Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Placenta Collection
2.2. Amniotic Membrane Processing
2.3. Phtalox®
2.4. Microorganisms
2.4.1. Inoculum Preparation
2.4.2. Biofilm Assembly
2.5. Experimental Groups
2.6. Amniotic Membrane Analysis
2.7. Analysis of the Amniotic Membrane Associated with Phtalox® Solution
2.8. Antimicrobial Photodynamic Therapy
2.8.1. Obtaining the L Group
2.8.2. Obtaining the AM+L Group
2.8.3. Obtaining the AM+aPDT Group
2.9. Analysis of Results
2.9.1. Count of Colony-Forming Units
2.9.2. Metabolic Activity Test
2.9.3. Statistical Analysis
2.10. Amniotic Membrane Analysis
Scanning Electron Microscopy
3. Results
3.1. Evaluation by Counting Colony-Forming Units
3.2. Evaluation of Metabolic Activity
3.3. Analysis of the Amniotic Membrane by Scanning Electron Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, Y.; DMa, H.; Hwang, D.G.; Kim, W.S.; Zhang, F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000, 19, 348–352. [Google Scholar] [CrossRef]
- Jirsova, K.; Jones, G.L.A. Amniotic membrane in ophthalmology: Properties, preparation, storage and indications for grafting—A review. Cell Tissue Bank. 2017, 18, 193–204. [Google Scholar] [CrossRef]
- Kjaergaard, N.; Hein, M.; Hyttel, L.; Helmig, R.; Schønheyder, H.; Uldbjerg, N.; Madsen, H. Antibacterial properties of human amnion and chorion in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 94, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Sant’Anna, L.B.; Hage, R.; Cardoso, M.A.G.; Arisawa, E.A.L.; Cruz, M.M.; Parolini, O.; Cargnoni, A.; Sant’Anna, N. Antifibrotic effects of human amniotic membrane transplantation in established biliary fibrosis induced in rats. Cell Transplant. 2016, 25, 2245–2257. [Google Scholar] [CrossRef] [PubMed]
- Odet, S.; Louvrier, A.; Meyer, C.; Nicolas, F.J.; Hofman, N.; Chatelain, B.; Mauprivez, C.; Laurence, S.; Kerdjoudj, H.; Zwetyenga, N.; et al. Surgical application of human amniotic membrane and amnion-chorion membrane in the oral cavity and efficacy evaluation: Corollary with ophthalmological and wound healing experiences. Front. Bioeng. Biotechnol. 2021, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Navas, A.; Magana-Guerrero, F.S.; Dominguez-Lopez, A.; Chavez-Garcia, C.; Partido, G.; Graue-Hernandez, E.O.; Sanchez-Garcia, F.J.; Garfias, Y. Anti-inflammatory and anti-fibrotic effects of human amniotic membrane mesenchymal stem cells and their potential in corneal repair. Stem Cells Transl. Med. 2018, 7, 906–917. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Zhang, C.; Hu, J.; Chen, J.; Du, W.; Liu, F.; Ren, W.; Wang, J.; Quan, R. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res. Ther. 2019, 10, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, S.; Mohammadi, A.A.; Moshirabadi, K.; Zardosht, M. Effect of dermal fibroblasts and mesenchymal stem cells seeded on an amniotic membrane scaffold in skin regeneration: A case series. J. Cosmet. Dermatol. 2021, 20, 4040–4047. [Google Scholar] [CrossRef]
- Ramuta, T.Ž.; Starčič Erjavec, M.; Kreft, M.E. Amniotic membrane preparation crucially affects its broad-spectrum activity against uropathogenic bacteria. Front. Microbiol. 2020, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- Schuerch, K.; Baeriswyl, A.; Frueh, B.E.; Tappeiner, C. Efficacy of amniotic membrane transplantation for the treatment of corneal ulcers. Cornea 2020, 39, 479–483. [Google Scholar] [CrossRef]
- Ferng, A.; Marsh, K.M.; Pilikian, T.R.; Connell, A.; Hemphill, C.; Paidy, S.; Runyan, R.; Konhilas, J.; Khalpey, Z. Human Amniotic Membrane Promotes Antimicrobial Microenvironment in a Device-Related Infection. J. Biomed. Sci. Eng. 2016, 9, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Marquioti, C.M.J.; Lanes, L.C.; Castro, G.F.P. Irrational use of antibiotics in childhood: The pharmacist’s contribution to health promotion. Rev. Transform. 2015, 7, 179–193. [Google Scholar]
- Guimarães, D.O.; Momesso, L.S.; Pupo, M.T. Antibiotics: Therapeutic importance and perspectives for the discovery and development of new agents. Química Nova 2010, 33, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, D.V.; Oliveira, T.B.; Araujo, L.L.N. The use of antimicrobials in hospitals and the role of the pharmacist in the hospital infection control committee (CCIH). Electron. J. Hum. Sci. Health Technol. 2015, 2, 48–62. [Google Scholar]
- Rang, H.P.; Dale, M.M.; Ritter, J.M. Farmacologia, 4th ed.; Guanabara Koogan S.A.: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Kadosaki, L.L.; Sousa, S.F.; Borges, J.C.M. Analysis of the use and bacterial resistance to antimicrobials at the hospital level. Rev. Bras. Farm. 2012, 93, 128–135. [Google Scholar]
- World Health Organization (WHO). Rational Use of Medicines: Progress Made in Implementing WHO Pharmaceutical Strategies, Report from the Secretariat. In 118th Executive Board Meeting; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Loureiro, R.J.; Roque, F.; Rodrigues, A.T.; Herdeiro, M.T.; Ramalheira, E. The use of antibiotics and bacterial resistance: Brief notes on its evolution. Rev. Port. Saúde Pública 2016, 34, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Alici, E.H.; Bilgiçli, A.T.; Günsel, A.; Arabaci, G.; Yaraşır, M.N. α-Substituted phthalocyanines based on metal-induced H-or J-type aggregation for silver and palladium ions: Synthesis, fluorescence, and antimicrobial and antioxidant properties. Dalton Trans. 2021, 50, 3224–3239. [Google Scholar] [CrossRef]
- Shisaka, Y.; Iwai, Y.; Yamada, S.; Uehara, H.; Tosha, T.; Sugimoto, H.; Shiro, Y.; Stanfield, J.K.; Ogawa, K.; Watanabe, Y.; et al. Hijacking the Heme Acquisition System of Pseudomonas aeruginosa for the Delivery of Phthalocyanine as an Antimicrobial. ACS Chem. Biol. 2019, 14, 1637–1642. [Google Scholar] [CrossRef]
- Rosa, M.V.D. Cryopreserved Equine Amniotic Membrane and Its Use in Cutaneous Wounds of Horses. Master’s Thesis, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil, 2019. [Google Scholar]
- Bjarnsholt, T.; Alhede, M.; Alhede, M.; Eickhardt-Sørensen, S.; Moser, C.; Kühl, M.; Jensen, P.Ø.; Høiby, N. The in vivo biofilm. Trends Microbiol. 2013, 21, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.C.; Ricotti, C.; Cazzaniga, A.; Welsh, E.; Eaglstein, W.H.; Mertz, P.M. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen. 2008, 16, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Lara, M.O.; de Figueiredo, P.J.S. Meaning of the wound for patients with chronic ulcers. Cogitare Enferm. 2011, 16, 471–477. [Google Scholar]
- Tazima, M.F.G.S.; Andrade Vicente, Y.A.M.V.; Moriya, T. Wound biology and healing. Medicina 2008, 41, 259–264. [Google Scholar]
- Xia, G.; Zhai, D.; Sun, Y.; Hou, L.; Guo, X.; Wang, L.; Li, Z.; Wang, F. Preparation of a novel asymmetric wettable chitosan-based sponge and its role in promoting chronic wound healing. Carbohydr. Polym. 2020, 227, 115296. [Google Scholar] [CrossRef] [PubMed]
- Di Giulio, M.; Di Lodovico, S.; Fontana, A.; Traini, T.; Di Campli, E.; Pilato, S.; D’Ercole, S.; Cellini, L. Graphene Oxide affects Staphylococcus aureus and Pseudomonas aeruginosa dual species biofilm in Lubbock Chronic Wound Biofilm model. Sci. Rep. 2020, 10, 18525. [Google Scholar] [CrossRef] [PubMed]
- Pirlar, R.F.; Emaneini, M.; Beigverdi, R.; Banar, M.; van Leeuwen, W.B.; Jabalameli, F. Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium. PLoS ONE 2020, 15, e0235093. [Google Scholar]
- Fazli, M.; Bjarnsholt, T.; Kirketerp-Møller, K.; Jørgensen, B.; Andersen, A.S.; Krogfelt, K.A.; Givskov, M.; Tolker-Nielsen, T. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J. Clin. Microbiol. 2009, 47, 4084–4089. [Google Scholar] [CrossRef] [Green Version]
- Gjødsbøl, K.; Christensen, J.J.; Karlsmark, T.; Jørgensen, B.; Klein, B.M.; Krogfelt, A.K. Multiple bacterial species reside in chronic wounds: A longitudinal study. Int. Wound J. 2006, 3, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Malic, S.; Hill, K.E.; Hayes, A.; Percival, S.L.; Thomas, D.W.; Williams, D.W. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 2009, 155, 2603–2611. [Google Scholar] [CrossRef] [Green Version]
- Trampari, E.; Holden, E.R.; Wickham, G.J.; Ravi, A.; Martins, L.D.O.; Savva, G.M.; Webber, M.A. Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. NPJ Biofilms Microbiomes 2021, 7, 3. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Zheng, Y.; Zhou, S.; Wang, J.; Chen, N.; Huang, J.; Yan, F.; Huang, M. Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment. J. Porphyr. Phthalocyanines 2011, 15, 293–299. [Google Scholar] [CrossRef]
- Yang, T.; Tan, Y.; Zhang, W.; Yang, W.; Luo, J.; Chen, L.; Liu, H.; Yang, G.; Lei, X. Effects of ALA-PDT on the healing of mouse skin wounds infected with Pseudomonas aeruginosa and its related mechanisms. Front. Cell Dev. Biol. 2020, 8, 585132. [Google Scholar] [CrossRef] [PubMed]
- Tomazini, M.V.; da Silva Souza, C.; Garcia, S.B.; Tedesco, A.C. Photodynamic therapy with topical zinc phthalocyanine: Evaluation of fluorescence intensity, cutaneous absorption, histological and immunohistochemical changes in animal model skin. An. Bras. Dermatol. 2007, 82, 535–541. [Google Scholar] [CrossRef]
- Zhao, Y.; Ying, J.-W.; Sun, Q.; Ke, M.-R.; Zheng, B.-Y.; Huang, J.-D. A novel silicon (IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy. Dye. Pigment. 2020, 172, 107834. [Google Scholar] [CrossRef]
- Souza, B.; Pinto, J.; Pereira, A.; Miñán, A.; Ferreira-Strixino, J. Efficiency of antimicrobial photodynamic therapy with photodithazine® on MSSA and MRSA strains. Antibiotics 2021, 10, 869. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.C.R.; Teodoro, G.R.; Sibelino, S.K. Comparative evaluation of the antimicrobial effect of electric plasma in textile between a standard strain of Klebsiella pneumoniae and a resistant clinical strain (KPC). Res. Biomed. Eng. 2021, 37, 697–707. [Google Scholar] [CrossRef]
- Kaplan, W.; Laing, R. Priority Medicines for Europe and the World; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Morehead, M.S.; Scarbrough, C. Emergence of global antibiotic resistance. Prim. Care Clin. Off. Pract. 2018, 45, 467–484. [Google Scholar] [CrossRef]
- Tomson, G.; Vlad, I. The need to look at antibiotic resistance from a health systems perspective. Upsala J. Med. Sci. 2014, 119, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Elshamy, A.A.; Aboshanab, K.M. A review on bacterial resistance to carbapenems: Epidemiology, detection and treatment options. Future Sci. OA 2020, 6, FSO438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moghaddam, M.M.; Mirnejad, R. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist. 2018, 24, 747–767. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Pérez-Laguna, V.; García-Luque, I.; Ballesta, S.; Pérez-Artiaga, L.; Lampaya-Pérez, V.; Rezusta, A.; Gilaberte, Y. Photodynamic therapy using methylene blue, combined or not with gentamicin, against Staphylococcus aureus and Pseudomonas aeruginosa. Photodiagnosis Photodyn. Ther. 2020, 31, 101810. [Google Scholar] [CrossRef]
- Thakuri, P.S.; Joshi, R.; Basnet, S.; Pandey, S.; Taujale, S.D.; Mishra, N. Antibacterial photodynamic therapy on Staphylococcus aureus and Pseudomonas aeruginosa in-vitro. Nepal Med. Coll. J. 2011, 13, 281–284. [Google Scholar]
- Figueiredo-Godoi, L.M.A.; Garcia, M.T.; Pinto, J.G.; Ferreira-Strixino, J.; Faustino, E.G.; Pedroso, L.L.C.; Junqueira, J.C. Antimicrobial Photodynamic Therapy Mediated by Fotenticine and Methylene Blue on Planktonic Growth, Biofilms, and Burn Infections of Acinetobacter baumannii. Antibiotics 2022, 11, 619. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Joshi, Y.; Rawat, K.; Bisht, R. Biofilms: Architecture, resistance, quorum sensing and control mechanisms. Indian J. Microbiol. 2019, 59, 3–12. [Google Scholar] [CrossRef]
- Tehrani, F.A.; Ahmadiani, A.; Niknejad, H. The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology 2013, 67, 293–298. [Google Scholar] [CrossRef]
- Pogozhykh, O.; Prokopyuk, V.; Prokopyuk, O.; Kuleshova, L.; Goltsev, A.; Figueiredo, C.; Pogozhykh, D. Towards biobanking technologies for natural and bioengineered multicellular placental constructs. Biomaterials 2018, 185, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, F.A.; Modaresifar, K.; Azizian, S.; Niknejad, H. Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci. Rep. 2017, 7, 17022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modaresifar, K.; Azizian, S.; Zolghadr, M.; Moravvej, H.; Ahmadiani, A.; Niknejad, H. The effect of cryopreservation on anti-cancer activity of human amniotic membrane. Cryobiology 2017, 74, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Ab Hamid, S.S.; Zahari, N.K.; Yusof, N.; Hassan, A. Scanning electron microscopic assessment on surface morphology of preserved human amniotic membrane after gamma sterilisation. Cell Tissue Bank. 2014, 15, 15–24. [Google Scholar] [CrossRef]
- Wehmeyer, J.L.; Natesan, S.; Christy, R.J. Development of a sterile amniotic membrane tissue graft using supercritical carbon dioxide. Tissue Eng. Part C Methods 2015, 21, 649–659. [Google Scholar] [CrossRef]
- Blagrove, R.J. The aggregation of the tetrasodium salt of copper phthalocyanine 4, 4′, 4″, 4′′′-tetrasulphonic acid. Diffusion studies. Aust. J. Chem. 1973, 26, 1545–1549. [Google Scholar] [CrossRef]
- Kuznetsova, N.A.; Gretsova, N.S.; Derkacheva, V.M.; Kaliya, O.L.; Lukyanets, E.A. Sulfonated phthalocyanines: Aggregation and singlet oxygen quantum yield in aqueous solutions. J. Porphyr. Phthalocyanines 2003, 7, 147–154. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Xu, S.; Chen, Z.; Zhang, Z.; Zhang, F.; Kasatani, K. Effect of aggregation on nonlinear optical properties of a naphthalocyanine. J. Photochem. Photobiol. A Chem. 2007, 188, 311–316. [Google Scholar] [CrossRef]
- Lemke, A.; Castillo-Sánchez, J.C.; Prodinger, F.; Ceranic, A.; Hennerbichler-Lugscheider, S.; Pérez-Gil, J.; Redl, H.; Wolbank, S. Human amniotic membrane as newly identified source of amniotic fluid pulmonary surfactant. Sci. Rep. 2017, 7, 6406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholipourmalekabadi, M.; Sameni, M.; Radenkovic, D.; Mozafari, M.; Mossahebi-Mohammadi, M.; Seifalian, A. Decellularized human amniotic membrane: How viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif. 2016, 49, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Chi, M.; Sun, X.; Xie, X.; Weir, M.D.; Oates, T.W.; Zhou, Y.; Wang, L.; Bai, Y.; Xu, H.H. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int. J. Nanomed. 2019, 14, 6937–6956. [Google Scholar] [CrossRef] [Green Version]
- Mamede, A.C.; Botelho, M.F. Amniotic Membrane: Origin, Characterization and Medical Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Niknejad, H.; Peirovi, H.; Jorjani, M.; Ahmadiani, A.; Ghanavi, J.; Seifalian, A.M. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cells Mater. 2008, 15, 88–99. [Google Scholar] [CrossRef]
- Leal-Marin, S.; Kern, T.; Hofmann, N.; Pogozhykh, O.; Framme, C.; Börgel, M.; Figueiredo, C.; Glasmacher, B.; Gryshkov, O. Human Amniotic Membrane: A review on tissue engineering, application, and storage. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1198–1215. [Google Scholar] [CrossRef]
- Orcina, B.F.; Reia, V.C.B.; Santos, C.A.; Peres, M.H.; Vilhena, F.V.; Santos, P.S.d.S. Antibacterial and antifungal activity of intraoral products containing phthalocyanine: In vitro study. Res. Sq. 2021, in press. [Google Scholar]
- Ramuta, T.Ž.; Šket, T.; Erjavec, M.S.; Kreft, M.E.T. Antimicrobial activity of human fetal membranes: From biological function to clinical use. Front. Bioeng. Biotechnol. 2021, 9, 691522. [Google Scholar] [CrossRef]
- Svobodova, A.; Horvath, V.; Smeringaiova, I.; Cabral, J.V.; Zemlickova, M.; Fiala, R.; Burkert, J.; Nemetova, D.; Stadler, P.; Lindner, J.; et al. The healing dynamics of non-healing wounds using cryo-preserved amniotic membrane. Int. Wound J. 2022, 19, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Viola, V.P.; Vilhena, F.V.; Santos, P.S.S. Nasal Manifestation of Herpes Simplex Virus and Recovery with Antimicrobial Phthalocyanine Derivative Protocol. J. Microbiol. Infect. Dis. 2021, 11, 241–242. [Google Scholar] [CrossRef]
AM | PHTALOX® | IRRADIATION | |
---|---|---|---|
Group C+ | |||
Group L | X | ||
Group AM | X | ||
Group AM+L | X | X | |
Group AM+PHTX | X | X | |
Group AM+aPDT | X | X | X |
S. aureus | P. aeruginosa | |||
---|---|---|---|---|
CFU/mL | Log10 Reduction | CFU/mL | Log10 Reduction | |
Group C+ | 1.5 × 1016 | - | 1.8 × 1017 | - |
Group L | 1.3 × 1016 | 0.06 | 1.7 × 1017 | 0.02 |
Group AM | 2.6 × 1014 | 1.76 | 3.1 × 1016 | 0.76 |
Group AM+L | 2.5 × 1014 | 1.78 | 3.1 × 1016 | 0.76 |
Group AM+PHTX | 5.7 × 107 | 8.42 | 2.9 × 1012 | 4.79 |
Group AM+aPDT | 5.9 × 105 | 10.41 | 2.7 × 1011 | 5.82 |
S. aureus | P. aeruginosa | |||
---|---|---|---|---|
% Metabolic Activity | % Reduction | % Metabolic Activity | % Reduction | |
Group C+ | 100 | - | 100 | - |
Group L | 99.68 | 0.32 | 95.78 | 4.22 |
Group AM | 59.81 | 40.19 | 74.12 | 25.88 |
Group AM+L | 60.88 | 39.12 | 71.70 | 28.30 |
Group AM+PHTX | 43.98 | 56.02 | 45.92 | 54.08 |
Group AM+aPDT | 30.70 | 69.30 | 26.62 | 73.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, A.C.R.; Teodoro, G.R.; Ferreira-Strixino, J.; Sant’Anna, L.B. Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy. J. Funct. Biomater. 2023, 14, 151. https://doi.org/10.3390/jfb14030151
dos Santos ACR, Teodoro GR, Ferreira-Strixino J, Sant’Anna LB. Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy. Journal of Functional Biomaterials. 2023; 14(3):151. https://doi.org/10.3390/jfb14030151
Chicago/Turabian Styledos Santos, Amanda Cerquearo Rodrigues, Guilherme Rodrigues Teodoro, Juliana Ferreira-Strixino, and Luciana Barros Sant’Anna. 2023. "Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy" Journal of Functional Biomaterials 14, no. 3: 151. https://doi.org/10.3390/jfb14030151
APA Styledos Santos, A. C. R., Teodoro, G. R., Ferreira-Strixino, J., & Sant’Anna, L. B. (2023). Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy. Journal of Functional Biomaterials, 14(3), 151. https://doi.org/10.3390/jfb14030151