Wear of Titanium Implant Platforms with Different Abutment Connections and Abutment Materials: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Reliability Test and Intraoperator Calibration
3.2. Digital Superimposing
3.3. Linear Deviation Measures
3.4. Lost Surface Area
3.5. SEM Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abraham, C.M. A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. Open Dent. J. 2014, 8, 50–55. [Google Scholar] [CrossRef]
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M. Biomedical applications of titanium and its alloys. Jom 2008, 60, 46–49. [Google Scholar] [CrossRef]
- Sykaras, N.; Iacopino, A.M.; Marker, V.A.; Triplett, R.G.; Woody, R.D. Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review. Int. J. Oral Maxillofac. Implant. 2000, 15, 675–690. [Google Scholar]
- Mjoberg, B.; Hellquist, E.; Mallmin, H.; Lindh, U. Aluminum, Alzheimer’s disease and bone fragility. Acta Orthop. Scand. 1997, 68, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Zaffe, D.; Bertoldi, C.; Consolo, U. Accumulation of aluminum in lamellar bone after implantation of titanium plates, Ti-6Al-4V screws, hydroxyapatite granules. Biomaterials 2004, 25, 3837–3844. [Google Scholar] [CrossRef]
- Yildirim, M.; Edelhoff, D.; Hanisch, O.; Spiekermann, H. Ceramic abutments—A new era in achieving optimal esthetics in implant dentistry. Int. J. Periodontics Restor. Dent. 2000, 20, 81–91. [Google Scholar]
- Watkin, A.; Kerstein, R.B. Improving darkened anterior peri-implant tissue color with zirconia custom implant abutments. Compend. Contin. Educ. Dent. (Jamesburg, N.J. 1995) 2008, 29, 238–240. [Google Scholar]
- Jung, R.E.; Holderegger, C.; Sailer, I.; Khraisat, A.; Suter, A.; Hammerle, C.H. The effect of all-ceramic and porce-lain-fused-to-metal restorations on marginal peri-implant soft tissue color: A randomized controlled clinical trial. Int. J. Perio-Dontics Restor. Dent. 2008, 28, 357–365. [Google Scholar]
- Wohlwend, A.S.; Struder, S.; Schaerer, S. The zirconium oxide abutment: An all ceramic abutment for esthetic improvement of implant superstructures. Quintessence Dent. Technol. 1997, 1, 63–72. [Google Scholar]
- Naveau, A.; Rignon-Bret, C.; Wulfman, C. Zirconia abutments in the anterior region: A systematic review of mechanical and esthetic outcomes. J. Prosthet. Dent. 2019, 121, 775–781.e1. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Mechanical Properties of Dental Materials; Alloys for casting and joining metals; Dental Ceramics; Dental implants. In Philips’ Science of Dental Materials, 12th ed.; Elsevier/Saunders: Rio de Janeiro, Brazil, 2013; pp. 48–68; 367–395; 418–473; 499–518. [Google Scholar]
- Stimmelmayr, M.; Edelhoff, D.; Güth, J.; Erdelt, K.; Happe, A.; Beuer, F. Wear at the titanium—Titanium and the titanium—Zirconia implant—Abutment interface: A comparative in vitro study. Dent. Mater. 2012, 28, 1215–1220. [Google Scholar] [CrossRef]
- Brodbeck, U. The ZiReal Post: A New Ceramic Implant Abutment. J. Esthet. Restor. Dent. 2003, 15, 10–24. [Google Scholar] [CrossRef]
- Pera, F.; Menini, M.; Alovisi, M.; Crupi, A.; Ambrogio, G.; Asero, S.; Marchetti, C.; Canepa, C.; Merlini, L.; Pesce, P.; et al. Can Abutment with Novel Superlattice CrN/NbN Coatings Influence Peri-Implant Tissue Health and Implant Survival Rate Compared to Machined Abutment? 6-Month Results from a Multi-Center Split-Mouth Randomized Control Trial. Materials 2022, 16, 246. [Google Scholar] [CrossRef]
- Carossa, M.; Alovisi, M.; Crupi, A.; Ambrogio, G.; Pera, F. Full-Arch Rehabilitation Using Trans-Mucosal Tis-sue-Level Implants with and without Implant-Abutment Units: A Case Report. Dent. J. 2022, 10, 116. [Google Scholar] [CrossRef]
- Binon, P.P. Implants and components: Entering the new millennium. Int. J. Oral Maxillofac. Implant. 2000, 15, 76–94. [Google Scholar]
- Esposito, M.; Maghaireh, H.; Pistilli, R.; Grusovin, M.G.; Lee, S.T.; Trullenque-Eriksson, A.; Gualini, F. Dental implants with internal versus external connections: 5-year post-loading results from a pragmatic multicenter randomised controlled trial. Eur. J. Oral Implant. 2016, 9, 129–141. [Google Scholar] [CrossRef]
- Haack, J.E.; Sakaguchi, R.L.; Sun, T.; Coffey, J.P. Elongation and preload stress in dental implant abutment screws. Int. J. Oral Maxillofac. Implant. 1995, 10, 529–536. [Google Scholar]
- Kofron, M.D.; Carstens, M.; Fu, C.; Wen, H.B. In vitro assessment of connection strength and stability of internal implant-abutment connections. Clin. Biomech. 2019, 65, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muley, N.; Prithviraj, D.R.; Gupta, V. Evolution of External and Internal Implant to Abutment Connection. Int. J. Oral Implant. Clin. Res. 2012, 3, 122–129. [Google Scholar] [CrossRef]
- Goiato, M.C.; Pellizzer, E.P.; Silva, E.; Bonatto, L.D.R.; Dos Santos, D.M. Is the internal connection more efficient than external connection in mechanical, biological, and esthetical point of views? A systematic review. Oral Maxillofac. Surg. 2015, 19, 229–242. [Google Scholar] [CrossRef]
- Pardal-Peláez, B.; Montero, J. Preload loss of abutment screws after dynamic fatigue in single implant-supported restorations. A systematic review. J. Clin. Exp. Dent. 2017, 9, e1355–e1361. [Google Scholar] [CrossRef] [PubMed]
- Niznick, G.A. The Core-Vent implant system. The evolution of an osseoventegrated implant. Implantologist 1983, 1, 34–46. [Google Scholar]
- Möllersten, L.; Lockowandt, P.; Lindén, L. Comparison of strength and failure mode of seven implant systems: An in vitro test. J. Prosthet. Dent. 1997, 78, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Nam, R.K.; Lee, S.J.; Park, E.J.; Kwon, H.B.; Yoon, H.I. Three-Dimensional Deformation and Wear of Internal Implant-Abutment Connection: A Comparative Biomechanical Study Using Titanium and Zirconia. Int. J. Oral Maxillofac. Implants 2018, 33, 1279–1286. [Google Scholar] [CrossRef]
- Klotz, M.W.; Taylor, M.T.; Goldberg, M.S. Wear at the Titanium-Zirconia Implant-Abutment Interface: A Pilot Study. Int. J. Oral Maxillofac. Implants 2011, 26, 970–975. [Google Scholar] [PubMed]
- Branco, A.; Moreira, V.; Reis, J.; Colaço, R.; Figueiredo-Pina, C.; Serro, A. Influence of contact configuration and lubricating conditions on the microtriboactivity of the zirconia-Ti6Al4V pair used in dental applications. J. Mech. Behav. Biomed. Mater. 2018, 91, 164–173. [Google Scholar] [CrossRef]
- ISO 14801; International Standard for Dynamic Fatigue Test for Endosseous Dental Implants. ISO: Geneva, Switzerland, 2007.
- Gal, J.Y.; Fovet, Y.; Adib-Yadzi, M. About a synthetic saliva for in vitro studies. Talanta 2001, 53, 1103–1115. [Google Scholar] [CrossRef]
- Patzelt, S.B.M.; Emmanouilidi, A.; Stampf, S.; Strub, J.R.; Att, W. Accuracy of full-arch scans using intraoral scanners. Clin. Oral Investig. 2013, 18, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Imburgia, M.; Logozzo, S.; Hauschild, U.; Veronesi, G.; Mangano, C.; Mangano, F.G. Accuracy of four intraoral scanners in oral implantology: A comparative in vitro study. BMC Oral Health 2017, 17, 92. [Google Scholar] [CrossRef]
- Atria, P.; Barbosa, J.; Sampaio, C.; Jorquera, G.; Hirata, R.; Mahn, G. Comparision of a non-destructive technique using three-dimensional imaging and histoanatomical chemical dissolution for dental morphology analysis. Int. J. Esthet. Dent. 2019, 14, 76–85. [Google Scholar] [PubMed]
- Iyaniwura, J.E.; Elfarnawany, M.; Riyahi-Alam, S.; Sharma, M.; Kassam, Z.; Bureau, Y.; Parnes, L.S.; Ladak, H.M.; Agrawal, S.K. Intra- and Interobserver Variability of Cochlear Length Measurements in Clinical CT. Otol. Neurotol. 2017, 38, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Verdelis, K.; Lukashova, L.; Atti, E.; Mayer-Kuckuk, P.; Peterson, M.; Tetradis, S.; Boskey, A.; van der Meulen, M. MicroCT morphometry analysis of mouse cancellous bone: Intra- and inter-system reproducibility. Bone 2011, 49, 580–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, A.; Judge, R.B.; Palamara, J.E.; Evans, C. Evaluation of the Fit of CAD/CAM Abutments. Int. J. Prosthodont. 2013, 26, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Gehrke, S.; Delgado-Ruiz, R.; Frutos, J.; Prados-Privado, M.; DeDavid, B.; Marín, J.; Guirado, J. Misfit of Three Different Implant-Abutment Connections Before and After Cyclic Load Application: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2017, 32, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Almeida, P.J.; Silva, C.L.; Alves, J.L.; Silva, F.S.; Martins, R.C.; Fernandes, J.S. Comparative analysis of the wear of titanium/titanium and titanium/zirconia interfaces in implant/abutment assemblies after thermocycling and mechanical loading. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2016, 57, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Kanbara, T.; Sekine, H.; Homma, S.; Yajima, Y.; Yoshinari, M. Wear behavior between zirconia and titanium as an antagonist on fixed dental prostheses. Biomed. Mater. 2014, 9, 25005. [Google Scholar] [CrossRef] [Green Version]
- Sikora, C.L.; Alfaro, M.F.; Yuan, J.C.; Barao, V.A.; Sukotjo, C.; Mathew, M.T. Wear and Corrosion Interactions at the Tita-nium/Zirconia Interface: Dental Implant Application. J. Prosthodont. 2018, 27, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Mendes, T.A.; Caramês, J.; Lopes, L.P.; Ramalho, A.L. Sphere-plane methodology to evaluate the wear of titanium of dental implants: A research proposal. BMC Res. Notes 2018, 11, 529. [Google Scholar] [CrossRef]
- Queiroz, D.A.; Hagee, N.; Lee, D.J.; Zheng, F. The behavior of a zirconia or metal abutment on the implant-abutment interface during cyclic loading. J. Prosthet. Dent. 2019, 124, 211–216. [Google Scholar] [CrossRef]
- Karl, M.; Taylor, T.D. Parameters Determining Micromotion at the Implant-Abutment Interface. Int. J. Oral Maxillofac. Implant. 2014, 29, 1338–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, T.; Vilhena, L.; Portugal, J.; Caramês, J.; Ramalho, A.; Lopes, L.P. Influence of abutment and connection type on im-plant-abutment connection rigidity: An in vitro study. Rev. Soc. Port Estomatol. Med. Cir. Maxilofac. 2022, 63, 134–140. [Google Scholar] [CrossRef]
Connection | Titanium Abutment | Zirconia Abutment | ||||||
---|---|---|---|---|---|---|---|---|
Palatine | Buccal | Palatine | Buccal | Palatine | Buccal | Palatine | Buccal | |
Horizontal Platform | Vertical Wall | Horizontal Platform | Vertical Wall | |||||
External Hexagon | −0.0054 | −0.0058 | −0.0006 | −0.0021 | −0.0044 | −0.0049 | −0.0029 | −0.0014 |
Tri-Channel | −0.0068 | −0.0102 | −0.0038 | −0.0001 | −0.0070 | −0.0079 | −0.0008 | −0.0004 |
Cone | Internal Hexagon | Cone | Internal Hexagon | |||||
Cone connection | −0.0016 | −0.0007 | −0.0006 | −0.0014 | −0.0016 | −0.0031 | −0.0004 | −0.0008 |
Connection Type | Abutment Type | Area before Loading | Area after Loading | Difference |
---|---|---|---|---|
External hexagon | Titanium | 14.39 | 13.96 | 0.43 |
Zirconia | 14.43 | 14.04 | 0.39 | |
Tri-channel | Titanium | 44.86 | 44.47 | 0.39 |
Zirconia | 44.55 | 44.18 | 0.37 | |
Conical connection | Titanium | 29.10 | 28.77 | 0.33 |
Zirconia | 29.13 | 28.67 | 0.47 |
Average (Standard Deviation) | Median (Interquartile Range) | |
---|---|---|
Area before loading | 29.41 (13.551) | 29.12 (30.209) |
Area after loading | 29.01 (13.565) | 28.72 (30.237) |
Abutment Type | Average (Standard Deviation) | Median |
---|---|---|
Titanium | 0.38 (0.054) | 0.39 |
Zirconia | 0.41 (0.052) | 0.39 |
Connection Type | Average (Standard Deviation) | Median |
---|---|---|
External hexagon | 0.41 (0.029) | 0.41 |
Tri-channel | 0.38 (0.016) | 0.38 |
Conical connection | 0.40 (0.100) | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, T.A.; Vilhena, L.; Portugal, J.; Caramês, J.; Ramalho, A.L.; Lopes, L.P. Wear of Titanium Implant Platforms with Different Abutment Connections and Abutment Materials: A Pilot Study. J. Funct. Biomater. 2023, 14, 178. https://doi.org/10.3390/jfb14040178
Mendes TA, Vilhena L, Portugal J, Caramês J, Ramalho AL, Lopes LP. Wear of Titanium Implant Platforms with Different Abutment Connections and Abutment Materials: A Pilot Study. Journal of Functional Biomaterials. 2023; 14(4):178. https://doi.org/10.3390/jfb14040178
Chicago/Turabian StyleMendes, Teresa A., Luis Vilhena, Jaime Portugal, João Caramês, Amilcar L. Ramalho, and Luis P. Lopes. 2023. "Wear of Titanium Implant Platforms with Different Abutment Connections and Abutment Materials: A Pilot Study" Journal of Functional Biomaterials 14, no. 4: 178. https://doi.org/10.3390/jfb14040178
APA StyleMendes, T. A., Vilhena, L., Portugal, J., Caramês, J., Ramalho, A. L., & Lopes, L. P. (2023). Wear of Titanium Implant Platforms with Different Abutment Connections and Abutment Materials: A Pilot Study. Journal of Functional Biomaterials, 14(4), 178. https://doi.org/10.3390/jfb14040178