Investigation of the Biosafety of Antibacterial Mg(OH)2 Nanoparticles to a Normal Biological System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Mg(OH)2 NPs
2.3. Characterization
2.4. Culture and Treatment of HELF Cells and PC-12 Cells
2.5. Acute Oral Toxicity Test and Histopathological Sections
2.6. In Vivo Acute Eye Irritation Test
3. Results
3.1. Characterizations of Mg(OH)2 NPs
3.2. In Vitro Cytotoxicity of Mg(OH)2 NPs to HELF Cells and PC-12 Cells
3.3. Acute Oral Toxicity and Histopathology Research
3.4. In Vivo Acute Eye Irritation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nejati, M.; Rostami, M.; Mirzaei, H.; Rahimi-Nasrabadi, M.; Vosoughifar, M.; Nasab, A.S.; Ganjali, M.R. Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorg. Chem. Commun. 2021, 136, 109107. [Google Scholar] [CrossRef]
- Balducci, G.; Diaz, L.B.; Gregory, D.H. Recent progress in the synthesis of nanostructured magnesium hydroxide. CrystEngComm 2017, 19, 41. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Rajasekaran, P.; Ozcan, A.; Santra, S. Antimicrobial Magnesium Hydroxide Nanoparticles as an Alternative to Cu Biocide for Crop Protection. J. Agric. Food Chem. 2018, 66, 33. [Google Scholar] [CrossRef] [PubMed]
- Truskewycz, A.; Truong, V.K.; Ball, A.S.; Houshyar, S.; Nassar, N.; Yin, H.; Murdoch, B.J.; Cole, I. Fluorescent Magnesium Hydroxide Nanosheet Bandages with Tailored Properties for Biocompatible Antimicrobial Wound Dressings and pH Monitoring. ACS Appl. Mater. Interfaces 2021, 24, 27904–27919. [Google Scholar] [CrossRef]
- Halbus, A.F.; Horozov, T.S.; Paunov, V.N. Controlling the Antimicrobial Action of Surface Modified Magnesium Hydroxide Nanoparticles. Biomimetics 2019, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.H.; Li, J.; Zhu, W.P.; Xu, Y.F.; Zhou, S.M.; Yang, Y.Y.; Qian, X.H. Hybrid nanocomposite multinetwork hydrogel containing magnesium hydroxide nanoparticles with enhanced antibacterial activity for wound dressing applications. Polymer 2022, 251, 124902. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Zhang, D.; Jia, X.Y.; Xiao, K.S.; Lin, X.; Yang, Y.; Xu, D.K.; Wang, Q. Antimicrobial Activity of Nano-Magnesium Hydroxide Against Oral Bacteria and Application in Root Canal Sealer. Med. Sci. Monit. 2020, 26, e922920-1. [Google Scholar] [CrossRef]
- Nakamura, Y.; Okita, K.; Kudo, D.; Phuong, D.N.D.; Iwamoto, Y.; Yoshioka, Y.; Ariyoshi, W.; Yamasaki, R. Magnesium Hydroxide Nanoparticles Kill Exponentially Growing and Persister Escherichia coli Cells by Causing Physical Damage. Nanomaterials 2021, 11, 1584. [Google Scholar] [CrossRef]
- Falyouna, O.; Bensaida, K.; Maamoun, I.; Ashik, U.P.M.; Tahara, A.; Tanaka, K.; Aoyagi, N.; Sugihara, Y.J.; Eljamal, O. Synthesis of hybrid magnesium hydroxide/magnesium oxide nanorods [Mg(OH)2/MgO] for prompt and efficient adsorption of ciprofloxacin from aqueous solutions. J. Clean. Prod. 2022, 342, 140949. [Google Scholar] [CrossRef]
- Jarosinski, A.; Radomski, P.; Lelek, L.; Kulczycka, J. New Production Route of Magnesium Hydroxide and Related Environmental Impact. Sustainability 2020, 12, 8822. [Google Scholar] [CrossRef]
- Bedair, T.M.; Heo, Y.; Ryu, J.; Bedair, H.M.; Park, W.; Han, D.K. Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomater. Sci. 2021, 9, 1903–1923. [Google Scholar] [CrossRef]
- Dong, C.X.; Cairney, J.; Sun, Q.H.; Maddan, O.L.; He, G.H.; Deng, Y.L. Investigation of Mg(OH)2 nanoparticles as an antimicrobial agent. J. Nanopart. Res. 2010, 12, 2101–2109. [Google Scholar] [CrossRef]
- Li, X.C.; Xiao, W.; He, G.H.; Zheng, W.J.; Yu, N.; Tan, M. Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process: High adsorption capability to azo dyes. Colloid. Surf. A-Physicochem. Eng. Asp. 2012, 408, 79–86. [Google Scholar] [CrossRef]
- Dong, C.X.; He, G.J.; Li, H.; Zhao, R.; Han, Y.; Deng, Y.L. Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles. J. Menbrane. Sci. 2012, 387–388, 40–47. [Google Scholar] [CrossRef]
- Sawai, J.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Evaluation of growth-inhibitory effect of ceramics powder slurry on bacteria by conductance method. J. Chem. Eng. Jpn. 1995, 28, 288–293. [Google Scholar] [CrossRef]
- Dong, C.X.; Song, D.L.; Cairney, J.; Maddan, O.L.; He, G.H.; Deng, Y.L. Antibacterial study of Mg(OH)2 nanoplatelets. Mater. Res. Bull. 2011, 46, 576–582. [Google Scholar] [CrossRef]
- Pan, X.H.; Wang, Y.H.; Chen, Z.; Pan, D.M.; Cheng, Y.J.; Liu, Z.J.; Lin, Z.; Guan, X. Investigation, of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl. Mater. Inter. 2013, 5, 1137–1142. [Google Scholar] [CrossRef]
- Sawai, J.; Kawada, E.; Kanou, F.; Igarashi, H.; Hashimoto, A.; Kokugan, T. Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 1996, 29, 627–633. [Google Scholar] [CrossRef]
- Sawai, J.; Kojima, H.; Igarashi, H.; Hashimoto, A.; Shoji, S.; Sawaki, T.; Hakoda, A.; Kawada, E.; Kokugan, T.; Shimizu, M. Antibacterial characteristics of magnesium oxide powder. World J. Microb. Biot. 2000, 16, 187–194. [Google Scholar] [CrossRef]
- Mangalampalli, B.; Dumala, N.; Grover, P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul. Toxicol. Pharm. 2017, 90, 170–184. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Choi, Y.K.; Singh, V.; Song, H.J.; Song, K.G.; Kim, K.J.; Kim, H.J. In vitro cytotoxic evaluation of MgO nanoparticles and their effect on the expression of ROS genes. Int. J. Mol. Sci. 2015, 16, 7551–7564. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, S.C.; Zhao, D.; Hun, F.H.; Weng, L.; Liu, H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol. Toxicol. 2011, 27, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Dong, Q.; Shen, Y.; Wang, H.; Yin, T.; Wang, G.; Jia, D.; Zhang, Q. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnol. 2011, 5, 36–40. [Google Scholar] [CrossRef]
- Kiranmai, G.; Reddy, A.R.N. Antioxidant status in MgO nanoparticle-exposed rats. Toxicol. Ind. Health 2013, 29, 897–903. [Google Scholar] [CrossRef]
- Meng, N.; Han, L.; Pan, X.H.; Su, L.; Jiang, Z.; Lin Zhang Zhao, J.; Zhang, S.L.; Zhang, Y.; Zhao, B.X.; Mia, J.Y. Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis. Cell Biol. Toxicol. 2015, 31, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.T.; Zhang, P.C.; Wang, Y.L.; Li, J.F. Preparation of Mg(OH)2 Nanosheets and Self-Assembly of Its Flower-Like Nanostructure via Precipitation Method for Heat-Resistance Application. Integr. Ferroelectr. 2015, 163, 148–154. [Google Scholar] [CrossRef]
- Wang, P.P.; Li, C.H.; Gong, H.Y.; Wang, H.Q.; Liu, J.R. Morphology control and growth mechanism of magnesium hydroxide nanoparticles via a simple wet precipitation method. Ceram. Int. 2011, 37, 3365–3370. [Google Scholar] [CrossRef]
- Yang, H.H.; Zhang, C.; Lai, S.H.; Zeng, C.C.; Liu, Y.J.; Wang, X.Z. Isoliquiritigenin Induces Cytotoxicity in PC-12 Cells In Vitro. Appl. Biochem. Biotech. 2017, 183, 1173–1190. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Wan, P.; Zhai, Z.J.; Mao, Z.Y.; Ouyang, Z.X.; Yu, D.G.; Sun, Q.; Tan, L.L.; Ren, L.; et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials 2016, 106, 250–263. [Google Scholar] [CrossRef]
- Du, F.; Qian, Z.M.; Luo, Q.; Yung, W.H.; Ke, Y. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol. Neurobiol. 2014, 52, 101–114. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Forte, M.; Valiante, S.; Laforgia, V.; Falco, M.D. Interference of dibutylphthalate on human prostate cell viability. Ecotox. Environ. Saf. 2018, 147, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Dimde, M.; Sahle, F.F.; Wycisk, V.; Steinhilber, D.; Camacho, L.C.; Licha, K.; Lademann, J.; Haag, R. Synthesis and validation of functional nanogels as pH-Sensors in the hair follicle. Macromol. Biosci. 2017, 17, 1600505. [Google Scholar] [CrossRef] [PubMed]
- Priya, K.K.; Ramesh, M.; Saravanan, M.; Ponpandian, N. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na+/K+ ATPase activity. Ecotox. Environ. Saf. 2015, 120, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, C.; Rahuman, A.A.; Ramkumar, R.; Perumal, P.; Rajakuma, G.; Kirthi, A.V.; Santhoshkumar, T.; Marimuthu, S. Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotox. Environ. Saf. 2014, 107, 220–228. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhong, Y.G.; Su, R.; Qi, H.C.; Deng, W.N.; Sun, Y.; Ma, T.R.; Wang, X.L.; Yu, H.J.; Wang, X.R.; et al. N-glycan profiles in H9N2 avian influenza viruses from chicken eggs and human embryonic lung fibroblast cells. J. Virol. Methods 2017, 249, 10–20. [Google Scholar] [CrossRef]
- Huang, S.N.; Ruan, H.Z.; Chen, M.Y.J.; Zhou, G.; Qian, Z.M. Aspirin increases ferroportin 1 expression by inhibiting hepcidin via the JAK/STAT3 pathway in interleukin 6-treated PC-12 cells. Neurosci. Lett. 2018, 622, 1–5. [Google Scholar] [CrossRef]
- Jayarambabu, N.; Rao, K.V.; Rajendar, V. Biogenic synthesis, characterization, acute oral toxicity studies of synthesized Ag and ZnO nanoparticles using aqueous extract of Lawsonia inermis. Mater. Lett. 2018, 2011, 43–47. [Google Scholar] [CrossRef]
- Wang, Y.; Sha, L.; Zhao, J.; Li, Q.; Zhu, Y.M.; Wang, N.H. Antibacterial property of fabrics coated by magnesium-based brucites. Appl. Surf. Sci. 2017, 400, 413–419. [Google Scholar] [CrossRef]
Test Site | Appearance | Score | |
---|---|---|---|
Cornea | A: Opacity | Same as normal eye | 0 |
Scattered or diffused turbidity; iris is clearly visible | 1 | ||
Translucent area is easy to distinguish; iris is clearly visible | 2 | ||
Appearance of a milky area; iris detail is unclear; pupil is barely visible | 3 | ||
Cornea is opaque; iris is unrecognizable | 4 | ||
B: Damaged area | 0 | 0 | |
0~1/4 | 1 | ||
1/4~1/2 | 2 | ||
1/2~3/4 | 3 | ||
3/4~1 | 4 | ||
Integration 1 = A × B × 5, the maximum value is 80 | |||
Iris | Same as normal eye | 0 | |
Pleat is deepened/hyperemia/edema; pupil can respond to light | 1 | ||
Hyperemia/visible necrosis/pupil; cannot respond to light | 2 | ||
Integration 2 = A × 5, the maximum value is 10 | |||
Conjunctiva | A: Hyperemia | Same as normal eye | 0 |
Degree of hyperemia is higher than amount of normal blood vessels | 1 | ||
Diffused dark-red hyperemia; blood vessels are hard to distinguish | 2 | ||
Diffused fuchsia hyperemia | 3 | ||
B: Edema | Same as normal eye | 0 | |
Edema is more severe than normal edema | 1 | ||
Obvious edema and partial valgus eyelid | 2 | ||
Nearly half of eyelid closed caused by edema | 3 | ||
More than half of eyelid closed caused by edema | 4 | ||
C: Eye secretion | Same as normal eye | 0 | |
Eye secretions are higher those of normal eyes | 1 | ||
Eyelids and eyelashes becoming wet due to eye secretions | 2 | ||
Large area of eyelids and around eye becoming wet due to eye secretions | 3 | ||
Integration 3 = (A + B + C) × 2; the maximum value is 20 | |||
Total integration = Integration 1 + Integration 2 + Integration 3 |
JW Rabbits Samples (Acute Eye Irritation) | 0 h | 1 h | 24 h | 48 h | 72 h |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Li, X.; Wang, F.; Huang, Y.; Liu, Y.; Zhu, Y. Investigation of the Biosafety of Antibacterial Mg(OH)2 Nanoparticles to a Normal Biological System. J. Funct. Biomater. 2023, 14, 229. https://doi.org/10.3390/jfb14040229
Wang Y, Liu Y, Li X, Wang F, Huang Y, Liu Y, Zhu Y. Investigation of the Biosafety of Antibacterial Mg(OH)2 Nanoparticles to a Normal Biological System. Journal of Functional Biomaterials. 2023; 14(4):229. https://doi.org/10.3390/jfb14040229
Chicago/Turabian StyleWang, Ying, Yanjing Liu, Xiyue Li, Fuming Wang, Yaping Huang, Yuezhou Liu, and Yimin Zhu. 2023. "Investigation of the Biosafety of Antibacterial Mg(OH)2 Nanoparticles to a Normal Biological System" Journal of Functional Biomaterials 14, no. 4: 229. https://doi.org/10.3390/jfb14040229
APA StyleWang, Y., Liu, Y., Li, X., Wang, F., Huang, Y., Liu, Y., & Zhu, Y. (2023). Investigation of the Biosafety of Antibacterial Mg(OH)2 Nanoparticles to a Normal Biological System. Journal of Functional Biomaterials, 14(4), 229. https://doi.org/10.3390/jfb14040229