Effects of Organic Elicitors on the Recycled Production of Ginkgolide B in Immobilized Cell Cultures of Ginkgo biloba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ginkgo Callus Induction and Ginkgo Cell Suspension Culture Preparation and Optimal Culture Condition Analysis
2.2. Selection of the Optimal Elicitors for Ginkgo Cell Suspension Culture
2.3. Analysis of Optimal Conditions of Elicitors for Ginkgo Suspension Cell Culture
2.4. Effect of Different Elicitors on the Morphological Changes in Solid-State Culture of Ginkgo Cells
2.5. Selection of Suitable Immobilization Material for Ginkgo Immobilization Cell Culture
2.6. Selection of the Optimal Elicitors on Ginkgo Cell Immobilization Culture
2.7. Effect of Cell Recovery Time on the GB Yield Duration (Recycled Culture)
2.8. Cell Viability Assay (MTT Activity Assay)
2.9. Determination of Phenylalanine Ammonia Lyase Activity (PAL)
2.10. Determination of H2O2 Concentration
2.11. Catalase Activity Assay (CAT)
2.12. GB Yield Analysis
2.13. Cell Morphology Observation and Starch Granule Staining by KI-I2
2.14. Statistical Analysis
3. Results
3.1. Gingko Cell Suspension Culture
3.1.1. Determination of the Optimal Amount of Cells Required for GB Production in Suspension Culture
3.1.2. Determination of the Optimal Cultivation Time Required for Suspension Culture and GB Production
3.1.3. Analysis for Optimal Culture Conditions of Gingko Suspension Cell Culture
3.2. GB Production Analysis after Addition of Elicitors
3.2.1. Screening for Optimal Elicitors for GB Intracellular and Extracellular Production
3.2.2. Analysis of Optimal Elicitors for Maximizing Cell Mass and Viability of Suspension Cell Culture
3.2.3. Effect of Elicitors on Ginkgo-Immobilized Cell Cultures
3.3. Screening of Optimal Immobilized Materials for Ginkgo-Immobilized Cell Cultures
3.4. Observation of the Callus Cells and Staining of Starch Granules
3.5. Analysis for the Most Suitable Combination of the Immobilized Material and the Elicitor
3.6. Duration Analysis for GB Production
3.6.1. Analysis of GB Production Duration (2 Days)
3.6.2. Impact of Time Required for Cell Recovery on GB Production Duration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Fu, C.; Wu, Z.; Xu, H.; Liu, H.; Schneider, H.; Lin, J. Ginkgo biloba. Trends Genet. 2021, 37, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Ude, C.; Schubert-Zsilavecz, M.; Wurglics, M. Ginkgo biloba extracts: A review of the pharmacokinetics of the active ingredients. Clin. Pharmacokinet. 2013, 52, 727–749. [Google Scholar] [CrossRef] [PubMed]
- Clostre, F. Ginkgo biloba extract (egb 761). State of knowledge in the dawn of the year 2000. Ann. Pharm. Fr. 1999, 57 (Suppl. S1), 1s8-88. [Google Scholar]
- Nada, S.E.; Shah, Z.A. Preconditioning with ginkgo biloba (egb 761®) provides neuroprotection through ho1 and crmp2. Neurobiol. Dis. 2012, 46, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.J.; Yang, Z.B.; Ding, X.; Yang, C.W. Effects of ginkgo biloba leaves (ginkgo biloba) and ginkgo biloba extract on nutrient and energy utilization of broilers. Poult. Sci. 2018, 97, 1342–1351. [Google Scholar] [CrossRef]
- van Beek, T.A. Chemical analysis of ginkgo biloba leaves and extracts. J. Chromatogr. A 2002, 967, 21–55. [Google Scholar] [CrossRef] [PubMed]
- Maclennan, K.M.; Darlington, C.L.; Smith, P.F. The cns effects of ginkgo biloba extracts and ginkgolide b. Prog. Neurobiol. 2002, 67, 235–257. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Habtemariam, S.; Daglia, M.; Braidy, N.; Loizzo, M.R.; Tundis, R.; Nabavi, S.F. Neuroprotective effects of ginkgolide b against ischemic stroke: A review of current literature. Curr. Top. Med. Chem. 2015, 15, 2222–2232. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Q.; Liu, J.; Li, R.; Wang, D.; Peng, W.; Wu, C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol. Res. 2021, 168, 105599. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, L.; Cheng, H. Ginkgolide b protects against ischemic stroke via targeting ampk/pink1. Front. Pharmacol. 2022, 13, 941094. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, Z.; Xu, Z.; Yang, H.; Li, L.; Li, G.; Li, F.; Gu, S.; Zong, S.; Zhou, J.; et al. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the akt/nrf2 pathway in vitro and in vivo. Cell Stress Chaperones 2019, 24, 441–452. [Google Scholar] [CrossRef]
- Cheung, H.M.; Yew, D.T.W. Chapter 18—Neuroprotective mechanisms of ginkgo biloba against oxidative stress. In Oxidative Stress and Dietary Antioxidants in Neurological Diseases; Martin, C.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 271–290. [Google Scholar]
- Zhao, H.-W.; Li, X.-Y. Ginkgolide a, b, and huperzine a inhibit nitric oxide-induced neurotoxicity. Int. Immunopharmacol. 2002, 2, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, M.; Muntaner, O.; Pedruzzi, E.; Roch-Arveiller, M.; Tissot, M.; Drieu, K.; Périanin, A. Ginkgolide b stimulates signaling events in neutrophils and primes defense activities. Biochem. Biophys. Res. Commun. 2005, 335, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhao, H.; Zheng, Y.; Yao, X.; Zhang, H. Studies on the callus cultures of ginkgo biloba and its metabolites-ginkgolides. Chin. J. Biotechnol. 1999, 15, 51–58. [Google Scholar] [PubMed]
- Jaracz, S.; Malik, S.; Nakanishi, K. Isolation of ginkgolides a, b, c, j and bilobalide from g. Biloba extracts. Phytochemistry 2004, 65, 2897–2902. [Google Scholar] [CrossRef]
- Corey, E.J.; Kang, M.C.; Desai, M.C.; Ghosh, A.K.; Houpis, I.N. Total synthesis of (.+-.)-ginkgolide b. J. Am. Chem. Soc. 1988, 110, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Carrier, D.J.; Cosentino, G.; Neufeld, R.; Rho, D.; Weber, M.; Archambault, J. Nutritional and hormonal requirements of ginkgo biloba embryo-derived callus and suspension cell culture. Plant Cell Rep. 1990, 8, 635–638. [Google Scholar] [CrossRef]
- Jeon, M.H.; Sung, S.H.; Huh, H.; Kim, Y.C. Ginkgolide b production in cultured cells derived from ginkgo biloba l. Leaves. Plant Cell Rep. 1995, 14, 501–504. [Google Scholar] [CrossRef]
- Carrier, D.J.; Chauret, N.; Mancini, M.; Coulombe, P.; Neufeld, R.; Weber, M.; Archambault, J. Detection of ginkgolide a in ginkgo biloba cell cultures. Plant Cell Rep. 1991, 10, 256–259. [Google Scholar] [CrossRef]
- Hussain, M.S.; Fareed, S.; Ansari, S.; Rahman, M.A.; Ahmad, I.Z.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci. 2012, 4, 10–20. [Google Scholar] [CrossRef]
- Singh, B.; Kaur, P.; Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of ginkgo biloba. Fitoterapia 2008, 79, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Bonfill, M.; Expósito, O.; Moyano, E.; Cusidó, R.M.; Palazón, J.; Piñol, M.T. Manipulation by culture mixing and elicitation of paclitaxel and baccatin iii production in taxus baccata suspension cultures. Vitr. Cell. Dev. Biology. Plant 2006, 42, 422–426. [Google Scholar] [CrossRef]
- Srinivasan, V.; Ciddi, V.; Bringi, V.; Shuler, M.L. Metabolic inhibitors, elicitors, and precursors as tools for probing yield limitation in taxane production by taxus chinensis cell cultures. Biotechnol. Prog. 1996, 12, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Fett-Neto, A.G.; Pennington, J.J.; DiCosmo, F. Effect of white light on taxol and baccatin iii accumulation in cell cultures of taxus cuspidata sieb and zucc. J. Plant Physiol. 1995, 146, 584–590. [Google Scholar] [CrossRef]
- Yu, Z.Z.; Fu, C.X.; Han, Y.S.; Li, Y.X.; Zhao, D.X. Salicylic acid enhances jaceosidin and syringin production in cell cultures of saussurea medusa. Biotechnol. Lett. 2006, 28, 1027–1031. [Google Scholar] [CrossRef]
- Fu, C.X.; Cheng, L.Q.; Lv, X.F.; Zhao, D.X.; Ma, F. Methyl jasmonate stimulates jaceosidin and hispidulin production in cell cultures of saussurea medusa. Appl. Biochem. Biotechnol. 2006, 134, 89–96. [Google Scholar] [CrossRef]
- Largia, M.J.V.; Pothiraj, G.; Shilpha, J.; Ramesh, M. Methyl jasmonate and salicylic acid synergism enhances bacoside a content in shoot cultures of bacopa monnieri (l.). Plant Cell Tissue Organ Cult. (PCTOC) 2015, 122, 9–20. [Google Scholar] [CrossRef]
- Kang, S.-M.; Min, J.-Y.; Kim, Y.-D.; Kang, Y.-M.; Park, D.-J.; Jung, H.-N.; Kim, S.-W.; Choi, M.-S. Effects of methyl jasmonate and salicylic acid on the production of bilobalide and ginkgolides in cell cultures of ginkgo biloba. Vitr. Cell. Dev. Biol. Plant 2006, 42, 44–49. [Google Scholar] [CrossRef]
- Sukito, A.; Tachibana, S. Effect of methyl jasmonate and salycilic acid synergism on enhancement of bilobalide and ginkgolide production by immobilized cell cultures of ginkgo biloba. Bioresour. Bioprocess. 2016, 3, 24. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the mtt assay. Cold Spring Harb. Protoc. 2018, 2018, 469–471. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, X.; Sun, C.; Sun, Y.; Yang, M.; Feng, S.; Yao, J.; Liu, Z.; Zhang, G.; Li, F. Preparation of a new component group of ginkgo biloba leaves and investigation of the antihypertensive effects in spontaneously hypertensive rats. Biomed. Pharmacother. 2022, 149, 112805. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Quispe, C.; Jamaddar, S.; Hossain, R.; Ray, P.; Mondal, M.; Mohamed, Z.A.; Jaafaru, M.S.; Salehi, B.; Islam, M.T.; et al. Therapeutic promises of ginkgolide a: A literature-based review. Biomed. Pharmacother. 2020, 132, 110908. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, P.; Xu, Z.; Zhang, J.; Liu, J.; Yang, Z. Ginkgolide b inhibits hydrogen peroxide-induced apoptosis and attenuates cytotoxicity via activating the pi3k/akt/mtor signaling pathway in h9c2 cells. Mol. Med. Rep. 2020, 22, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhong, Y.; Huang, S.; Li, L.; Zhang, C.; Zou, X. Ginkgolide b enhances the differentiation of preosteoblastic mc3t3-e1 cells through vegf: Involvement of the p38 mapk signaling pathway. Mol. Med. Rep. 2016, 14, 4787–4794. [Google Scholar] [CrossRef]
- Hébert, M.; Bellavance, G.; Barriault, L. Total synthesis of ginkgolide c and formal syntheses of ginkgolides a and b. J. Am. Chem. Soc. 2022, 144, 17792–17796. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.Z.; Yokota, S.; Azad, M.A.K.; Eizawa, J.; Ishiguri, F.; Iizuka, K.; Yahara, S.; Yoshizawa, N. Relationship between starch accumulation and organ development at the different growth stages of callus in kihada (phellodendron amurense rupr.). Plant Biotechnol. 2006, 23, 239–245. [Google Scholar] [CrossRef] [Green Version]
w/o Elicitors | Suspended Cells | Sponge | Filter Cotton | Loofah | w/o Immobilized Materials |
---|---|---|---|---|---|
Total GB production | ND | <43.6 | 110.8 | 146.5 | 43.6 |
Suspended cells with elicitors | CH | YE | MJ | SA | w/o elicitors |
Intracellular GB production | 47.6 | 56.4 | 108.9 | 74.4 | 23.1 |
Extracellular GB production | 69.4 | 58.4 | 112.4 | 82.1 | 22.3 |
Immobilized cells with elicitors | SA/filter cotton | SA loofah | MJ/filter cotton | MJ/loofah | Suspended cells w/o elicitors |
Intracellular GB production | 92.3 | 125.4 | 141.3 | 165.2 | 21.2 |
Extracellular GB production | 93.2 | 120 | 133.8 | 172.4 | 22.4 |
Cycle 4—14 Day Recovery | Filter Cotton | Loofah | |
Viability | 75.6% | 62.1% | |
GB yield | 114 mg/L | 102 mg/L | |
Cycle 4—3 Day Recovery | Filter Cotton | Loofah | |
Viability | 67.3% | 54% | |
GB yield | 94 mg/L | 86 mg/L | |
Cycle 1 | Filter Cotton | Loofah | |
Viability | 82.3% | 76% | |
GB yield | 157 mg/L | 169 mg/L | |
No Recovery | Filter Cotton | Loofah | |
Viability | 63% | 32% | |
GB yield | 86 mg/L | 72 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Huang, T.-Y.; Fu, W.-C.; Su, W.-T. Effects of Organic Elicitors on the Recycled Production of Ginkgolide B in Immobilized Cell Cultures of Ginkgo biloba. J. Funct. Biomater. 2023, 14, 95. https://doi.org/10.3390/jfb14020095
Lin C-Y, Huang T-Y, Fu W-C, Su W-T. Effects of Organic Elicitors on the Recycled Production of Ginkgolide B in Immobilized Cell Cultures of Ginkgo biloba. Journal of Functional Biomaterials. 2023; 14(2):95. https://doi.org/10.3390/jfb14020095
Chicago/Turabian StyleLin, Chuang-Yu, Te-Yang Huang, Wei-Chang Fu, and Wen-Ta Su. 2023. "Effects of Organic Elicitors on the Recycled Production of Ginkgolide B in Immobilized Cell Cultures of Ginkgo biloba" Journal of Functional Biomaterials 14, no. 2: 95. https://doi.org/10.3390/jfb14020095
APA StyleLin, C. -Y., Huang, T. -Y., Fu, W. -C., & Su, W. -T. (2023). Effects of Organic Elicitors on the Recycled Production of Ginkgolide B in Immobilized Cell Cultures of Ginkgo biloba. Journal of Functional Biomaterials, 14(2), 95. https://doi.org/10.3390/jfb14020095