A Machine-Learning-Based Approach for Predicting Mechanical Performance of Semi-Porous Hip Stems
Abstract
:1. Introduction
- Using predictive machine learning techniques to validate the FEA-based models presented by Mehboob et al. [12] to reduce the in vivo experimental cost.
- Comparing multiple machine learning algorithms to determine the best-performing method for the chosen model.
2. Methodology
2.1. Finite Element Analysis
2.2. Machine Learning
2.2.1. Decision Tree Regression (DTR)
2.2.2. Linear Regression (LR)
2.2.3. Ridge Regression (RR)
2.2.4. Lasso Regression (LSR)
2.2.5. Elastic Nets (EN)
2.2.6. Multilayer Perceptron (MLP)
3. Results and Discussion
3.1. Finite Element Analysis
3.2. Machine Learning Predictions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mi, Z.; Shuib, S.; Hassan, A.; Shorki, A.; Ibrahim, M. Problem of stress shielding and improvement to the hip Implat designs: A review. J. Med. Sci. 2007, 7, 460–467. [Google Scholar]
- Sumner, D. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech. 2015, 48, 797–800. [Google Scholar] [CrossRef]
- Savio, D.; Bagno, A. When the total hip replacement fails: A review on the stress-shielding effect. Processes 2022, 10, 612. [Google Scholar] [CrossRef]
- Thakur, A.; Kaya, S.; Abousalem, A.; Sharma, S.; Ganjoo, R.; Assad, H.; Kumar, A. Computational and experimental studies on the corrosion inhibition performance of an aerial extract of Cnicus Benedictus weed on the acidic corrosion of mild steel. Process Saf. Environ. Prot. 2022, 161, 801–818. [Google Scholar] [CrossRef]
- Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017, 35, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Cortis, G.; Mileti, I.; Nalli, F.; Palermo, E.; Cortese, L. Additive manufacturing structural redesign of hip prostheses for stress-shielding reduction and improved functionality and safety. Mech. Mater. 2022, 165, 104173. [Google Scholar] [CrossRef]
- Head, W.C.; Bauk, D.J.; Emerson, R.H., Jr. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin. Orthop. Relat. Res. 1995, 311, 85–90. [Google Scholar]
- Sidambe, A.T. Biocompatibility of advanced manufactured titanium implants—A review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef]
- Zheng, Q.; Mao, L.; Shi, Y.; Fu, W.; Hu, Y. Biocompatibility of Ti-6Al-4V titanium alloy implants with laser microgrooved surfaces. Mater. Technol. 2022, 37, 2039–2048. [Google Scholar] [CrossRef]
- Alkhatib, S.E.; Tarlochan, F.; Mehboob, H.; Singh, R.; Kadirgama, K.; Harun, W.S.B.W. Finite element study of functionally graded porous femoral stems incorporating body-centered cubic structure. Artif. Organs 2019, 43, E152–E164. [Google Scholar] [CrossRef]
- Mehboob, H.; Tarlochan, F.; Mehboob, A.; Chang, S.-H. Finite element modelling and characterization of 3D cellular microstructures for the design of a cementless biomimetic porous hip stem. Mater. Des. 2018, 149, 101–112. [Google Scholar] [CrossRef]
- Mehboob, H.; Tarlochan, F.; Mehboob, A.; Chang, S.-H.; Ramesh, S.; Harun, W.S.W.; Kadirgama, K. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J. Mater. Sci. Mater. Med. 2020, 31, 78. [Google Scholar] [CrossRef]
- Du Plessis, A.; Razavi, S.M.J.; Benedetti, M.; Murchio, S.; Leary, M.; Watson, M.; Bhate, D.; Berto, F. Properties and applications of additively manufactured metallic cellular materials: A review. Prog. Mater. Sci. 2021, 125, 100918. [Google Scholar] [CrossRef]
- Alkhatib, S.E.; Mehboob, H.; Tarlochan, F. Finite element analysis of porous titanium alloy hip stem to evaluate the biomechanical performance during walking and stair climbing. J. Bionic Eng. 2019, 16, 1103–1115. [Google Scholar] [CrossRef]
- Tarlochan, F.; Mehboob, H.; Mehboob, A.; Chang, S.-H. Biomechanical design of a composite femoral prosthesis to investigate the effects of stiffness, coating length, and interference press fit. Compos. Struct. 2018, 204, 803–813. [Google Scholar] [CrossRef]
- Borjali, A.; Chen, A.F.; Muratoglu, O.K.; Morid, M.A.; Varadarajan, K.M. Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network. J. Orthop. Res. 2020, 38, 1465–1471. [Google Scholar] [CrossRef]
- Hambli, R.; Katerchi, H.; Benhamou, C.-L. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 2011, 10, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Predicting bone regeneration from machine learning. Nat. Comput. Sci. 2021, 1, 509–510. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Cilla, M.; Borgiani, E.; Martínez, J.; Duda, G.N.; Checa, S. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant. PLoS ONE 2017, 12, e0183755. [Google Scholar] [CrossRef]
- Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine Learning for industrial applications: A comprehensive literature review. Expert Syst. Appl. 2021, 175, 114820. [Google Scholar] [CrossRef]
- Kanakaris, N.; Karacapilidis, N.; Kournetas, G.; Lazanas, A. Combining machine learning and operations research methods to advance the project management practice. In International Conference on Operations Research and Enterprise Systems; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Ashfaq, T.; Khalid, R.; Yahaya, A.S.; Aslam, S.; Azar, A.T.; Alsafari, S.; Hameed, I.A. A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism. Sensors 2022, 22, 7162. [Google Scholar] [CrossRef]
- Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Literature review: Machine learning techniques applied to financial market prediction. Expert Syst. Appl. 2019, 124, 226–251. [Google Scholar] [CrossRef]
- Sharma, N.; Thakur, M.S.; Sihag, P.; Malik, M.A.; Kumar, R.; Abbas, M.; Saleel, C.A. Machine learning techniques for evaluating concrete strength with waste marble powder. Materials 2022, 15, 5811. [Google Scholar] [CrossRef]
- Upadhya, A.; Thakur, M.S.; Al Ansari, M.S.; Malik, M.A.; Alahmadi, A.A.; Alwetaishi, M.; Alzaed, A.N. Marshall Stability Prediction with Glass and Carbon Fiber Modified Asphalt Mix Using Machine Learning Techniques. Materials 2022, 15, 8944. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Ahmad, S.; El-Affendi, M.A.; Zaka, R.; Mahmood, S.; Jehangir, M. Predicting Mental Health of Best Human Capital for Sustainable Organization through Psychological and Personality Health Issues: Shift from Traditional to Novel Machine Learning-Supervised Technique Approach. Biomed Res. Int. 2022, 2022, 5775640. [Google Scholar] [CrossRef] [PubMed]
- Villamor, E.; Monserrat, C.; Del Río, L.; Romero-Martín, J.; Rupérez, M.J. Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Comput. Methods Programs Biomed. 2020, 193, 105484. [Google Scholar] [CrossRef] [PubMed]
- Alastruey-López, D.; Ezquerra, L.; Seral, B.; Pérez, M. Using artificial neural networks to predict impingement and dislocation in total hip arthroplasty. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 649–657. [Google Scholar] [CrossRef]
- Jun, Z.; Youqiang, Z.; Wei, C.; Fu, C. Research on prediction of contact stress of acetabular lining based on principal component analysis and support vector regression. Biotechnol. Biotechnol. Equip. 2021, 35, 462–468. [Google Scholar] [CrossRef]
- Al Zoubi, N.F.; Tarlochan, F.; Mehboob, H. Mechanical and Fatigue Behavior of Cellular Structure Ti-6Al-4V Alloy Femoral Stems: A Finite Element Analysis. Appl. Sci. 2022, 12, 4197. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bulbul, A.M.R.; Khan, K.; Nafees, A.; Amin, M.N.; Ahmad, W.; Usman, M.; Nazar, S.; Arab, A.M.A. In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches. Materials 2022, 15, 7764. [Google Scholar] [CrossRef]
- Shaban, M.; Alsharekh, M.F.; Alsunaydih, F.N.; Alateyah, A.I.; Alawad, M.O.; BaQais, A.; Kamel, M.; Nassef, A.; El-Hadek, M.A.; El-Garaihy, W.H. Investigation of the Effect of ECAP Parameters on Hardness, Tensile Properties, Impact Toughness, and Electrical the Conductivity of Pure Cu through Machine Learning Predictive Models. Materials 2022, 15, 9032. [Google Scholar] [CrossRef] [PubMed]
- Ogutu, J.O.; Schulz-Streeck, T.; Piepho, H.-P. Genomic Selection Using Regularized Linear Regression Models: Ridge Regression, Lasso, Elastic Net and Their Extensions. In BMC Proceedings; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gardner, M.W.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Guido, V.R.; Drake, F., Jr. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Simoneau, C.; Terriault, P.; Jetté, B.; Dumas, M.; Brailovski, V. Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Mater. Des. 2017, 114, 546–556. [Google Scholar] [CrossRef]
- Limmahakhun, S.; Oloyede, A.; Sitthiseripratip, K.; Xiao, Y.; Yan, C. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction. Mater. Des. 2017, 114, 633–641. [Google Scholar] [CrossRef]
- Hazlehurst, K.B.; Wang, C.J.; Stanford, M. A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty. Med. Eng. Phys. 2014, 36, 458–466. [Google Scholar] [CrossRef] [PubMed]
Simulation | DLT | PPS | SS | MSDL | MSPS | FS |
---|---|---|---|---|---|---|
1 | 0 | 90 | 134 | 90 | 104 | 0.165116842 |
2 | 0 | 77 | 298 | 173 | 136 | 0.273558063 |
3 | 0 | 63 | 542 | 189 | 217 | 0.311399648 |
4 | 0 | 47 | 844 | 189 | 312 | 0.355395013 |
5 | 0 | 30 | 1284 | 189 | 296 | 0.649761978 |
6 | 0 | 18 | 1671 | 189 | 289 | 0.956662736 |
7 | 0.5 | 90 | 900 | 969 | 31 | 0.439016544 |
8 | 0.5 | 77 | 999 | 848 | 64 | 0.504168444 |
9 | 0.5 | 63 | 1141 | 709 | 106 | 0.607191898 |
10 | 0.5 | 47 | 1321 | 583 | 147 | 0.754651623 |
11 | 0.5 | 30 | 1593 | 452 | 190 | 1.012067069 |
12 | 0.5 | 18 | 1845 | 368 | 217 | 1.274545641 |
13 | 1 | 90 | 1340 | 578 | 15 | 0.870252011 |
14 | 1 | 77 | 1412 | 540 | 35 | 0.906265976 |
15 | 1 | 63 | 1508 | 493 | 65 | 0.978832319 |
16 | 1 | 47 | 1626 | 445 | 101 | 1.09870317 |
17 | 1 | 30 | 1803 | 383 | 148 | 1.299523956 |
18 | 1 | 18 | 1967 | 337 | 184 | 1.503057065 |
19 | 1.5 | 90 | 1639 | 445 | 10 | 1.277959118 |
20 | 1.5 | 77 | 1691 | 427 | 25 | 1.288267624 |
21 | 1.5 | 63 | 1757 | 403 | 47 | 1.371124031 |
22 | 1.5 | 47 | 1835 | 378 | 76 | 1.459330144 |
23 | 1.5 | 30 | 1949 | 345 | 117 | 1.644608986 |
24 | 1.5 | 18 | 2055 | 318 | 152 | 1.820361118 |
25 | 2 | 90 | 1845 | 379 | 8 | 1.696200284 |
26 | 2 | 77 | 1883 | 368 | 19 | 1.6979466 |
27 | 2 | 63 | 1928 | 355 | 37 | 1.740895669 |
28 | 2 | 47 | 1978 | 340 | 62 | 1.787807737 |
29 | 2 | 30 | 2050 | 321 | 99 | 1.943079537 |
30 | 2 | 18 | 2115 | 305 | 133 | 2.079133065 |
Algorithm | Hyperparameter | Hyperparameter Value |
---|---|---|
Decision tree regression | Criterion | Squared error |
Splitter | Best | |
Linear, ridge, lasso, elastic net | Alpha | 1.0 |
Fit intercept | True | |
Multilayer perceptron | Activation | Rectified linear unit (Relu) |
Hidden layer sizes | 100 | |
Solver | Adaptive momentum (Adam) |
# | DLT | PPS |
---|---|---|
1 | 2.5 | 80 |
2 | 2.5 | 70 |
3 | 2.5 | 60 |
4 | 2.5 | 50 |
5 | 2.5 | 40 |
6 | 2.5 | 30 |
7 | 2.5 | 20 |
8 | 2.5 | 10 |
9 | 3 | 80 |
10 | 3 | 70 |
11 | 3 | 60 |
12 | 3 | 50 |
13 | 3 | 40 |
14 | 3 | 30 |
15 | 3 | 20 |
16 | 3 | 10 |
DTR | LR | RR | LSR | EN | MLP | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Seed | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE |
0 | 0.11 | 16.91 | 0.10 | 24.22 | 0.13 | 25.88 | 0.22 | 49.70 | 0.22 | 49.70 | 0.14 | 32.13 |
1 | 0.08 | 13.87 | 0.10 | 20.63 | 0.13 | 26.59 | 0.21 | 47.98 | 0.21 | 47.98 | 0.14 | 30.28 |
2 | 0.11 | 28.10 | 0.17 | 47.35 | 0.22 | 76.06 | 0.30 | 106.34 | 0.30 | 106.34 | 0.21 | 70.74 |
3 | 0.10 | 16.99 | 0.08 | 18.72 | 0.12 | 27.44 | 0.20 | 46.70 | 0.20 | 46.70 | 0.10 | 20.67 |
4 | 0.09 | 15.29 | 0.07 | 12.54 | 0.11 | 18.21 | 0.22 | 37.53 | 0.22 | 37.53 | 0.07 | 13.39 |
5 | 0.11 | 16.60 | 0.09 | 21.73 | 0.13 | 27.34 | 0.23 | 52.72 | 0.23 | 52.72 | 0.11 | 25.69 |
6 | 0.10 | 22.75 | 0.15 | 31.14 | 0.19 | 52.62 | 0.27 | 79.88 | 0.27 | 79.88 | 0.19 | 52.65 |
7 | 0.09 | 17.10 | 0.13 | 35.67 | 0.16 | 42.26 | 0.25 | 72.02 | 0.25 | 72.02 | 0.21 | 55.02 |
8 | 0.11 | 26.50 | 0.15 | 48.14 | 0.19 | 67.98 | 0.28 | 99.77 | 0.28 | 99.77 | 0.19 | 64.38 |
9 | 0.15 | 22.04 | 0.14 | 20.11 | 0.19 | 34.35 | 0.27 | 53.36 | 0.27 | 53.36 | 0.19 | 30.10 |
Average | 0.10 | 19.62 | 0.12 | 28.03 | 0.16 | 39.87 | 0.24 | 64.60 | 0.24 | 64.60 | 0.16 | 39.50 |
Sample σ | 0.02 | 4.90 | 0.03 | 12.22 | 0.04 | 19.58 | 0.03 | 23.77 | 0.03 | 23.77 | 0.05 | 19.62 |
Max | 0.15 | 28.10 | 0.17 | 48.14 | 0.22 | 76.06 | 0.30 | 106.34 | 0.30 | 106.34 | 0.21 | 70.74 |
Min | 0.08 | 13.87 | 0.07 | 12.54 | 0.11 | 18.21 | 0.20 | 37.53 | 0.20 | 37.53 | 0.07 | 13.39 |
Trend Scores | ||||||
---|---|---|---|---|---|---|
Seed | DTR | LR | RR | LSR | EN | MLP |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 |
2 | 0 | 1 | 1 | 0 | 0 | 0 |
3 | 0 | 1 | 1 | 0 | 0 | 1 |
4 | 0 | 1 | 1 | 0 | 0 | 1 |
5 | 0 | 1 | 1 | 0 | 0 | 1 |
6 | 0 | 1 | 1 | 0 | 0 | 0 |
7 | 0 | 1 | 1 | 0 | 0 | 1 |
8 | 0 | 1 | 1 | 0 | 0 | 0 |
9 | 0 | 1 | 1 | 0 | 0 | 0 |
Trend Score | 0 | 10 | 10 | 0 | 0 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkad, K.; Mehboob, H.; Alyamani, R.; Tarlochan, F. A Machine-Learning-Based Approach for Predicting Mechanical Performance of Semi-Porous Hip Stems. J. Funct. Biomater. 2023, 14, 156. https://doi.org/10.3390/jfb14030156
Akkad K, Mehboob H, Alyamani R, Tarlochan F. A Machine-Learning-Based Approach for Predicting Mechanical Performance of Semi-Porous Hip Stems. Journal of Functional Biomaterials. 2023; 14(3):156. https://doi.org/10.3390/jfb14030156
Chicago/Turabian StyleAkkad, Khaled, Hassan Mehboob, Rakan Alyamani, and Faris Tarlochan. 2023. "A Machine-Learning-Based Approach for Predicting Mechanical Performance of Semi-Porous Hip Stems" Journal of Functional Biomaterials 14, no. 3: 156. https://doi.org/10.3390/jfb14030156
APA StyleAkkad, K., Mehboob, H., Alyamani, R., & Tarlochan, F. (2023). A Machine-Learning-Based Approach for Predicting Mechanical Performance of Semi-Porous Hip Stems. Journal of Functional Biomaterials, 14(3), 156. https://doi.org/10.3390/jfb14030156