosion behaviors of AZ31B magnesium alloy in vitro. Bioact. Mater. 2022, 7, 263–274. [Google Scholar] [CrossRef]
- Merson, E.; Poluyanov, V.; Myagkikh, P.; Merson, D.; Vinogradov, A. Inhibiting stress corrosion cracking by removing corrosion products from the Mg-Zn-Zr alloy pre-exposed to corrosion solutions. Acta Mater. 2020, 205, 116570. [Google Scholar] [CrossRef]
- Putra, R.U.; Basri, H.; Prakoso, A.T.; Chandra, H.; Ammarullah, M.I.; Akbar, I.; Syahrom, A.; Kamarul, T. Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time. Sustainability 2023, 15, 823. [Google Scholar] [CrossRef]
- Peron, M.; Bertolini, R.; Ghiotti, A.; Torgersen, J.; Bruschi, S.; Berto, F. Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining. J. Mech. Behav. Biomed. Mater. 2020, 101, 103429. [Google Scholar] [CrossRef]
- Bär, F.; Berger, L.; Jauer, L.; Kurtuldu, G.; Schäublin, R.; Schleifenbaum, J.H.; Löffler, J.F. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis. Acta Biomater. 2019, 98, 36–49. [Google Scholar] [CrossRef]
- Byun, S.-H.; Lim, H.-K.; Cheon, K.-H.; Lee, S.-M.; Kim, H.-E.; Lee, J.-H. Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2505–2512. [Google Scholar] [CrossRef] [Green Version]
- Dargusch, M.S.; Balasubramani, N.; Venezuela, J.; Johnston, S.; Wang, G.; Lau, C.; Bermingham, M.; Kent, D.; StJohn, D. Improved biodegradable magnesium alloys through advanced solidification processing. Scr. Mater. 2020, 177, 234–240. [Google Scholar] [CrossRef]
- Jiang, P.; Blawert, C.; Scharnagl, N.; Bohlen, J.; Zheludkevich, M.L. Mechanistic understanding of the corrosion behavior of Mg4Zn0.2Sn alloys: From the perspective view of microstructure. Corros. Sci. 2020, 174, 108863. [Google Scholar] [CrossRef]
- Jin, Y.; Blawert, C.; Yang, H.; Wiese, B.; Feyerabend, F.; Bohlen, J.; Mei, D.; Deng, M.; Campos, M.S.; Scharnagl, N.; et al. Microstructure-corrosion behaviour relationship of micro-alloyed Mg-0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu. Mater. Des. 2020, 195, 108980. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Lespagnol, J.; Birbilis, N.; Staiger, M.P. A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 2010, 52, 287–291. [Google Scholar] [CrossRef]
- Sozańska, M.; Mościcki, A.; Czujko, T. The Characterization of Stress Corrosion Cracking in the AE44 Magnesium Casting Alloy Using Quantitative Fractography Methods. Materials 2019, 12, 4125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Q.; Ma, A.; Jiang, J.; Cheng, Z.; Song, D.; Yuan, Y.; Liu, H. Stress Corrosion Cracking Behavior of Fine-Grained AZ61 Magnesium Alloys Processed by Equal-Channel Angular Pressing. Metals 2017, 7, 343. [Google Scholar] [CrossRef]
- Ninlachart, J.; Shrestha, N.; Raja, K.S. Environmentally assisted cracking behavior of U-bend specimens of Mg–RE alloys in chloride containing basic solution. J. Magnes. Alloy 2020, 8, 731–751. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, X.; Wu, G.; Liu, W.; Wen, L.; Xie, H.; Xu, S.; Tong, X. Effect of heat treatment on the stress corrosion cracking behavior of cast Mg-3Nd-3Gd-0.2Zn-0.5Zr alloy in a 3.5 wt% NaCl salt spray environment. Mater. Charact. 2022, 183, 111630. [Google Scholar] [CrossRef]
- Suchy, J.; Horynova, M.; Klakurková, L.; Palousek, D.; Koutny, D.; Celko, L. Effect of Laser Parameters on Processing of Biodegradable Magnesium Alloy WE43 via Selective Laser Melting Method. Materials 2020, 13, 2623. [Google Scholar] [CrossRef]
- Li, L.; Qi, F.; Zhang, Z.; Lu, L.; Ouyang, X. Corrosion, mechanical and biological properties of biodegradable WE43 alloy modified by Al ion implantation. Ceram. Int. 2022, 49, 5327–5334. [Google Scholar] [CrossRef]
- Kannan, M.B.; Dietzel, W.; Blawert, C.; Atrens, A.; Lyon, P. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80. Mater. Sci. Eng. A 2008, 480, 529–539. [Google Scholar] [CrossRef]
- Choudhary, L.; Raman, R.S.; Hofstetter, J.; Uggowitzer, P. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Mater. Sci. Eng. C 2014, 42, 629–636. [Google Scholar] [CrossRef]
- Miller, W.K. Stress-corrosion cracking of magnesium alloys. In ASM International, Stress-Corrosion Cracking: Materials Performance and Evaluation (USA); Jones, R.H., Ed.; ASM International, Materials Park: West Conshohocken, PA, USA, 1992; pp. 251–253. [Google Scholar]
- Li, Y.; Zhou, Y.; Shi, Z.; Venezuela, J.; Soltan, A.; Atrens, A. Stress corrosion cracking of EV31A in 0.1 M Na2SO4 saturated with Mg(OH)2. J. Magnes. Alloy 2018, 6, 337–345. [Google Scholar] [CrossRef]
- G 31–72; Standard Practice for Laboratory Immersion Corrosion Testing of Metals. American Society for Testing and Materials: West Conshohocken, PA, USA, 2004.
- G129-Y2021; Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. American Society for Testing and Materials: West Conshohocken, PA, USA, 2004.
- Liu, J.; Liu, B.; Min, S.; Yin, B.; Peng, B.; Yu, Z.; Wang, C.; Ma, X.; Wen, P.; Tian, Y.; et al. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation. Bioact. Mater. 2022, 16, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yin, B.; Song, F.; Liu, B.; Peng, B.; Wen, P.; Tian, Y.; Zheng, Y.; Ma, X.; Wang, C. Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications. J. Magnes. Alloy, 2022; in press. [Google Scholar] [CrossRef]
- Lukyanova, E.; Anisimova, N.; Martynenko, N.; Kiselevsky, M.; Dobatkin, S.; Estrin, Y. Features of in vitro and in vivo behaviour of magnesium alloy WE43. Mater. Lett. 2018, 215, 308–311. [Google Scholar] [CrossRef]
- Mao, L.; Yuan, G.; Wang, S.; Niu, J.; Wu, G.; Ding, W. A novel biodegradable Mg–Nd–Zn–Zr alloy with uniform corrosion behavior in artificial plasma. Mater. Lett. 2012, 88, 1–4. [Google Scholar] [CrossRef]
- Soderlind, J.; Cihova, M.; Schäublin, R.; Risbud, S.; Löffler, J.F. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering. Acta Biomater. 2019, 98, 67–80. [Google Scholar] [CrossRef]
- Kuah, K.X.; Wijesinghe, S.L.; Blackwood, D.J. Corrosion Characteristics of Secondary Phases in WE43 Magnesium Alloys under Various Exposure Conditions. In Proceedings of the 21st International Corrosion Congress (ICC INTERCORR WCO 2021), Sao Paulo, Brazil, 20–23 July 2021; Volume 2021, pp. 395–397. [Google Scholar]
- Tokuda, S.; Muto, I.; Sugawara, Y.; Hara, N. The role of applied stress in the anodic dissolution of sulfide inclusions and pit initiation of stainless steels. Corros. Sci. 2021, 183, 109312. [Google Scholar] [CrossRef]
- Yao, H.; Wen, J.; Xiong, Y.; Lu, Y.; Ren, F.; Cao, W. Extrusion temperature impacts on biometallic Mg-2.0Zn-0.5Zr-3.0Gd (wt%) solid-solution alloy. J. Alloys Compd. 2018, 739, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Raman, R.S.; Davies, C.H. Stress corrosion cracking of an extruded magnesium alloy (ZK21) in a simulated body fluid. Eng. Fract. Mech. 2018, 201, 47–55. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, G.; Mao, L.; Niu, J.; Ding, W. Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Mater. Lett. 2012, 66, 209–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, L.; Wang, Q.; Gao, M.; Etim, I.P.; Yang, K. Effects of microstructure on the torsional properties of biodegradable WE43 Mg alloy. J. Mater. Sci. Technol. 2020, 51, 102–110. [Google Scholar] [CrossRef]
- Shi, Z.; Hofstetter, J.; Cao, F.; Uggowitzer, P.J.; Dargusch, M.S.; Atrens, A. Corrosion and stress corrosion cracking of ultra-high-purity Mg5Zn. Corros. Sci. 2015, 93, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Trojanová, Z.; Mathis, K.; Lukáč, P.; Németh, G.; Chmelik, F. Internal stress and thermally activated dislocation motion in an AZ63 magnesium alloy. Mater. Chem. Phys. 2011, 130, 1146–1150. [Google Scholar] [CrossRef]
- Walton, C.A.; Martin, H.J.; Horstemeyer, M.F.; Whittington, W.R.; Horstemeyer, C.J.; Wang, P.T. Corrosion stress relaxation and tensile strength effects in an extruded AZ31 magnesium alloy. Corros. Sci. 2014, 80, 503–510. [Google Scholar] [CrossRef]
- Yu, Z.; Ju, D.; Zhao, H. Effect of stress corrosion cracking at various strain rates on the electrochemical corrosion behavior of Mg-Zn-In-Sn alloy. J. Environ. Sci. 2013, 25, S50–S53. [Google Scholar] [CrossRef]
- Ascencio, M.; Pekguleryuz, M.; Omanovic, S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The effect of electrolyte renewal. Corros. Sci. 2015, 91, 297–310. [Google Scholar] [CrossRef]
- Melander, A.; Larsson, M. The Effect of Stress Amplitude on the cause of Fatigue Crack Initiation in a Spring Steel. Int. J. Fatigue 1993, 2, 119–131. [Google Scholar] [CrossRef]
- Wang, B.; Gao, J.; Wang, L.; Zhu, S.; Guan, S. Biocorrosion of coated Mg–Zn–Ca alloy under constant compressive stress close to that of human tibia. Mater. Lett. 2012, 70, 174–176. [Google Scholar] [CrossRef]
- Shi, Z.; Song, G.-L.; Atrens, A. Corrosion resistance of anodised single-phase Mg alloys. Surf. Coatings Technol. 2006, 201, 492–503. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.; Saad, A.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Musienko, A.; Cailletaud, G. Simulation of Inter- and Transgranular Crack Propagation in Polycrystalline Aggregates Due to Stress Corrosion Cracking. Acta Mater. 2009, 57, 3840–3855. [Google Scholar] [CrossRef]
Materials | Environment | UTS (MPa) | FTT (h) | E (%) | S (%) | IUTS | IFTT | IE | IS | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
WE43 | Air | 210.1 | 146.3 | 41.5 | 40.5 | 0.80 | 0.54 | 0.68 | 0.41 | This work |
SBF | 169.2 | 78.5 | 28.3 | 16.5 | ||||||
ZX50 | Air | 352.5 | 21.2 | 0.73 | 0.18 | [21] | ||||
SBF | 257.0 | 3.8 | ||||||||
WZ21 | Air | 242.5 | 28.1 | 0.68 | 0.27 | [21] | ||||
SBF | 166.2 | 7.7 | ||||||||
WE43 | Air | 263.0 | 16.9 | 0.80 | 0.47 | [21] | ||||
SBF | 211.0 | 8.0 | ||||||||
ZK21 | Air | 0.19 | 0.62 | [32] | ||||||
SBF | ||||||||||
AZ31 | Air | 256.3 | 24.5 | 0.91 | 0.25 | [7] | ||||
SBF | 233.3 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Gao, W.; Pan, C.; Liu, D.; Sun, X. Effect of the Combination of Torsional and Tensile Stress on Corrosion Behaviors of Biodegradable WE43 Alloy in Simulated Body Fluid. J. Funct. Biomater. 2023, 14, 71. https://doi.org/10.3390/jfb14020071
Wang B, Gao W, Pan C, Liu D, Sun X. Effect of the Combination of Torsional and Tensile Stress on Corrosion Behaviors of Biodegradable WE43 Alloy in Simulated Body Fluid. Journal of Functional Biomaterials. 2023; 14(2):71. https://doi.org/10.3390/jfb14020071
Chicago/Turabian StyleWang, Bowen, Wei Gao, Chao Pan, Debao Liu, and Xiaohao Sun. 2023. "Effect of the Combination of Torsional and Tensile Stress on Corrosion Behaviors of Biodegradable WE43 Alloy in Simulated Body Fluid" Journal of Functional Biomaterials 14, no. 2: 71. https://doi.org/10.3390/jfb14020071
APA StyleWang, B., Gao, W., Pan, C., Liu, D., & Sun, X. (2023). Effect of the Combination of Torsional and Tensile Stress on Corrosion Behaviors of Biodegradable WE43 Alloy in Simulated Body Fluid. Journal of Functional Biomaterials, 14(2), 71. https://doi.org/10.3390/jfb14020071