Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
2.3. Protein Conditioning
2.4. Responses of Mammalian Cells
2.5. Responses of Bacterial Cells
3. Results
3.1. Features of the Materials
3.2. Bacterial Responses
3.3. Response of the hGFs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Ban, J.H.; Li, G.; Wang, X.; Feng, X.P.; Tai, B.J.; Hu, D.Y.; Lin, H.C.; Wang, B.; Si, Y.; et al. Status of Tooth Loss and Denture Restoration in Chinese Adult Population: Findings from the 4th National Oral Health Survey. Chin. J. Dent. Res. 2018, 21, 249–257. [Google Scholar]
- Wu, X.; Qiao, S.; Wang, W.; Zhang, Y.; Shi, J.; Zhang, X.; Gu, W.; Zhang, X.; Li, Y.; Ding, X.; et al. Melatonin prevents peri-implantitis via suppression of TLR4/NF-κB. Acta Biomater. 2021, 134, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Qiao, S.; Qin, H.; Jandt, K.D. Antibacterial designs for implantable medical devices: Evolutions and challenges. J. Funct. Biomater. 2022, 13, 86. [Google Scholar] [CrossRef]
- Derks, J.; Schaller, D.; Hakansson, J.; Wennstrom, J.L.; Tomasi, C.; Berglundh, T. Effectiveness of implant therapy analyzed in a Swedish population: Prevalence of peri-implantitis. J. Dent. Res. 2016, 95, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Persson, G.R.; Renvert, S. Cluster of bacteria associated with peri-implantitis. Clin. Implant. Dent. Relat. Res. 2014, 16, 783–793. [Google Scholar] [CrossRef]
- Lafaurie, G.I.; Sabogal, M.A.; Castillo, D.M.; Rincón, M.V.; Gómez, L.A.; Lesmes, Y.A.; Chambrone, L. Microbiome and Microbial Biofilm Profiles of Peri-Implantitis: A Systematic Review. J. Periodontol. 2017, 88, 1066–1089. [Google Scholar] [CrossRef] [PubMed]
- Belibasakis, G.N.; Manoil, D. Microbial Community-Driven Etiopathogenesis of Peri-Implantitis. J. Dent. Res. 2021, 100, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Alani, A.; Bishop, K. Peri-implantitis. Part 2: Prevention and maintenance of peri-implant health. Br. Dent. J. 2014, 217, 289–297. [Google Scholar] [CrossRef]
- Guy, S.C.; McQuade, M.J.; Scheidt, M.J.; McPherson, J.C.; Rossmann, J.A.; Van Dyke, T.E. In vitro attachment of human gingival fibroblasts to endosseous implant materials. J. Periodontol. 1993, 64, 542–546. [Google Scholar] [CrossRef]
- Liu, L.; Pan, X.; Liu, S.; Hu, Y.; Ma, D. Near-infrared light-triggered nitric oxide release combined with low-temperature photothermal therapy for synergetic antibacterial and antifungal. Smart Mater. Med. 2021, 2, 302–313. [Google Scholar] [CrossRef]
- Cao, H.; Tang, K.; Liu, X. Bifunctional galvanics mediated selective toxicity on titanium. Mater. Horiz. 2018, 5, 264–267. [Google Scholar] [CrossRef]
- Hu, C.; Long, L.; Cao, J.; Zhang, S.; Wang, Y. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. 2021, 411, 128564. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Meng, F.; Chu, P.K. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 2011, 32, 693–705. [Google Scholar] [CrossRef]
- Phoungtawee, P.; Seidi, F.; Treetong, A.; Warin, C.; Klamchuen, A.; Crespy, D. Polymers with hemiaminal ether linkages for pH-responsive antibacterial materials. ACS Macro Lett. 2021, 10, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Qiao, Y.; Liu, X.; Lu, T.; Cui, T.; Meng, F.; Chu, P.K. Electron storage mediated dark antibacterial action of bound silver nanoparticles: Smaller is not always better. Acta Biomater. 2013, 9, 5100–5110. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Qin, H.; Li, Y.; Jandt, K.D. The Action-Networks of Nanosilver: Bridging the Gap between Material and Biology. Adv. Healthc. Mater. 2021, 10, e2100619. [Google Scholar] [CrossRef]
- Hackenberg, S.; Scherzed, A.; Kessler, M.; Hummel, S.; Technau, A.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 2011, 201, 27–33. [Google Scholar] [CrossRef]
- Liu, S.; Shen, Z.; Wu, B.; Yu, Y.; Hou, H.; Zhang, X.; Ren, H. Cytotoxicity and efflux pump inhibition induced by molybdenum disulfide and boron nitride nanomaterials with sheetlike structure. Environ. Sci. Technol. 2017, 51, 10834–10842. [Google Scholar] [CrossRef]
- Burney, S.; Caulfield, J.L.; Niles, J.C.; Wishnok, J.S.; Tannenbaum, S.R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 1999, 424, 37–49. [Google Scholar] [CrossRef]
- Lackington, W.A.; Fleyshman, L.; Schweizer, P.; Elbs-Glatz, Y.; Guimond, S.; Rottmar, M. The response of soft tissue cells to Ti implants is modulated by blood-implant interactions. Mater. Today Bio 2022, 15, 100303. [Google Scholar] [CrossRef]
- Xiao, L.; Ma, Y.; Crawford, R.; Mendhi, J.; Zhang, Y.; Lu, H.; Zhao, Q.; Cao, J.; Wu, C.; Wang, X.; et al. The interplay between hemostasis and immune response in biomaterial development for osteogenesis. Mater. Today 2022, 54, 202–224. [Google Scholar] [CrossRef]
- Temelci, A.; Yılmaz, H.G.; Ünsal, G.; Uyanik, L.O.; Yazman, D.; Ayali, A.; Minervini, G. Investigation of the wetting properties of thalassemia patients’ blood samples on grade 5 titanium implant surfaces: A pilot study. Biomimetics 2023, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Rexhep, S.T.; Leo, L.; Lorusso, F. Wettability of implant surfaces: Blood vs autologous platelet liquid (APL). J. Mech. Behav. Biomed. Mater. 2022, 126, 104773. [Google Scholar] [CrossRef]
- Cao, H.; Dauben, T.J.; Helbing, C.; Jia, Z.; Zhang, Y.; Huang, M.; Müller, L.; Gu, S.; Zhang, X.; Qin, H.; et al. The antimicrobial effect of calcium-doped titanium is activated by fibrinogen adsorption. Mater. Horiz. 2022, 9, 1962–1968. [Google Scholar] [CrossRef] [PubMed]
- Hanawa, T.; Kamiura, Y.; Yamamoto, S.; Kohgo, T.; Amemiya, A.; Ukai, H.; Murakami, K.; Asaoka, K. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J. Biomed. Mater. Res. 1997, 36, 131–136. [Google Scholar] [CrossRef]
- Ayukawa, Y.; Oshiro, W.; Atsuta, I.; Furuhashi, A.; Kondo, R.; Jinno, Y.; Koyano, K. Long term retention of gingival sealing around titanium implants with CaCl2 hydrothermal treatment: A rodent study. J. Clin. Med. 2019, 8, 1560. [Google Scholar] [CrossRef]
- Horbett, T.A. Fibrinogen adsorption to biomaterials. J. Biomed. Mater. Res. Part A 2018, 106, 2777–2788. [Google Scholar] [CrossRef]
- Szott, L.M.; Horbett, T.A. Protein interactions with surfaces: Cellular responses, complement activation, and newer methods. Curr. Opin. Chem. Biol. 2011, 15, 677–682. [Google Scholar] [CrossRef]
- Mohammad, S.F.; Topham, N.S.; Burns, G.L.; Olsen, D.B. Enhanced bacterial adhesion on surfaces pretreated with fibrinogen and fibronectin. ASAIO J. 1988, 34, 573. [Google Scholar]
- Vasconcelos, D.M.; Falentin-Daudre, C.; Blanquaert, D.; Thomas, D.; Granja, P.L.; Migonney, V. Role of protein environment and bioactive polymer grafting in the S. epidermidis response to titanium alloy for biomedical applications. Mater. Sci. Eng. C 2014, 45, 176–183. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Sigel, H.; Sigel, A. The bio-relevant metals of the periodic table of the elements. Z. Nat. 2019, 74, 461–471. [Google Scholar] [CrossRef]
- Wangner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1992; pp. 64–65. [Google Scholar]
- SYu, V.; Kalnin, N.N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 1990, 30, 1243. [Google Scholar]
- Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 2001, 22, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Miñana, M.; Carnes, D.L., Jr.; Walker, W.A., 3rd. PH changes at the surface of root dentin after intracanal dressing with calcium oxide and calcium hydroxide. J. Endod. 2001, 27, 43–45. [Google Scholar] [CrossRef]
- Jung, S.; Lim, S.; Albertorio, F.; Kim, G.; Gurau, M.C.; Yang, R.D.; Holden, M.A.; Cremer, P.S. The Vroman effect: A molecular level description of fibrinogen displacement. J. Am. Chem. Soc. 2003, 125, 12782–12786. [Google Scholar] [CrossRef]
- Kim, J.C.; Lee, M.; Yeo, I.L. Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. Mater. Horiz. 2022, 9, 1387–1411. [Google Scholar] [CrossRef]
- Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K.; Hirayama, A. Influence of surface modifications to titanium on oral bacterial adhesion in vitro. J. Biomed. Mater. Res. 2000, 52, 388–394. [Google Scholar] [CrossRef]
- Kang, S.N.; Jeong, C.M.; Jeon, Y.C.; Byon, E.; Jeong, Y.; Cho, L. Effects of Mg-ion and Ca-ion implantations on P. gingivalis and F. nucleatum adhesion. Tissue Eng. Regen. Med. 2014, 11, 39–46. [Google Scholar] [CrossRef]
- Marguerie, G.; Chagniel, G.; Suscillon, M. The binding of calcium to bovine fibrinogen. Biochim. Biophys. Acta 1977, 490, 94–103. [Google Scholar] [CrossRef]
- Litvinov, R.I.; Yakovlev, S.; Tsurupa, G.; Gorkun, O.V.; Medved, L.; Weisel, J.W. Direct evidence for specific interactions of the fibrinogen αC-domains with the central e region and with each other. Biochemistry 2007, 46, 9133–9142. [Google Scholar] [CrossRef] [PubMed]
- Apap-Bologna, A.; Webster, A.; Raitt, F.; Kemp, G. The influence of calcium ions on fibrinogen conformation. Biochim. Biophys. Acta 1989, 995, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Mihalyi, E. Review of some unusual effects of calcium binding to fibrinogen. Biophys. Chem. 2004, 112, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Jennewein, C.; Tran, N.; Paulus, P.; Ellinghaus, P.; Eble, J.A.; Zacharowski, K. Novel aspects of fibrin(ogen) fragments during inflammation. Mol. Med. 2011, 17, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Prasad, J.M.; Gorkun, O.V.; Raghu, H.; Thornton, S.; Mullins, E.S.; Palumbo, J.S.; Ko, Y.P.; Höök, M.; David, T.; Coughlin, S.R.; et al. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood 2015, 126, 2047–2058. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, X.; Zhao, Y.; Li, J.; Chen, J.; Yang, P.; Maitza, M.F.; Huang, N. Construction of a multifunctional coating consisting of phospholipidsand endothelial progenitor cell-specific peptides on titaniumsubstrates. Appl. Surf. Sci. 2015, 347, 169–177. [Google Scholar] [CrossRef]
- Chen, J.; Cao, J.; Wang, J.; Maitz, M.F.; Guo, L.; Zhao, Y.; Li, Q.; Xiong, K.; Huang, N. Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. J. Colloid Interface Sci. 2012, 368, 636–647. [Google Scholar] [CrossRef]
- Sundgren, J.E.; Bodö, P.; Ivarsson, B.; Lundström, I. Adsorption of Fibrinogen on Titanium and Gold Surfaces Studied by ESCA and Ellipsometry. J. Colloid Interface Sci. 1986, 113, 530–543. [Google Scholar] [CrossRef]
- Huang, N.; Yang, P.; Cheng, X.; Leng, Y.; Zheng, X.; Cai, G.; Zhen, Z.; Zhang, F.; Chen, Y.; Liu, X.; et al. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials 1998, 19, 771–776. [Google Scholar]
- Huang, N.; Yang, P.; Leng, Y.X.; Chen, J.Y.; Sun, H.; Wang, J.; Wang, G.J.; Ding, P.D.; Xi, T.F.; Leng, Y. Hemocompatibility of titanium oxide films. Biomaterials 2003, 24, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
Time Point | Calcium Concentration (mg/L/cm2) |
---|---|
4 h | 3.8 ± 0.1 |
1 day | 4.2 ± 0.1 |
3 days | 4.6 ± 0.1 |
7 days | 5.6 ± 0.2 |
14 days | 7.1 ± 0.5 |
28 days | 9.7 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, Q.; Zhang, Y.; Wei, J.; Lv, X.; Qiao, S.; Lai, H. Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study. J. Funct. Biomater. 2023, 14, 253. https://doi.org/10.3390/jfb14050253
Zhi Q, Zhang Y, Wei J, Lv X, Qiao S, Lai H. Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study. Journal of Functional Biomaterials. 2023; 14(5):253. https://doi.org/10.3390/jfb14050253
Chicago/Turabian StyleZhi, Qiang, Yuehua Zhang, Jianxu Wei, Xiaolei Lv, Shichong Qiao, and Hongchang Lai. 2023. "Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study" Journal of Functional Biomaterials 14, no. 5: 253. https://doi.org/10.3390/jfb14050253
APA StyleZhi, Q., Zhang, Y., Wei, J., Lv, X., Qiao, S., & Lai, H. (2023). Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study. Journal of Functional Biomaterials, 14(5), 253. https://doi.org/10.3390/jfb14050253