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Abstract: The real physiological environment of the human body is complicated, with different
degrees and forms of loads applied to biomedical implants caused by the daily life of the patients,
which will definitely influence the degradation behaviors of Mg-based biodegradable implants. In
the present study, the degradation behaviors of modified WE43 alloys under the combination of
torsional and tensile stress were systematically investigated. Slow strain rate tensile tests revealed
that the simulated body fluid (SBF) solution could deteriorate the ultimate tensile stress of WE43
alloy from 210.1 MPa to 169.2 MPa. In the meantime, the fracture surface of the specimens tested in
the SBF showed an intergranular corrosion morphology in the marginal region, while the central area
appeared not to have been affected by the corrosive media. The bio-degradation performances under
the combination of torsional and tensile stressed conditions were much more severe than those under
unstressed conditions or single tensile stressed situations. The combination of 40 MPa tensile and
40 MPa torsional stress resulted in a degradation rate over 20 mm/y, which was much higher than
those under 80 MPa single tensile stress (4.5 mm/y) or 80 MPa single torsional stress (13.1 mm/y).
The dynamic formation and destruction mechanism of the protective corrosion products film on the
modified WE43 alloy could attribute to the exacerbated degradation performance and the unique
corrosion morphology. The dynamic environment and multi-directional loading could severely
accelerate the degradation process of modified WE43 alloy. Therefore, the SCC susceptibility derived
from a single directional test may be not suitable for practical purposes. Complex external stress
was necessary to simulate the in vivo environment for the development of biodegradable Mg-based
implants for clinical applications.

Keywords: degradation behavior; magnesium alloy; stress-corrosion cracking; tensile loading;
torsional loading

1. Introduction

In recent years, biodegradable Mg-based alloys have attracted increasing research inter-
est and attention due to their lightweight, high specific strength, good biocompatibility, and
biodegradability, and have exhibited great prospects for biomedical applications [1,2]. More
importantly, Mg is highly abundant in the human body and is essential for the metabolism
in many biological mechanisms as a co-factor for many enzymes [3,4]. Further, the release
of Mg2+ ions derived from the degradation process of Mg-based implantation contributes to
the healing process and the regeneration of tissue [5]. Further, the biodegradable Mg-based
bone scaffold was designed and developed for bone regeneration [6]. Among numerous
Mg-based alloys, WE43 alloy containing Rare-earth elements resulted in improved corro-
sion resistance and enhanced mechanical performance [7,8]. Moreover, modified WE43
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showed good biocompatibility and osteoconductivity with no signs of cytotoxicity, con-
tributing to the successful market introduction of bone screws for the treatment of hallux
valgus and fractures of small bones in the European Union [9–11].

However, Mg-based implants suffer from stress corrosion cracking (SCC) under ser-
vice in the human body [12,13]. In recent years, the research regarding the SCC behavior
of different Mg-based alloys, including AE44, AZ, and Mg-Re alloys, were extensively
reported [14–17]. The physiological environments, including the corrosive media in the
human body and complex loads applied to biomedical implants caused by the daily life
of the patients, may exacerbate the corrosion progress and result in a loss of mechanical
integrity and in a high hydrogen release rate, which the bone tissue was hard to accommo-
date [18,19]. Bobby Kannan et al. reported that all the ZE41, QE22, Elektron 21 (EV31A),
and AZ80 alloys were susceptible to SCC in a corrosion media at a very low-stress level [20].
Choudhary et al. confirmed that applied stress exacerbates the degradation behavior of
the aluminium-free ZX50, WZ21, and WE43 alloys in SBF solution [21]. Therefore, the
SCC could cause too fast degradation and eventually result in catastrophic failure of WE43
implant during surface.

An in-depth understanding of SCC, its mechanisms, and its evolution is the prerequi-
site for depression and resistance to SCC. The SCC susceptibility generally depended on
applied stress, corrosion media, and alloys compositions. Miller reported that the SCC sus-
ceptibility of Mg-based alloys could increase with the Zn content and could be suppressed
by RE element addition [22]. Although modified WE43 alloy were available in clinical
practice over the last decade and much literature investigated the SCC and corrosion fatigue
behavior of WE43 alloy, the fundamental mechanism governing SCC is blurry. Atrens et al.
reported that the threshold of SCC was 0.8 times the yield strength for WE43B alloy [23].
Zheng et al. investigated the corrosion fatigue behavior of WE43, and found a much lower
fatigue strength tested in the SBF solution than those in the air [2]. However, the applied
stress in these studies was limited to a single direction, but the biodegradable implant
could endure multi-direction stress in daily life. The influence of the combination of the
action of corrosive media and complex external stress on the degradation behavior of WE43
alloy is unclear and should be elucidated.

In the present study, the impact of the combination of torsional and tensile stress on
the stress corrosion cracking (SCC) susceptibility of a modified WE43 alloy in a simulated
body fluid (SBF) solution was investigated via a slow strain rate tensile (SSRT) test. The
dynamic degradation rate and the residual strength after immersion under various stress
were also evaluated to reveal the impact of applied stress on the degradation behavior and
mechanical integrity of biodegradable WE43 alloy.

2. Materials and Methods
2.1. Preparation of Modified WE43 Alloys

The raw materials used in this study are pure commercial Mg (purity, 99.995%), pure
Zn particles (purity, 99.995%), Mg-30Y, Mg-30Nd, Mg-30Zn, and Mg-25Ca intermediate
alloys. A self-modified furnace with high-speed agitation and ultrasonication accessories
was used to manufacture the modified WE43 alloys under a protective atmosphere of SF6
and N2 mixture. The pure magnesium ingots were melted at 993 K, and then added the
intermediate alloy at 1023 K, followed by stirring at a speed of 4000 r/min for 20 min.
Afterward, the WE43 alloy was cast at 1023 K. Thereafter, solid solution treatment was
performed at 798 K for 8 h, then quenched at 333 K. Subsequently, hot extrusion was
executed at 633 K with an extrusion rate of 1 mm/s, and an extrusion ratio of 42.25:1.
Finally, WE43 alloy bars with a diameter of 10 mm were obtained.

2.2. Phase Analysis and Microscopic Observation

The specimen was polished with 320#, 800#, 1500#, and 3000# sandpaper in turn
followed by ultrasonication in ethanol. X-ray diffractometer (XRD, SmartLab 9kW, Rigaku,
Tokyo, Japan) was used to investigate the phase constitution of cleaned specimens with
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a scan range of 10◦ to 90◦ and a scanning speed of 8◦/min. After general metallurgical
polishing, the experimental specimens were etched in a picric acid solution composed of
Bitter acid 2.75 g, anhydrous ethanol 45 mL, ice acetic acid 2.5 m, and deionized water
5 mL. Optical microscope (OM, Olympus GX51, Olympus, Tokyo, Japan) and field emis-
sion scanning electron microscope (FE-SEM, Quanta FEG 250, Thermo Fisher Scientific,
Waltham, MA, USA) were used for microscopic observation, and X-ray energy dispersive
spectrometer (EDS, Thermo Fisher Scientific, Waltham, MA, USA) was employed to analyze
the elemental composition.

2.3. In Vitro Static and Dynamic Immersion Test

The in vitro static and dynamic immersion tests were performed in SBF solution
at 310 K. The specimen for the static immersion tests was executed in the biochemical
incubator (CN-40A, As one, Tokyo, Japan), while the constant temperature water bath
oscillator at 310 K with 60 oscillations per minute was used for the dynamic immersion test.
The fluctuation of the immersion temperature was less than 0.5 K. The immersion periods
were set as 1 day, 3 days, 7 days, 14 days, 21 days, and 30 days. Three parallel specimens
are tested at each time period. The SBF solution was refreshed every two days. Inductively
coupled plasma atomic emission spectrometry (ICP-OES, Vista-MPX, Thermo Scientific,
Waltham, MA, USA) was used to determine the concentration of magnesium ions in the
immersed solution. The composition of corrosion products was determined by EDS. The
corrosion product layer on the surface was removed by using the proportionally configured
chromium acid washing solution (200 g/L CrO3, 20 g/L Ba(NO3)2, 10 g/L AgNO3). The
weight loss of immersed specimens was measured by a digital balance (FA224, Lichen,
Shanghai, China) with a 0.1 mg accuracy. The corrosion rate of the material was calculated
by the following formula according to ASTM-G31-72 [24].

CR = (k × w)÷ (A × t × D) (1)

In the formula, CR is corrosion rate (mm/y), coefficient k is a constant and equal
to 8.76 × 104, w is weight loss (g) after the immersion test, A is specific surface area
(cm2), t is immersion period (h), and D is the apparent density of the experimental
specimens (g·cm−3).

2.4. Slow Strain Rate Tensile (SSRT) Test in Air and SBF Solution

According to ASTM-G129-Y2021 [25], the test was carried out in the laboratory inert
atmospheric environment and the simulated body fluid at a constant temperature of 310 K.
The schematic diagram of the SSRT test in the study was shown in Figure 1. Before the SSRT
test in corrosive media, the surface of the specimen outside the gauge area was blocked by
the Teflon insulating tape. The self-modified biomechanical testing machine (DDL020-50,
Sinotest equipment, Beijing, China) with the corrosion tank equipped with a constant
temperature heating device was used. The strain rate was 1 × 10−6 s−1, and the simulated
body fluid was replaced every 24 h. Dog-bone shape specimens with a gauge length of
25 mm and gauge diameters of 5 mm were used in the SSRT test. At least three parallel
specimens are set for each specimen.

2.5. Immersion Test in SBF Solution under Torsional and Tensile Stress

The degradation behavior under torsional and tensile stress was tested by the self-
modified biomechanical testing machine. In order to simulate the applied stress due to
the daily activity of the patient, the selected load values were set under the yield strength
of intact WE43 specimens. In this study, experiment specimens were immersed in SBF
solution and 310 K under single tensile stress, single torsional stress, or the combina-
tion of tensile and torsional stress. The single tensile stress of 20 MPa, 40 MPa, and
80 MPa, the single torsional load of 40 MPa and 80 MPa, and the combined stresses of
20 MPa (tensile) + 40 MPa (torsional) and 40 MPa (tensile) + 40 MPa (torsional) was ap-
plied on the experimental specimens. The corrosion media was SBF solution and the
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immersion period was 3 days. The fluctuation of immersion temperature and applied force
was less than 0.5 K and 1 N, respectively. The simulated body fluid is replaced every 24 h.
After the immersion, the corrosion morphology and corroded substrate (after the removal
of corrosion products) were observed by FE-SEM. Afterward, the residual strength of the
specimen was evaluated by the tensile test with the strain rate of 1 × 10−3 mm/s. At least,
three duplicates were tested and the stress-free condition was employed as the reference.
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Figure 1. Schematic diagrams of (a) materials preparation and (b) slow strain rate tensile test in
simulated body fluid solution.

3. Results and Discussions
3.1. Microstructure and Phase Constitution of Modified WE43 Alloy

Figure 2a showed OM images of as-cast WE43 alloy. A typical dendritic microstructure
was observed. As exhibited in Figure 2b, significant grain refinement occurred during the
hot extrusion process, and equiaxed grains were confirmed in as-extruded WE43 alloy.
The mean grain size decreased from 371 ± 22 µm in as-cast WE43 alloy to 13 ± 1.2 µm
in as-extruded counterparts. According to Figure 2c, many second-phase particles with
a submicron size were observed, and the second-phase particles were discontinuously
distributed along the hot extrusion direction, implying the movement of the second-phase
particles during the hot extrusion process. As shown in Figure 2d,e, EDS analysis revealed
the enrichment of Nd and deficiency of Mg in these second-phase particles, indicating
the formation and precipitation of Mg-Nd second phases. Further, the X-ray profile of the
as-extruded WE43 alloy was displayed in Figure 2f, and specific peaks from α-Mg matrix,
Mg12Nd second phase, and Mg41Nd5 were determined, illustrating the second phases
observed in the SEM image was Mg12Nd and Mg41Nd5. These fine second-phase particles
could provide a pinning effect inhibiting grain growth and dislocation movement, thereby
refining the microstructure and enhancing the mechanical strength [26]. It is worth noting
that the absence of the Mg-Y seconding phase may be due to the high solid solubility of Y
in the Mg matrix (12.3 wt%) [27].
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Figure 2. Optical microscope (OM) images of (a) as-cast and (b) as-extruded WE43 alloy; (c) scanning
electron microscope (SEM) image and (d,e) corresponding energy dispersive spectrometer (EDS)
point analysis results; (f) X-ray profile of as-extruded WE43 alloy.

3.2. Degradation Behavior during the Static and Dynamic Immersion Tests

Figure 3a–d exhibited corrosion morphology after static immersion tests for 1 day,
7 days, 14 days, and 30 days. When the immersion period was 1 day, plate-like morphol-
ogy with many crevices was observed and the corroded surface of WE43 alloy. With the
extension of immersion time, the cracks between the plate-like were gradually reduced. In
the meantime, the corrosion product particles formed, and gradually covered the whole
corrosion surface. After 30 days of immersion (Figure 3e), the crevices almost disappeared
and a thick corrosion product layer was deposited on the surface of the WE43 alloy. Ac-
cording to the EDS analysis (Figure 3f), the corrosion products were mainly composed of
Mg, Ca, O and P, indicating the formation of MgO and calcium−phosphorus compound.
MgO could gradually transform to Mg(OH)2 in an aqueous environment and due to the
presence of Cl− in the SBF solution, the insoluble Mg(OH)2 could transform to soluble
MgCl2 for long immersion periods. In other words, the formation of the insoluble calcium
phosphorus compound may restrict the corrosion progression, while the MgO was unre-
liable as the protective layer in chlorine-containing SBF solution. More importantly, the
calcium−phosphorus compound possessed excellent biocompatibility and osteogenic capa-
bility, which suggested increased bioactivity and biocompatibility during the degradation
process of WE43 alloy [28–30].

Figure 4a–d exhibited corrosion morphology after dynamic immersion tests for 1 day,
7 days, 14 days, and 30 days. As compared with the results of static immersion tests, the
dynamic immersion tests also resulted in many crevices after 1 day of immersion. However,
some precipitations were confirmed on the dynamic corroded surfaces, while a relatively
smooth surface was formed in the counterparts immersed in the static environment. With
the increased immersion time, the cracks were gradually disappeared. After 14 days of
dynamic immersion, a relatively integrated corrosion products layer with limited shallow
cracks was confirmed, suggesting the reduced corrosion rate. Nevertheless, the corrosion
layer seems to become fragmentary after 30 days of dynamic immersion. It is supposed
that the integrity of the protective layer was deteriorated by the oscillation, and a dynamic
equilibrium of formation and destruction of the protective layer was achieved. Figure 4e,f
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proved that similar chemical composition was measured in the corrosion products formed
during the static and dynamic immersion test, although the morphology was different.
Thus, the dynamic environment may show a limited impact on the kind of corrosion
product but have a great influence on the formation of the protective layer.
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Figure 5 exhibited the corroded substrates of WE43 specimens for the static and
dynamic immersion test after the removal of corrosion products. In the initial stage of the
static immersion test and dynamic immersion test (1 day), the surface corrosion degree of
the two kinds of magnesium alloy specimens is low, and the grinding marks generated in
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the specimen preparation process are still visible. In the early stage of static immersion
WE43 magnesium alloy (7 days) appeared with some reticular structure, which may be due
to the micro galvanic corrosion induced by the second phase containing rare earth elements,
which is more resistant to corrosion than the Mg matrix. A previous study investigated
the Volta potential of the second phase containing rare earth elements and Mg matrix
in WE43 alloy via scanning Kelvin probe force microscope. A relatively high potential
was confirmed in the secondary phase, while the Mg matrix showed lower surface Volta
potential [31]. From thermodynamic interpretation, a micro-galvanic couple consisting of
the second phase containing rare earth elements as potential cathode and the Mg matrix
as potential anode could be formed, thereby accelerating the dissolution of the Mg matrix
during the degradation process. After 30 days of static immersion, some areas showed
intergranular corrosion morphology, and others areas exhibited a relatively homogeneous
corrosion morphology. On the other hand, a total intergranular corrosion morphology with
deep corrosion pits was confirmed in the dynamic immersed WE43 alloy. It is supposed
that localized corrosion could provide more corrosion products and facilitate the deposition
of the calcium−phosphorus compound, and these corrosion products could obstruct the
corrosive media to a fresh surface thereby slowing down the degradation progression.
However, the dynamic environment inhibited the corrosion product accumulation, and
expose the Mg matrix to the SBF solution, and the previously generated small pitting
pits will continue to expand to the deep part of the specimen, thus resulting in a typical
localized corrosion morphology.
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Figure 6a illustrates the degradation rates determined by the static and dynamic
immersion tests with different immersion periods. The degradation rates determined by
static immersion tests were continuously reduced with the increasing immersion periods,
due to the gradual formation of the protective corrosion layers with relatively high integrity.
On the contrary, the degradation rates derived from the dynamic immersion tests decreased
first and then maintained at a relatively stable value of about 2.8 mm/y. Further, in the
initial stage of corrosion (1 day and 3 days), dynamic immersion contributed to a higher
corrosion rate, but static immersion resulted in faster corrosion in the immersion range of
7–14 days. When the immersion period was over 14 days, the corrosion rates determined
by the dynamic immersion test were higher than those derived from static immersion tests
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once again. Figure 6b showed the Mg ion concentration in the SBF solution during the
immersion tests. During the first 10 days, the SBF solution of immersion static and dynamic
immersion tests contained the same Mg ion content. However, when the immersion period
was over 10 days, the Mg ion contents increased with the extension of immersion times
in dynamic immersion, while the Mg ion concentration in static immersion tests was
maintained at a relatively low level in the immersion period of 10 to 30 days. These results
are also attributed to the gradual formation of the protective corrosion products layer and
the destructive effect of the dynamic environment on the protective layer [32,33]. Above all,
the dynamic environment will cause a higher degradation rate and a faster Mg ion release
than its static counterparts. Due to the rapid metabolic rate in the human body, dynamic
immersion tests should be more suitable to evaluate the degradation behavior of metallic
biomaterials in the real physiological environment.
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Figure 6. (a) Degradation rate evaluated via static and dynamic immersion test; (b) the Mg2+

concentration in SBF solution during the immersion test at 310 K.

3.3. SSRT Tests in Different Environments

Figure 7 illustrated the Nominal stress–strain curves derived from the SSRT test of
WE43 alloy in air and SBF solution. The stress corrosion cracking sensitivity factor ISCC is
calculated from elongation after fracture (E), section shrinkage (S), ultimate tensile strength
(UTS), and fracture total time (FTT). The relevant data are summarized in Table 1. All the
UTS, FTT, S, and E determined in the SBF solution were lower than those measured in the air,
indicating that the corrosive environment was very harmful to the mechanical performance
of biomedical WE43 alloy. The IE and IS were 0.68 and 0.41, respectively. These results
illustrated that the corrosive environment not only deteriorate the mechanical strength but
also showed an unfavorable effect on the ductility of WE43 alloy. Further, the WE43 alloy
fabricated in this study showed a similar IUTS value to the literature value. We also found
that the WE43 alloy showed relatively high IUTS and IE values by comparing the stress
corrosion cracking sensitivity factors of various Mg-based alloys [7,21,34], which means
that the SCC susceptibility of WE43 was lower than other Mg-based alloys. Therefore, from
the viewpoint of SCC resistance and biosafety, WE43 alloy was more suitable than other
Mg alloys as load-bearing biodegradable implants. In order to further explore the failure
mechanism of WE43 during the SSRT test, the fracture surfaces of two specimens in the air
and the SBF solution were observed by scanning electron microscopy.
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Table 1. Summary of SSRT test results and stress corrosion cracking sensitivity factors of various
Mg-based alloys.

Materials Environment UTS (MPa) FTT (h) E (%) S (%) IUTS IFTT IE IS Ref.

WE43
Air 210.1 146.3 41.5 40.5

0.80 0.54 0.68 0.41 This workSBF 169.2 78.5 28.3 16.5

ZX50
Air 352.5 21.2

0.73 0.18 [21]SBF 257.0 3.8

WZ21
Air 242.5 28.1

0.68 0.27 [21]SBF 166.2 7.7

WE43
Air 263.0 16.9

0.80 0.47 [21]SBF 211.0 8.0

ZK21
Air

0.19 0.62 [32]SBF

AZ31
Air 256.3 24.5

0.91 0.25 [7]SBF 233.3 6.1

Figure 8 exhibited the fracture morphology of WE43 alloy obtained by SSRT tests in the
air at 310 K. Micro voids, ductile fracture morphology, and cleavage fracture morphology
could be observed. The microvoids could be caused by the pinning effect of the hard second
phase. The second phase particle could act like an immobile core and some crevice formed
around the hard core. On the other hand, the ductile fracture occurred in the central areas of
the fracture surface, while the cleavage fracture morphology was confirmed in the margin
region. Similar results were reported in some previous research [35–37]. Furthermore, the
cleavage plane was very obvious in Figure 8 taken from the direction perpendicular to
SSRT orientation. That may be due to the Mg-based alloys, as HCP metals possess a limited
active slip system, thereby resulting in a partial cleavage fracture morphology. It is worth
mentioning that some streamline perpendicular to the tensile direction were observed on
the specimens’ surface, which is close to the fracture surface. These results indicated the
initial morphology of the cleavage fracture, the fracture could progress along the streamline
and finally result in failure.
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Figure 8. Fracture observation of WE43 alloy after SSRT test in the air at 310 K: (a,b) SEM images
observed from the orientation parallel to the tensile direction; (c–f) SEM images observed from the
orientation parallel to the tensile direction; Magnified images taken from (d) orange dashed frame,
(e) white dashed frame, and (f) yellow dashed frame in (c).

Figure 9a is a macrograph of the fracture surface after SSRT measurement in SBF
solution at 310 K. The fracture surface is generally divided into three areas: the ductile
fracture zone in the center area, the cleavage fracture zone at the edge of the ductile fracture
area, and the immersion zone at the outermost layer of the specimen. Similar to the speci-
mens measured in the air, ductile fracture morphology and cleavage fracture morphology
co-existed on the fracture surface as shown in Figure 9b,c. However, according to Figure 9d,
an immersion zone in the marginal region of the fracture surface with evident corrosion
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pits was observed, suggesting the corrosion progression in these areas. Moreover, Figure 9e
showed a cleavage fracture surface with many corrosion patterns, which illustrated that
cleavage fracture and corrosion were two concurrent phenomena during the SSRT in the
SBF solution. As exhibited in Figure 9f, some intergranular corrosion morphology was
observed in the region relatively far from the gauge surface, implying the corrosive media
can enter the Mg matrix through cracks, crevices, streamlines, and corrosion pits [38–40].
Therefore, the corrosive SBF solution could facilitate the intergranular corrosion on the
margin region and these corrosion areas induce reduced ductility, triggering the transition
from ductile fracture to cleavage fracture. As a result, both the mechanical strength and
ductility were decreased in the corrosive media, as compared with the reference materials
in the air.
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Figure 9. Fracture observation of WE43 alloy after SSRT test in the air at 310 K: (a) low magnificent
image of fracture morphology; magnified images from (b) ductile fracture zone (green dotted circle),
(c) intermediate area between cleavage fracture zone and ductile fracture zone, (d) intermediate area
between cleavage fracture zone and immersion zone and (e) immersion zone (white dotted circle);
(f) SEM images observed from the orientation perpendicular to the tensile direction; Orange dashed
frame indicates the typical cleavage fracture morphology.
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3.4. In Vitro Immersion Test under the Combination of Tensile and Torsional Stress

Figure 10 showed the corroded surface of the gauge area of WE43 specimens after
immersion in SBF solution at 310 K under single tensile stress, single torsional stress, the
combination of tensile, and torsional stress. Similar morphology was confirmed in all
experimental specimens, but some deep corrosion pits were observed in the specimens
applied by the combination of tensile and torsional stress. Therefore, the combination of
tensile and torsional stress could facilitate the pitting corrosion, thereby deteriorating the
mechanical performance during the service of WE43 implants.
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Figure 10. The corroded surface of the gauge area of WE43 specimens after immersion in SBF solution
at 310 K under single tensile stress, single torsional stress, and the combination of tensile and torsional
stress (white dashed arrow indicates the significant corrosion pit).

Figure 11a–c displayed degradation rates determined by the weight loss method after
immersion in SBF solution at 310 K under single tensile stress, single torsional stress, and
the combination of tensile and torsional stress. The degradation rates significantly increased
the increasing applied stress. Moreover, the single torsional stress exhibited more impact
than a single tensile test. More importantly, the combination of 40 MPa tensile and 40 MPa
torsional stress resulted in a degradation rate over 20 mm/y, which was much higher
than those under 80 MPa single tensile stress (4.5 mm/y) or 80 MPa single torsional stress
(13.1 mm/y). In other words, complex stress with a low-stress level may result in a more
significant effect on the degradation rate of WE43 implants than unidirectional stress with
high-stress levels. Figure 11d–f exhibited residual strength determined by the tensile test
after immersion in SBF solution under single tensile stress, single torsional stress, and the
combination of tensile and torsional stress. As compared to the stress-free reference, the
residual strength of the specimen decreased with the increasing applied stress, despite the
different kinds of stress. Interestingly, the residual mechanical strength with 80 MPa single
tensile stress, 80 MPa single torsional stress, and the combination of 40 MPa tensile and
40 MPa torsional stress was 202.5 MPa, 211.3 MPa, and 201.3 MPa, respectively. These
results indicated that although single tensile stress or single torsional stress could accelerate
the degradation process of biodegradable WE43 alloy in SBF solution, the combination
of tensile stress and torsional stress greatly increased the corrosion rate, indicating that
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the comprehensive influence of the corrosive environment and complex applied stress
could be significant to the degradation behavior of WE43 alloy and should be further
researched in the near future to ensure the biosafety and mechanical integrity of Mg-based
biomedical implant.
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Figure 11. Degradation rates were determined by the weight loss method after immersion in SBF
solution at 310 K under (a) single tensile stress, (b) single torsional stress, and (c) the combination of
tensile and torsional stress; residual strengths were determined by the tensile test after immersion
in SBF solution under (d) single tensile stress, (e) single torsional stress, and (f) the combination of
tensile and torsional stress.

Two possible mechanisms were responsible for the accelerated corrosion progress
via applying external stress. One is that when the external loading was applied to WE43
alloy, the surface free energy was elevated, and the solid binding energy decreased with
the increasing applied stress [41]. The reduced binding energy caused the reduction of
reaction activation energy, thereby facilitating the dissolution of the Mg matrix. Further,
the transformation from MgO to Mg(OH)2 and from Mg(OH)2 to MgCl2 in SBF solution
was also promoted by the elevated reactive activity. Several previous articles reported that
stress could facilitate the nucleation and growth of pitting pits [42] after the formation of
the small corrosion pits caused by high reaction activity. The stress could concentrate at
these corrosion pits and then further accelerate the corrosion progression, resulting in the
expansion and coalescence of corrosion pits. The larger pit diameter and the higher applied
stress exacerbate the stress concentration at the bottom of the corrosion pits. Therefore, the
Gibbs free energy increase, and the activated dissolution of the Mg alloy surface in pits
would be accelerated. As a result, the deeper and larger corrosion pits were confirmed
at the complex stressed condition (Figure 10). Another mechanism was that the external
loading could induce and promote microcrack propagation on the surface of the protective
corrosion product layer [43]. Additionally, the hydrogen produced by the corrosion of Mg
could destruct the bonding at the crack tip, and then cause hydrogen embrittlement and
crack growth, as well as accelerate further corrosion [44]. Multi-directional stress may cause
different corrosion progression orientations, implying that the integrity of the corrosion
product layer could be further destructed and collapsed under complex external stress.
Above all, the accelerated Mg dissolution and reduced integrity of the corrosion product
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layer were the two main reasons responsible for the biocorrosion behavior of WE41 alloy
under applied stress.

In this study, the combination of torsional stress and tensile stress was applied to
WE43 alloy to disclose the corrosion behavior under complex external stress. However, the
stress level and stress orientation could be random and continuously fluctuate in the actual
situation, which means that the corrosion fatigue process under multi-directional stress
was closer to the actual situation than those of this study. The corrosion fatigue behavior of
WE43 alloy will be investigated under multi-directional stress in the near future. Further,
the in vivo study may directly verify the biosafety of WE43 alloy under complex stress and
could be another research orientation. Moreover, the computational simulation regarding
the strain distribution under complex enteral stress [45] and the corrosion progress induced
by different stress levels [46] could be another direction for future research due to its faster
results and lower cost as compared with the experimental investigation.

4. Conclusions

This paper mainly studied the influence of the dynamic environment and complex
applied stress on the bio-corrosion behavior of modified WE43 alloy. The results demon-
strated that a relatively dense protective layer was formed on the surface of WE43 alloy
after static immersion tests, indicating restricted degradation progress. However, the dy-
namic immersion environment reduced the integrity of the protective corrosion product
layer which resulted in increased Mg ion concentration (about 160 µg/mL) in SBF solution
and exacerbated the corrosion process. SSRT tests revealed that the SBF solution could
deteriorate the mechanical integrity of WE43 alloy. The corrosion environment caused the
UTS to decrease from 210.1 MPa to 169.2 MPa and the elongation reduced from 41.5% to
28.3%. Meanwhile, an intergranular corrosion morphology in the marginal region was
confirmed on the fracture surface of the specimens tested in SBF solution, but the central
area appeared not to have been affected by the corrosive media. Although single tensile
stress or single torsional stress could accelerate the degradation process of biodegradable
WE43 alloy in SBF solution, the combination of tensile and torsional stress induces signifi-
cant localized corrosion and greatly increased corrosion rate (over 20 mm/y), indicating
the complex stress caused by daily activity could considerably impact the degradation
behavior of WE43 biomedical implant. Further research including the corrosion fatigue
behavior under multi-directional load, the in vivo degradation behavior under complex
external stress, and the development of the anti-SCC Mg-based alloy will be performed
in the future.
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