Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Formulation Characterisation
2.2.1. Surface Tension
2.2.2. Viscosity
2.3. Preparation of Spin-Coated Films
2.4. Weight Uniformity and Thickness Evaluation of Film Samples
2.5. Optical Microscopy of the Spin-Coated Films
2.6. Wettability Assessment
2.6.1. Surface Tension, Polar, and Dispersive Components of Liquid Forms
2.6.2. CA Measurements with Liquid Forms
2.7. Estimation of Surface Energy Using Different Models
2.7.1. Fowkes Calculation Model
2.7.2. Owens–Wendt–Rabel–Kelble Calculation Model
2.7.3. Wu Calculation Model
2.7.4. Van Oss–Chaudhury–Good Calculation Model
2.8. Solid–Liquid Phase Interactions
Spreading Coefficient
3. Results and Discussion
3.1. Thin Film Characteristics and Optical Microscopy of Spin-Coated Films
3.2. Surface Wetting
3.2.1. SFT, Polar and Dispersive Components, and Polarity of Liquid Forms
3.2.2. CA Results Using Liquid Samples
3.2.3. Surface Energy of Polysaccharide-Based Film as Simulation of Thin Film Coatings
3.2.4. Influence of Surface Energy and Their Components on Wettability
3.3. Surface Properties of Antiviral Polysaccharide Films Affecting Interactions with Model Virus phi6
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glidle, A.; Yasukawa, T.; Hadyoon, C.S.; Anicet, N.; Matsue, T.; Nomura, M.; Cooper, J.M. Analysis of Protein Adsorption and Binding at Biosensor Polymer Interfaces Using X-ray Photon Spectroscopy and Scanning Electrochemical Microscopy. Anal. Chem. 2003, 75, 2559–2570. [Google Scholar] [CrossRef]
- LeBlanc, S.; Wilkins, H.; Li, Z.; Kaur, P.; Wang, H.; Erie, D.A. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein–DNA Complexes That Carry Out DNA Repair. Methods Enzym. 2017, 592, 187. [Google Scholar] [CrossRef]
- Bračič, M.; Fras-Zemljič, L.; Pérez, L.; Kogej, K.; Stana-Kleinschek, K.; Kargl, R.; Mohan, T. Protein-Repellent and Antimicrobial Nanoparticle Coatings from Hyaluronic Acid and a Lysine-Derived Biocompatible Surfactant. J. Mater. Chem. B 2017, 5, 3888–3897. [Google Scholar] [CrossRef]
- Achebe, C.H.; Iweriolor, S.; Chukwuneke, J.L. Surface Energetics Study and Determination of the Combined Negative Hamaker Coefficient for Hepatitis C Virus Infected Human Blood Cells. J. Biomed. Sci. Eng. 2018, 11, 307–319. [Google Scholar] [CrossRef]
- Jarl, B. Rosenholm: Colloids and Interface Science Series, Vol. 2 Colloid Stability: The Role of Surface Forces, Part II; Tharwat, F.T., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; Volume 2. [Google Scholar]
- Della Volpe, C.; Siboni, S. Acid–Base Surface Free Energies of Solids and the Definition of Scales in the Good–van Oss–Chaudhury Theory. J. Adhes. Sci. Technol. 2012, 14, 235–272. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Krawczyk, J.; Jańczuk, B. Wettability and Adhesion Work Prediction in the Polymer–Aqueous Solution of Surface Active Agent Systems. Colloids Interfaces 2018, 2, 21. [Google Scholar] [CrossRef]
- Bos, R.; van der Mei, H.C.; Busscher, H.J. Physico-Chemistry of Initial Microbial Adhesive Interactions--Its Mechanisms and Methods for Study. FEMS Microbiol. Rev. 1999, 23, 179–230. [Google Scholar] [CrossRef]
- Yelemane, V.; Kangwa, M.; Dsouza, R.N.; Fernández-Lahore, M. Surface Energetics to Assess Influence of Biomass-Type and Biomass–Adsorbent Interactions in Expanded Beds. Bioresour. Bioprocess. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Villapun Puzas, V.M.; Carter, L.N.; Schröder, C.; Colavita, P.E.; Hoey, D.A.; Webber, M.A.; Addison, O.; Shepherd, D.E.T.; Attallah, M.M.; Grover, L.M.; et al. Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4V. ACS Biomater. Sci. Eng. 2022, 8, 4311–4326. [Google Scholar] [CrossRef]
- Habib, S.; Lehocky, M.; Vesela, D.; Humpolíček, P.; Krupa, I.; Popelka, A. Preparation of Progressive Antibacterial LDPE Surface via Active Biomolecule Deposition Approach. Polymers 2019, 11, 1704. [Google Scholar] [CrossRef]
- Rigolin, M.S.M.; Barbugli, P.A.; Jorge, J.H.; Reis, M.R.D.; Adabo, G.L.; Casemiro, L.A.; Martins, C.H.G.; de Lima, O.J.; de Assis Mollo Junior, F. Effect of the Aging of Titanium and Zirconia Abutment Surfaces on the Viability, Adhesion, and Proliferation of Cells and the Adhesion of Microorganisms. J. Prosthet. Dent. 2019, 122, 564.e1–564.e10. [Google Scholar] [CrossRef] [PubMed]
- Bilgili, D.; Dündar, A.; Barutçugil, Ç.; Tayfun, D.; Özyurt, Ö.K. Surface Properties and Bacterial Adhesion of Bulk-Fill Composite Resins. J. Dent. 2020, 95, 103317. [Google Scholar] [CrossRef] [PubMed]
- Plohl, O.; Fric, K.; Filipić, A.; Kogovšek, P.; Tušek Žnidarič, M.; Zemljič, L.F. First Insights into the Antiviral Activity of Chitosan-Based Bioactive Polymers towards the Bacteriophage Phi6: Physicochemical Characterization, Inactivation Potential, and Inhibitory Mechanisms. Polymers 2022, 14, 3357. [Google Scholar] [CrossRef] [PubMed]
- Raafat, D.; Sahl, H.G. Chitosan and Its Antimicrobial Potential—A Critical Literature Survey. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Yilmaz Atay, H. Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan; Springer: Singapore, 2020; pp. 457–489. [Google Scholar] [CrossRef]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef]
- Ren, G.; Wan, K.; Kong, H.; Guo, L.; Wang, Y.; Liu, X.; Wei, G. Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr. Polym. 2023, 305, 120537. [Google Scholar] [CrossRef]
- Chaker, A.; Boufi, S. Cationic Nanofibrillar Cellulose with High Antibacterial Properties. Carbohydr. Polym. 2015, 131, 224–232. [Google Scholar] [CrossRef]
- Li, J.; Cha, R.; Mou, K.; Zhao, X.; Long, K.; Luo, H.; Zhou, F.; Jiang, X. Nanocellulose-Based Antibacterial Materials. Adv. Health Mater. 2018, 7, 1800334. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Nurazzi, N.M.; Jenol, M.A.; Farid, M.A.A.; Janudin, N.; Ujang, F.A.; Yasim-Anuar, T.A.T.; Syed Najmuddin, S.U.F.; Ilyas, R.A. Emerging Development of Nanocellulose as an Antimicrobial Material: An Overview. Mater. Adv. 2021, 2, 3538–3551. [Google Scholar] [CrossRef]
- Otto, D.P.; de Villiers, M.M. Layer-by-Layer Nanocoating of Antiviral Polysaccharides on Surfaces to Prevent Coronavirus Infections. Molecules 2020, 25, 3415. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Han, W.; Wang, G.; Zhao, X. Application Prospect of Polysaccharides in the Development of Anti-Novel Coronavirus Drugs and Vaccines. Int. J. Biol. Macromol. 2020, 164, 331. [Google Scholar] [CrossRef]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. Chitosan, Alginate, Hyaluronic Acid, Gums, and β-Glucan as Potent Adjuvants and Vaccine Delivery Systems for Viral Threats Including SARS-CoV-2: A Review. Int. J. Biol. Macromol. 2021, 182, 1931–1940. [Google Scholar] [CrossRef]
- Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Muhtaseb, N.; Al-Adham, I.S.I.; Collier, P.J. A Review of the Antiviral Activity of Chitosan, Including Patented Applications and Its Potential Use against COVID-19. J. Appl. Microbiol. 2022, 132, 41–58. [Google Scholar] [CrossRef]
- Sharma, N.; Modak, C.; Singh, P.K.; Kumar, R.; Khatri, D.; Singh, S.B. Underscoring the Immense Potential of Chitosan in Fighting a Wide Spectrum of Viruses: A Plausible Molecule against SARS-CoV-2? Int. J. Biol. Macromol. 2021, 179, 33–44. [Google Scholar] [CrossRef]
- Pyrć, K.; Milewska, A.; Duran, E.B.; Botwina, P.; Dabrowska, A.; Jedrysik, M.; Benedyk, M.; Lopes, R.; Arenas-Pinto, A.; Badr, M.; et al. SARS-CoV-2 Inhibition Using a Mucoadhesive, Amphiphilic Chitosan That May Serve as an Anti-Viral Nasal Spray. Sci. Rep. 2021, 11, 20012. [Google Scholar] [CrossRef] [PubMed]
- Milewska, A.; Ciejka, J.; Kaminski, K.; Karewicz, A.; Bielska, D.; Zeglen, S.; Karolak, W.; Nowakowska, M.; Potempa, J.; Bosch, B.J.; et al. Novel Polymeric Inhibitors of HCoV-NL63. Antivir. Res. 2013, 97, 112–121. [Google Scholar] [CrossRef]
- Milewska, A.; Kaminski, K.; Ciejka, J.; Kosowicz, K.; Zeglen, S.; Wojarski, J.; Nowakowska, M.; Szczubiałka, K.; Pyrc, K. HTCC: Broad Range Inhibitor of Coronavirus Entry. PLoS ONE 2016, 11, e0156552. [Google Scholar] [CrossRef]
- Milewska, A.; Chi, Y.; Szczepanski, A.; Barreto-Duran, E.; Dabrowska, A.; Botwina, P.; Obloza, M.; Liu, K.; Liu, D.; Guo, X.; et al. HTCC as a Polymeric Inhibitor of SARS-CoV-2 and MERS-CoV. J. Virol. 2021, 95, e01622-20. [Google Scholar] [CrossRef]
- Rosilo, H.; McKee, J.R.; Kontturi, E.; Koho, T.; Hytönen, V.P.; Ikkala, O.; Kostiainen, M.A. Cationic Polymer Brush-Modified Cellulose Nanocrystals for High-Affinity Virus Binding. Nanoscale 2014, 6, 11871–11881. [Google Scholar] [CrossRef] [PubMed]
- Plohl, O.; Kokol, V.; Filipić, A.; Fric, K.; Kogovšek, P.; Peršin Fratnik, Z.; Vesel, A.; Kurečič, M.; Robič, J.; Gradišnik, L.; et al. Screen-printing of chitosan and cationised cellulose nanofibril coatings for integration into functional face masks with potential antiviral activity. Int. J. Biol. Macromol. 2023, 236, 123951. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Korpacz, A.N.; Dufour, C.R.; Weiland, Z.J.; Lambert, C.R.; Timko, M.T. Binary Liquid Mixture Contact-Angle Measurements for Precise Estimation of Surface Free Energy. Langmuir 2019, 35, 12317–12325. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Ferraz, M.P.; Monteiro, F.J. COVID-19 Pandemic: Case Studies, Commentaries, and Opinions [COVID] Bacteriophage Phi 6 as Surrogate and Human-Harmless Viruses to Study Anti-SARS-CoV-2 Approaches. COVID-19 Pandemic Case Stud. Opin. 2021, 2, 175–177. [Google Scholar]
- String, G.M.; Kamal, Y.; Gute, D.M.; Lantagne, D.S. Chlorine Efficacy against Bacteriophage Phi6, a Surrogate for Enveloped Human Viruses, on Porous and Non-Porous Surfaces at Varying Temperatures and Humidity. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2022, 57, 685–693. [Google Scholar] [CrossRef]
- Gautam, S.D.; Pant, M.; Adhikari, N.R. Comprehensive Chemistry, Part 2, 6th ed.; Heritage Publishers and Distributors Pvt. Ltd.: Kathmandu, Nepal, 2016. [Google Scholar]
- Atthanase, D. Théorie Mécanique de La Chaleur: Dupré, Athanase, 1808–1869: Free Download, Borrow, and Streaming: Internet Archive. Available online: https://archive.org/details/thoriemcaniqued00duprgoog (accessed on 6 February 2023).
- Fowkes, F.M. Attractive Forces at Interfaces. Ind. Eng. Chem. 2002, 56, 40–52. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Kaelble, D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhes. 2008, 2, 66–81. [Google Scholar] [CrossRef]
- Wu, S. Calculation of Interfacial Tension in Polymer Systems. J. Polym. Sci. Part C Polym. Symp. 1971, 34, 19–30. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz—Van Der Waals and Polar Interactions in Macroscopic Systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- van Oss, C.J.; Good, R.J.; Chaudhury, M.K. The Role of van Der Waals Forces and Hydrogen Bonds in “Hydrophobic Interactions” between Biopolymers and Low Energy Surfaces. J. Colloid Interface Sci. 1986, 111, 378–390. [Google Scholar] [CrossRef]
- Neumann, A.W.; Good, R.J. Techniques of Measuring Contact Angles. Surf. Colloid Sci. 1979, 11, 31–91. [Google Scholar] [CrossRef]
- Good, R.J. Contact Angles and the Surface Free Energy of Solids. Surf. Colloid Sci. 1979, 11, 1–29. [Google Scholar] [CrossRef]
- Interfacial Phenomena in Metal and Alloys. Von, L. E. Murr; Addison-Wesley Publishing Company, Reading/Mass. 1975, 376 S., 14,50 $. Phys. Unserer Zeit 1977, 8, 30. [CrossRef]
- Girifalco, L.A.; Good, R.J. A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension. J. Phys. Chem. 1957, 61, 904–909. [Google Scholar] [CrossRef]
- Krüss, C.R. Predicting the Dispersability of Particles Application Report: AR213e Two-Component Surface Energy Characterization as a Predictor of Wettability and Dispersability. 2000. Available online: www.kruss.de (accessed on 25 March 2023).
- Rosenholm, J.B. Wetting of Surfaces and Interfaces: A Conceptual Equilibrium Thermodynamic Approach. In Colloids and Interface Science Series; Tharwat, F.T., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; Volume 2, pp. 1–83. [Google Scholar]
- Kalin, M.; Polajnar, M. The Correlation between the Surface Energy, the Contact Angle and the Spreading Parameter, and Their Relevance for the Wetting Behaviour of DLC with Lubricating Oils. Tribol. Int. 2013, 66, 225–233. [Google Scholar] [CrossRef]
- Yan, Y.; Li, J.; Liu, Q.; Zhou, P. Evaporation Effect on Thickness Distribution for Spin-Coated Films on Rectangular and Circular Substrates. Coatings 2021, 11, 1322. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Krawczyk, J.; Szymczyk, K.; Jańczuk, B. Components and Parameters of Liquids and Some Polymers Surface Tension at Different Temperature. Colloids Surf. A Phys. Eng. Asp. 2017, 529, 864–875. [Google Scholar] [CrossRef]
- Hwang, G.; Lee, C.H.; Ahn, I.S.; Mhin, B.J. Determination of Reliable Lewis Acid–Base Surface Tension Components of a Solid in LW–AB Approach. J. Ind. Eng. Chem. 2011, 17, 125–129. [Google Scholar] [CrossRef]
- Cantin, S.; Bouteau, M.; Benhabib, F.; Perrot, F. Surface Free Energy Evaluation of Well-Ordered Langmuir–Blodgett Surfaces: Comparison of Different Approaches. Colloids Surf. A Phys. Eng. Asp. 2006, 276, 107–115. [Google Scholar] [CrossRef]
- Sharp, K.A.; Vanderkooi, J.M. Water in the Half Shell: Structure of Water, Focusing on Angular Structure and Solvation. Acc. Chem. Res. 2010, 43, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Kruszelnicki, M.; Polowczyk, I.; Kowalczuk, P.B. Control of Glass Surface Wettability via Esterification with N-Alkyl Alcohols. Physicochem. Probl. Miner. Process. 2021, 58, 145147. [Google Scholar] [CrossRef]
- Bangera, A.E.; Appaiah, K. A Conditional Justification for the Determination of Surface Energy of Solids Using Contact Angle Methods. Mater. Chem. Phys. 2019, 234, 168–171. [Google Scholar] [CrossRef]
- Ahmed, T. Fundamentals of Rock Properties. In Reservoir Engineering Handbook; Gulf Professional Publishing: London, UK, 2019; pp. 167–281. [Google Scholar] [CrossRef]
- Cunha, A.G.; Fernandes, S.C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P.; Gandini, A. What Is the Real Value of Chitosan’s Surface Energy? Biomacromolecules 2008, 9, 610–614. [Google Scholar] [CrossRef]
- Yamane, C.; Aoyagi, T.; Ago, M.; Sato, K.; Okajima, K.; Takahashi, T. Two Different Surface Properties of Regenerated Cellulose Due to Structural Anisotropy. Polym. J. 2006, 38, 819–826. [Google Scholar] [CrossRef]
- Glasser, W.G.; Atalla, R.H.; Blackwell, J.; Brown, M.M.; Burchard, W.; French, A.D.; Klemm, D.O.; Nishiyama, Y. About the Structure of Cellulose: Debating the Lindman Hypothesis. Cellulose 2012, 19, 589–598. [Google Scholar] [CrossRef]
- Lee, D.W.; Lim, C.; Israelachvili, J.N.; Hwang, D.S. Strong Adhesion and Cohesion of Chitosan in Aqueous Solutions. Langmuir 2013, 29, 14222. [Google Scholar] [CrossRef]
- Huiskonen, J.T.; de Haas, F.; Bubeck, D.; Bamford, D.H.; Fuller, S.D.; Butcher, S.J. Structure of the Bacteriophage Φ6 Nucleocapsid Suggests a Mechanism for Sequential RNA Packaging. Structure 2006, 14, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
Spin-Coated Sample Notation | Description of Polysaccharide Film Sample |
---|---|
A | Spin-coated film on glass slide using polymer solution of 2 wt.% HMWCh |
B | Spin-coated film on glass slide using polymer solution of 1.5 wt.% qCNF |
AB | Spin-coated film on glass slide using polymer solution of HMWCh and qCNF (prepared in mass ratio HMWCh: qCNF = 1:1 (w/w)) |
Polymer Formulation Prior Spin Coating | Film (Spin Coated) on Glass Cover | |||
---|---|---|---|---|
Formulation | SFT (mN/m) | Viscosity (mPas) | Weight (g) | Thickness (mm) |
A | 60.46 ± 0.74 | 4497.8 ± 52.0 | 0.1834 ± 0.0021 | 0.2140 ± 0.0200 |
B | 136.96 ± 38.82 | 7000.0 ± 123.0 | 0.4068 ± 0.0052 | 0.2870 ± 0.2501 |
AB | 63.42 ± 0.49 | 572.3 ± 46.0 | 0.1141 ± 0.0009 | 0.1825 ± 0.0331 |
Liquid Phase | SFT and Their Components | Polarity (Pl) | ||
---|---|---|---|---|
SFT (mN/m) | Polar Component (mN/m) | Dispersive Component (mN/m) | ||
SMb | 60.5 ± 0.0 | 0.9 ± 0.0 | 59.6 ± 0.0 | 0.02 |
DI | 50.8 ± 0.0 | 1.8 ± 0.0 | 49.0 ± 0.0 | 0.04 |
DMSO | 44.0 ±0.0 | 8.0 ± 0.0 | 36.0 ± 0.0 | 0.18 |
phi6 | 51.9 ± 0.1 | 15.0 ± 0.1 | 36.9 ± 0.1 | 0.29 |
EG | 48.0 ±0.0 | 19.0 ± 0.0 | 29.0 ± 0.0 | 0.40 |
GY | 64.0 ± 0.0 | 30.0 ± 0.0 | 34.0 ± 0.0 | 0.47 |
W | 72.8 ± 0.8 | 50.7 ± 0.4 | 22.1 ± 0.3 | 0.70 |
Sample | CA (°) | ||||||
---|---|---|---|---|---|---|---|
Film | SMb | DI | DMSO | phi6 | EG | GY | W |
REF | 109.0 ± 8.9 | 93.3 ± 6.8 | 59.4 ± 2.6 | 82.3 ± 4.7 | 95.1 ± 4.0 | 96.3 ± 2.2 | 78.6 ± 5.1 |
A | 95.5 ± 3.7 | 66.8 ± 5.8 | 37.0 ± 1.2 | 98.9 ± 3.6 | 67.3 ± 3.8 | 91.7 ± 2.5 | 117.7 ± 4.7 |
B | 86.7 ± 4.9 | 51.4 ± 3.9 | 33.1 ± 3.9 | 94.4 ± 5.7 | 41.6 ± 3.5 | 78.5 ± 4.4 | 86.7 ± 5.7 |
AB | 90.3 ± 4.1 | 65.2 ± 5.1 | 36.4 ± 2.9 | 90.1 ± 3.3 | 65.4 ± 3.4 | 90.4 ± 3.8 | 103.6 ± 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peršin Fratnik, Z.; Plohl, O.; Kokol, V.; Fras Zemljič, L. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus. J. Funct. Biomater. 2023, 14, 232. https://doi.org/10.3390/jfb14040232
Peršin Fratnik Z, Plohl O, Kokol V, Fras Zemljič L. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus. Journal of Functional Biomaterials. 2023; 14(4):232. https://doi.org/10.3390/jfb14040232
Chicago/Turabian StylePeršin Fratnik, Zdenka, Olivija Plohl, Vanja Kokol, and Lidija Fras Zemljič. 2023. "Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus" Journal of Functional Biomaterials 14, no. 4: 232. https://doi.org/10.3390/jfb14040232
APA StylePeršin Fratnik, Z., Plohl, O., Kokol, V., & Fras Zemljič, L. (2023). Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus. Journal of Functional Biomaterials, 14(4), 232. https://doi.org/10.3390/jfb14040232