Study on the Restoration of Class II Carious Cavities by Virtual Methods: Simulation of Mechanical Behavior
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worthington, H.V.; Khangura, S.; Seal, K.; Mierzwinski-Urban, M.; Veitz-Keenan, A.; Sahrmann, P.; Schmidlin, P.R.; Davis, D.; Iheozor-Ejiofor, Z.; Rasines Alcaraz, M.G. Direct composite resin fillings versus amalgam fillings for permanent posterior teeth. Cochrane Database Syst. Rev. 2021, 8, CD005620. [Google Scholar] [PubMed]
- Wojcik-Checinska, I.; Mojsym, A.; Loj-Maczulska, A.; Chalas, R. Specifics of proximal caries and their diagnostics in posterior teeth. Curr. Issues Pharm. Med. Sci. 2015, 28, 92–96. [Google Scholar] [CrossRef]
- Oliveira, K.M.; Lancellotti, A.C.; Ccahuana-Vásquez, R.A.; Consani, S. Shrinkage stress and degree of conversion of a dental composite submitted to different photoactivation protocols. Acta Odontol. Lat. 2012, 25, 115–122. [Google Scholar]
- Albar, N.; Khayat, W. Fracture Load of Mesio–Occluso–Distal Composite Restorations Performed with Different Reinforcement Techniques: An In Vitro Study. Polymers 2023, 15, 1358. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.J.; Bronkhorst, E.M.; Loomans, B.A.; Huysmans, M.C. 12-year survival of composite vs. amalgam restorations. J. Dent. Res. 2010, 89, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- McCracken, M.S.; Gordan, V.V.; Litaker, M.S.; Funkhouser, E.; Fellows, J.L.; Shamp, D.G.; Qvist, V.; Meral, J.S.; Gilbert, G.H. A 24-month evaluation of amalgam and resin-based composite restorations: Findings from The National Dental Practice-Based Research Network. J. Am. Dent. Assoc. 2013, 144, 583–593. [Google Scholar] [CrossRef]
- Opdam, N.J.; Loomans, B.A.; Roeters, F.J.; Bronkhorst, E.M. Five-year clinical performance of posterior resin composite restorations placed by dental students. J. Dent. 2004, 32, 379–383. [Google Scholar] [CrossRef]
- Lima, V.P.; Crins, L.A.M.J.; Opdam, N.J.M.; Moraes, R.R.; Bronkhorst, E.M.; Huysmans, M.D.N.J.M.; Loomans, B.A.C. Deterioration of anterior resin composite restorations in moderate to severe tooth wear patients: 3-year results. Clin. Oral Investig. 2022, 26, 6925–6939. [Google Scholar] [CrossRef]
- Ausiello, P.; Rengo, S.; Davidson, C.L.; Watts, D.C. Stress Distributions in Adhesively Cemented Ceramic and Resin-Composite Class II Inlay Restorations: A 3D-FEA Study. Dent. Mater. 2004, 20, 862–872. [Google Scholar] [CrossRef]
- Soares, P.V.; de Almeida Milito, G.; Pereira, F.A.; Zéola, L.F.; De Lima Naves, M.F.; Faria, V.L.G.; Machado, A.C.; Souza, P.G.; Reis, B.R. Influence of Geometrical Configuration of the Cavity in the Stress Distribution of Restored Premolars with Composite Resin. J. Res. Dent. 2013, 1, 72–82. [Google Scholar] [CrossRef]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef]
- Boruziniat, A.; Gharaee, S.; Sarraf Shirazi, A.; Majidinia, S.; Vatanpour, M. Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: A systematic review and meta-analysis. Quintessence Int. 2016, 47, 93–101. [Google Scholar] [PubMed]
- Aggarwal, V.; Singla, M.; Yadav, S.; Yadav, H. Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies. J. Dent. 2014, 42, 619–625. [Google Scholar] [CrossRef]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent. Mater. 2016, 32, 998–1006. [Google Scholar] [CrossRef]
- Korkmaz, Y.; Ozel, E.; Attar, N. Effect of flowable composite lining on microleakage and internal voids in Class II composite restorations. J. Adhes. Dent. 2007, 9, 189–194. [Google Scholar] [PubMed]
- Majety, K.K.; Pujar, M. In vitro evaluation of microleakage of class II packable composite resin restoration using flowable composite and resin modified glass ionomers as intermediate layers. J. Conserv. Dent. 2011, 14, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Kasraei, S.; Azarsina, M.; Majidi, S. In vitro comparison of microleakage of posterior resin composites with or without liners using 2 step etch and rinse and self-etch dentin adhesive systems. Oper. Dent. 2011, 36, 213–221. [Google Scholar] [CrossRef]
- Nematollahi, H.; Bagherian, A.; Ghazvini, K.; Esmaily, H.; Mehr, M.A. Microbial microleakage assessment of class V cavities restored with different materials and techniques: A laboratory study. Dent. Res. J. 2017, 14, 344–350. [Google Scholar]
- Clark, D.J. The injection molding technique for strong, esthetic class II restoration. Inside Dent. 2010, 6, 1–3. [Google Scholar]
- Gernhardt, C.R.; Nguyen, A.D.; Michaelis, M.; Pütz, N. Clinical Outcome of Class I and II Restorations with and without an Intermediary Layer of a Flowable Composite after 24 Months: A Prospective, Randomized, Split-Mouth-Designed, Controlled and Single-Blinded Clinical Trial. Appl. Sci. 2023, 13, 4224. [Google Scholar] [CrossRef]
- Duarte, S., Jr.; Saad, J.R. Marginal adaptation of Class 2 adhesive restorations. Quintessence Int. 2008, 39, 413–419. [Google Scholar]
- Toksavul, S.; Zor, M.; Toman, M.; Güngör, M.A.; Nergiz, I.; Artunç, C. Analysis of dentinal stress distribution of maxillary central incisors subjected to various post-and-core applications. Oper. Dent. 2006, 31, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef] [PubMed]
- Ammarullah, M.I.; Hartono, R.; Supriyono, T.; Santoso, G.; Sugiharto, S.; Permana, M.S. Polycrystalline Diamond as a Potential Material for the Hard-on-Hard Bearing of Total Hip Prosthesis: Von Mises Stress Analysis. Biomedicines 2023, 11, 951. [Google Scholar] [CrossRef]
- Salaha, Z.F.M.; Ammarullah, M.I.; Abdullah, N.N.A.A.; Aziz, A.U.A.; Gan, H.-S.; Abdullah, A.H.; Abdul Kadir, M.R.; Ramlee, M.H. Biomechanical Effects of the Porous Structure of Gyroid and Voronoi Hip Implants: A Finite Element Analysis Using an Experimentally Validated Model. Materials 2023, 16, 3298. [Google Scholar] [CrossRef]
- Conserva, E.; Consolo, U.; Gimenez, A.; Foschi, F.; Paolone, G.; Giovarrusscio, M.; Sauro, S. Stress distribution in carbon-post applied with different composite core materials: A three-dimensional finite element analysis. J. Adhes. Sci. Technol. 2017, 1, 2435–2444. [Google Scholar] [CrossRef]
- Ritter, A.; Walter, R.; Boushell, L.W. Sturdevant’s Art and Science of Operative Dentistry, 7th ed.; Elsevier: St. Louis, MO, USA, 2019; pp. 219–264. [Google Scholar]
- Gomes Torres, C.R. Modern Operative Dentistry. Principles for Clinical Practice, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 577–630. [Google Scholar]
- Bichacho, N. The centripetal build-up for composite resin posterior restorations. Pract. Periodontics Aesthet. Dent. 1994, 6, 17–23. [Google Scholar] [PubMed]
- Giachetti, L.; Scaminaci Russo, D.; Bambi, C.; Grandini, R. A review of polymerization shrinkage stress: Current techniques for posterior direct resin restorations. J. Contemp. Dent. Pract. 2006, 7, 79–88. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Wibowo, D.B.; Kurdi, O.; Tauviqirrahman, M.; Jamari, J. Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress. Sustainability 2022, 14, 13413. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- Benazzi, S.; Nguyen, H.N.; Kullmer, O.; Kupczik, K. Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis. PLoS ONE 2016, 11, e0152663. [Google Scholar] [CrossRef] [PubMed]
- Cicciù, M.; Cervino, G.; Bramanti, E.; Lauritano, F.; LoGudice, G.; Scappaticci, L.; Rapparini, A.; Guglielmino, E.; Risitano, G. FEM Analysis of Mandibular Prosthetic Overdenture Supported by Dental Implants: Evaluation of Different Retention Methods. Comput. Math. Methods Med. 2015, 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.L.; Chang, C.L. Application of Finite Element Analysis in Dentistry. Finite Element Analysis, 1st ed.; Sciyo: Taipei, Taiwan, 2010; pp. 45–47. [Google Scholar]
- Keulemans, F.; Shinya, A.; Lassila, L.V.J.; Vallittu, P.K.; Kleverlaan, C.J.; Feilzer, A.J.; DeMoor, R.J.G. Three-Dimensional Finite Element Analysis of Anterior Two-Unit Cantilever Resin-Bonded Fixed Dental Prostheses. Sci. World J. 2015, 2015, 864389. [Google Scholar] [CrossRef] [PubMed]
- Vătu, M.; Crăițoiu, M.M.; Vintilă, D.; Mercuț, V.; Popescu, M.S.; Scrieciu, M.; Popa, D.L. Determination of resistance forces from mandibular movements through dynamic simulation using kinematic analysis and finite elements method. Rom. J. Oral Rehab. 2018, 10, 20–28. [Google Scholar]
- Vătu, M.; Vintila, D.; Popa, D.L. 3D Skull Virtual Model Based on CT or MRI Images Used for Dentistry Simulations. Appl. Mech. Mater. 2018, 880, 101–110. [Google Scholar] [CrossRef]
- Aleem, H.; Ameen, F.; Rehman, A. Compressive Strength of Composite Resins at Different Expo-sure Time Using LED and Halogen Units. JPDA 2018, 27, 228–232. [Google Scholar]
- Xavier, J.C.; De Melo Monteiro, G.Q.; Resende Montesa, M.A.J. Polymerization Shrinkage and Flexural Modulus of Flowable Dental Composites. Mat. Res. 2010, 13, 381–384. [Google Scholar]
- Papadogiannis, D.Y.; Lakes, R.S.; Papadogiannis, Y.; Palaghias, G.; Helvatjoglu-Antoniades, M. The effect of temperature on the viscoelastic properties of nano-hybrid composites. Dent. Mater. 2008, 24, 257–266. [Google Scholar] [CrossRef]
- Vermudt, A.; Kuga, M.C.; Besegato, J.F.; Oliveira, E.C.G.; Leandrin, T.P.; Só, M.V.R.; Moraes, J.C.S.; Pereira, J.R. Effect of Curing Modes on the Mechanical Properties of Commercial Dental Resin-Based Composites: Comparison between Different LEDs and Microwave Units. Polymers 2022, 14, 4020. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Alrobeigy, N.A. Mechanical properties of contemporary resin composites determined by nanoindentation. Tanta Dent. J. 2017, 14, 129–138. [Google Scholar] [CrossRef]
- Masouras, K.; Silikasa, N.; Wattsa, D.C. Correlation of filler content and elastic properties of resin composites. Dent. Mater. 2008, 24, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Beun, S.; Glorieuxa, T.; Devaux, J.; Vreven, J.; Leloup, G. Characterization of nanofilled compared to universal and microfilled composites. Dent. Mater. 2007, 23, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bacchi, A.; Feitosa, V.P.; Da Silva Fonseca, A.S.Q.; Cavalcante, L.M.A.N.; Silikas Schneider, L.F.J. Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites. J. Conserv. Dent. 2015, 18, 384–388. [Google Scholar] [CrossRef]
- Beun, S.; Bailly, C.; Devaux, J.; Leloup, G. Physical, mechanical and rheological characterization of resinbased pit and fissure sealants compared to flowable resin composites. Dent. Mater. 2012, 28, 349–359. [Google Scholar] [CrossRef]
- Gornig, D.C.; Maletz, R.; Ottl, P.; Warkentin, M. Influence of artificial aging: Mechanical and physicochemical properties of dental composites under static and dynamic compression. Clin. Oral Investig. 2022, 26, 1491–1504. [Google Scholar] [CrossRef]
- Taher, R.M.; Moharam, L.M.; Amin, A.E.; Zaazou, M.H.; El-Askary, F.S.; Ibrahim, M.N. The effect of radiation exposure and storage time on the degree of conversion and flexural strength of different resin composites. Bull. Natl. Res. Cent. 2021, 45, 146. [Google Scholar] [CrossRef]
- Shah, M.B.; Ferracane, J.L.; Kruzic, J.J. Mechanistic aspects of fracture and fatigue in resin based dental restorative composites. Dent. Mater. 2009, 25, 909–916. [Google Scholar] [CrossRef]
- Helvatjoglu-Antoniades, M.; Papadogiannis, Y.; Lakes, R.S.; Dionysopoulos, P.; Papadogiannis, D. Dynamic and static elastic moduli of packable and flowable composite resins and their development after initial photo curing. Dent. Mater. 2006, 22, 450–459. [Google Scholar] [CrossRef]
- Admira Fusion, Scientific Compendium. Available online: https://www.voco.dental/us/portaldata/1/resources/products/scientific-reports/us/Admira_Fusion_Scientific_Compendium.pdf (accessed on 19 October 2022).
- Grandio–Viscoelastic Properties, Scientific Report. Available online: https://www.voco.dental/en/portaldata/1/resources/products/scientific-reports/gb/grandio_scr_viscoelastic-properties_gb.pdf (accessed on 19 October 2022).
- Admira Fusion Flow Instruction for Use. Available online: https://www.voco.dental/en/products/direct-restoration/ormocer/admira-fusion-flow.aspx (accessed on 19 October 2022).
- Grandio Flow Instructions for Use. Available online: https://www.voco.dental/en/products/direct-restoration/composites/grandio-flow.aspx (accessed on 19 October 2022).
- Filtek™ Supreme XTE Universal Restorative-Instruction Sheet. Available online: https://multimedia.3m.com/mws/media/1651855O/3m-filtek-supreme-xte-technique-guide-ebook.pdf (accessed on 19 October 2022).
- Instruction for Use Grandio-VOCO. Available online: https://www.voco.dental/us/service/download/instructions-for-use.aspx (accessed on 19 October 2022).
- Filtek Supreme Flowable Restorative Data Sheet. Available online: https://multimedia.3m.com/mws/media/2240189O/3m-filtek-supreme-flowable-technical-data-sheet.pdf (accessed on 19 October 2022).
- Sass, L.; Popa, D.; Duta, A.; Marinescu, G. Computer Aided Design, 1st ed.; SITECH: Craiova, Romania, 2019; pp. 35–103. [Google Scholar]
- Huiskes, R.; Chao, E.Y.S. A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade. J. Biomech. 1983, 16, 385–409. [Google Scholar] [CrossRef]
- Pizolato, R.A.; Duarte Gavião, M.B.; Berretin-Felix, G.; Martins Sampaio, A.C.; Trindade Junior, A.S. Maximal bite force in young adults with temporomandibular disorders and bruxism. Braz. Oral Res. 2007, 21, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Calderon, P.S.; Kogawa, E.M.; Lauris, J.R.P.; Conti, P.C.R. The Influence of Gender and Bruxism on the Human Maximum Bite Force. J. Appl. Oral Sci. 2006, 14, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Todić, J.T.; Mitić, A.; Lazić, D.; Radosavljević, R.; Staletović, M. Effects of bruxism on the maximum bite force. Vojnosanit. Pregl. 2017, 74, 138–144. [Google Scholar] [CrossRef]
- Yoshimi, H.; Sasaguri, K.; Tamaki, K.; Sato, S. Identification of the occurrence and pattern of masseter muscle activities during sleep using EMG and accelerometer systems. Head Face Med. 2009, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Sagl, B.; Schmid-Schwap, M.; Piehslinger, E.; Rausch-Fan, X.; Stavness, I. The effect of tooth cusp morphology and grinding direction on TMJ loading during bruxism. Front. Physiol. 2022, 13, 964930. [Google Scholar] [CrossRef]
- Sagl, B.; Schmid-Schwap, M.; Piehslinger, E.; Kundi, M.; Stavness, I. Effect of facet inclination and location on TMJ loading during bruxism: An insilico study. J. Adv. Res. 2022, 35, 25–32. [Google Scholar] [CrossRef]
- Musani, I.; Prabhakar, A.R. Biomechanical stress analysis of mandibular first permanent molar; restored with amalgam and composite resin: A computerized finite element study. Int. J. Clin. Pediatr. Dent. 2010, 3, 5–14. [Google Scholar]
- Jiang, W.; Bo, H.; YongChun, G.; LongXing, N. Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: A three-dimensional finite element analysis. J. Prosthet. Dent. 2010, 103, 6–12. [Google Scholar] [CrossRef]
- He, Z.; Shimada, Y.; Tagami, J. The effects of cavity size and incremental technique on micro tensile bond strength of resin composite in class I cavities. Dent. Mater. 2007, 23, 533–538. [Google Scholar] [CrossRef]
- Braga, R.R.; Ferracane, J.L. Alternatives in polymerization contraction stress management. Crit. Rev. Oral Biol. Med. 2004, 15, 176–184. [Google Scholar] [CrossRef]
- Ausiello, P.; Ciaramella, S.; Di Rienzo, A.; Lanzotti, A.; Ventre, M.; Watts, D.C. Adhesive class I restorations in sound molar teeth incorporating combined resin-composite and glass ionomer materials: CAD-FE modeling and analysis. Dent. Mater. 2019, 35, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Buono, L.; Grande, N.M.; Lamorgese, V.; Somma, F. Fracture resistance of endodontically treated molars restored with extensive composite resin restorations. J. Prosthet. Dent. 2008, 99, 225–232. [Google Scholar] [CrossRef]
- Zainuddin, N.; Karpukhina, N.; Law, R.V.; Hill, R.G. Characterisation of a remineralising glass carbomer ionomer cement by MAS-NMR spectroscopy. Dent. Mater. 2012, 28, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Salz, U. New developments of polymeric dental composites. Prog. Polym. Sci. 2001, 26, 535–576. [Google Scholar] [CrossRef]
- Solomon, R.; Karunakar, P.; Wahed, A.; HimaRanjana, P. Influence of Sandwich, Snowplow and Injection Molding Modified Composite Lining Strategies on the Microleakage of Class II Proximal Box Cavities. Medicine 2020, 19, 1–9. [Google Scholar]
- Fleming, G.J.P.; Hall, D.P.; Shortall, A.C.C.; Burke, F.J.T. Cuspal movement and microleakage in premolar teeth restored with posterior filling materials of varying reported volumetric shrinkage values. J. Dent. 2005, 33, 139–146. [Google Scholar] [CrossRef]
- Lutz, F.; Krejei, I. Amalgam substitutes: A critical analysis. J. Esthet. Restor. Dent. 2000, 12, 146–159. [Google Scholar] [CrossRef]
- Wataha, J.C.; Rueggenberg, F.A.; Lapp, C.A.; Lewis, J.B.; Lockwood, P.E.; Ergie, J.W.; Bettenburg, D.J. Invitro cytotoxicity of resin-containing restorative materials after aging in artificial saliva. Clin. Oral Investig. 1999, 3, 144–149. [Google Scholar] [CrossRef]
- Erdilek, D.; Dorter, C.; Koray, F.; Kunzelmann, K.; Efes, B.G.; Gomec, Y. Effect of thermo-mechanical load cycling on microleakage in Class II ormocer restorations. Eur. J. Dent. 2009, 3, 200–205. [Google Scholar] [CrossRef]
- Sadeghi, M.; Lynch, C.D. The effect of flowable materials on the microleakage of class II composite restoration that extend apical to cemento-enamel junction. Oper. Dent. 2009, 34, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Yazici, A.R.; Ozgünaltay, G.; Dayangaç, B. The effect of different types of flowable restorative resins on microleakage of Class V cavities. Oper. Dent. 2003, 6, 773–778. [Google Scholar]
- Payne, J.H. The Marginal Seal of Class II Restorations: Flowable Composite Resin Compared to Injectable Glass Ionomer. J. Clin. Pediatr. Dent. 1999, 23, 123–130. [Google Scholar]
- Moosavi, H.; Abedini, S. The effect of various placement techniques on the microhardness of Class II (slot) resin composite restorations. J. Contemp. Dent. Pract. 2009, 10, 9–16. [Google Scholar] [CrossRef]
- Yantcheva, S.M. Marginal Adaptation and Micropermeability of Class II Cavities Restored with Three Different Types of Resin Composites—A Comparative Ten-Month In Vitro Study. Polymers 2021, 13, 1660. [Google Scholar] [CrossRef] [PubMed]
- López-Torres, J.; Hernández-Caba, K.; Cervantes-Ganoza, L.; Ladera-Castañeda, M.; Martínez-Campos, R.; Solís-Dante, F.; Briceño-Vergel, G.; Cayo-Rojas, C. Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth. Biomedicines 2023, 11, 556. [Google Scholar] [CrossRef]
- Şenol, A.A.; Karabulut Gençer, B.; Tarçın, B.; Kahramanoğlu, E.; Yılmaz Atalı, P. Microleakage and Marginal Integrity of Ormocer/Methacrylate-Based Bulk-Fill Resin Restorations in MOD Cavities: SEM and Stereomicroscopic Evaluation. Polymers 2023, 15, 1716. [Google Scholar] [CrossRef]
- Bore Gowda, V.; Sreenivasa Murthy, B.V.; Hegde, S.; Venkataramanaswamy, S.D.; Pai, V.S.; Krishna, R. Evaluation of Gingival Microleakage in Class II Composite Restorations with Different Lining Techniques: An In Vitro Study. Scientifica 2015, 2015, 896507. [Google Scholar] [CrossRef]
- Mehta, F.; Joshi, H. Finite Element Method: An Overview. IOSR-JDMS 2016, 1, 38–41. [Google Scholar]
- Li, X.N.; Shi, Y.K.; Li, Z.C.; Song, C.Y.; Chen, X.D.; Guan, Z.Q.; Guan, H.; Chen, X. Three dimensional finite element analysis of a maxillary central incisor restored with different post-core materials. Int. Chin. J. Dent. 2008, 8, 21–27. [Google Scholar]
- Ausiello, P.; Apicella, A.; Davidson, C.L. Effect of adhesive layer properties on stress distribution in composite restorations—A 3D finite element analysis. Dent. Mater. 2002, 18, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Hilton, T.J.; Ferracane, J.L. Contraction stress of flowable composite materials and their efficacy as stress-relieving layers. J. Am. Dent. Assoc. 2003, 134, 721–800. [Google Scholar] [CrossRef]
- Choi, K.K.; Condon, J.R.; Ferracane, J.L. The effects of adhesive thickness on polymerization contraction stress of composite. J. Dent. Res. 2000, 79, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, E.; Peutzfeldt, A. Class I and Class II restorations of resin composite: An FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading. Dent. Mater. 2008, 24, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Eliguzeloglu, E.; Eraslan, O.; Omurlu, H.; Eskitascıoglu, G.; Belli, S. Effect of hybrid layer and thickness on stress distribution of cervical wedge-shaped restorations. Eur. J. Dent. 2010, 4, 160–165. [Google Scholar] [CrossRef]
- Reis, A.F.; Giannini, M.; Ambrosano, G.M.B.; Chan, D.C. The effects of filling techniques and a low-viscosity composite liner on bond strength to class II cavities. J. Dent. 2003, 31, 59–66. [Google Scholar] [CrossRef]
- Castañeda-Espinosa, J.C.; Pereira, R.A.; Cavalcanti, A.P.; Mondelli, R.F.L. Transmission of composite polymerization contraction force through a flowable composite and a resin-modified glass ionomer cement. J. Appl. Oral Sci. 2007, 15, 495–500. [Google Scholar] [CrossRef]
- Min-Kwan Jung, B.D.S. Comparison in stress distributionof different base materialsand thicknesses in MOD class II direct composite resin restoration: A 3D finite element study Lining Strategies on the Microleakage of Class II Proximal Box Cavities. J. Conserv. Dent. 2020, 1, 13–18. [Google Scholar]
- Dewaele, M.; Asmussen, E.; Devaux, J.; Leloup, G. Class II restorations: Influence of a liner with rubbery qualities on the occurrence and size of cervical gaps. Eur. J. Oral Sci. 2006, 114, 535–541. [Google Scholar] [CrossRef]
- Stavridakis, M.M.; Dietschi, D.; Krejci, I. Polymerization shrinkage of flowable resinbased restorative materials. Oper. Dent. 2005, 30, 118–128. [Google Scholar]
- Ausiello, P.; Ciaramella, S.; Garcia-Godoy, F.; Martorelli, M.; Sorrentino, R.; Gloria, A. Stress distribution of bulk-fill resin composite in class II restorations. Am. J. Dent. 2017, 30, 227–232. [Google Scholar] [PubMed]
- Bicalho, A.A.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Effect of occlusal loading and mechanical properties of resin composite on stress generated in posterior restorations. Am. J. Dent. 2014, 27, 129–133. [Google Scholar] [PubMed]
- Pallesen, U.; Van Dijken, J.W. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent. Mater. 2015, 31, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
Name of Composite | Type of Composite | Matrix | Filler Content/Filler Size (By Volume) | Manufacturer |
---|---|---|---|---|
Grandio Flow | Universal nano-hybrid | Bis-GMA, TEGDMA and HEDMA | Glass-ceramic, nanoparticle, 65.6% | VOCO, Cuxha ven, Germany |
Admira Fusion Flow | Nano-hybrid ORMOCER | Silicon oxide | Silicon oxide, 74% | VOCO, Cuxha ven, Germany |
Filtek Supreme Flow | Nanocomposite | Bis-GMA, TEGDMA and Procrylat resins | Silica nanofiller, zirconia nanofiller and zirconia/silica nanocluster 55.5% | 3M Oral Care |
Grandio | Universal nano-hybrid | Bis-GMA, UDMA, TEGDMA | Mixture of different dimethacrylates, silicate fillers, initiators, pigments, amines, additives, 87% | VOCO, Cuxha ven, Germany |
Admira Fusion | Nano-hybrid ORMOCER | Silicon oxide | Silicon oxide, glass-ceramic filler 60% | VOCO, Cuxha ven, Germany ceramic (Ormocer) |
Filtek Supreme XT | Nanocomposite | Bis-GMA, UDMA, TEGDMA, Bis-EMA resins | Non-agglomerated/non-aggregated 4 to 11 nm zirconia filler and aggregated zirconia/silica cluster filler, 63.3% | 3M Oral Care |
Component | Density [Kg/m3] | Young Elasticity Modulus [Pa] | Poisson Coefficient |
---|---|---|---|
Enamel | 2958 | 7.79 × 1010 | 0.3 |
Dentine | 2140 | 1.76 × 1010 | 0.25 |
Pulp | 1100 | 1.75 × 109 | 0.4 |
Admira fluid composite layer | 2107.9 | 3.29 × 109 | 0.34 |
Admira paste composite layers | 1931.2 | 9.8 × 109 | 0.31 |
Grandio Fluid Composite Layer | 2180.1 | 6.85 × 109 | 0.31 |
Grandio paste composite layers | 2097.9 | 7.9 × 109 | 0.31 |
Filtek Supreme fluid composite layer | 2080.9 | 7.8 × 109 | 0.393 |
Filtek Supreme paste composite layers | 1853.7 | 5.76 × 109 | 0.45 |
Composite | Density [Kg/m3] |
---|---|
ADMIRA fluid | 2107.9 |
GRANDIO fluid | 2180.1 |
FILTEK fluid | 2080.9 |
ADMIRA paste | 1931.2 |
GRANDIO paste | 2097.9 |
FILTEK paste | 1853.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Țuculină, M.J.; Staicu, A.N.; Munteanu, M.C.; Cumpătă, C.N.; Dimitriu, B.; Rîcă, A.M.; Beznă, M.C.; Popa, D.L.; Popescu, A.D.; Țîrcă, T. Study on the Restoration of Class II Carious Cavities by Virtual Methods: Simulation of Mechanical Behavior. J. Funct. Biomater. 2023, 14, 354. https://doi.org/10.3390/jfb14070354
Țuculină MJ, Staicu AN, Munteanu MC, Cumpătă CN, Dimitriu B, Rîcă AM, Beznă MC, Popa DL, Popescu AD, Țîrcă T. Study on the Restoration of Class II Carious Cavities by Virtual Methods: Simulation of Mechanical Behavior. Journal of Functional Biomaterials. 2023; 14(7):354. https://doi.org/10.3390/jfb14070354
Chicago/Turabian StyleȚuculină, Mihaela Jana, Adela Nicoleta Staicu, Maria Cristina Munteanu, Cristian Niky Cumpătă, Bogdan Dimitriu, Ana Maria Rîcă, Maria Cristina Beznă, Dragoș Laurențiu Popa, Alexandru Dan Popescu, and Tiberiu Țîrcă. 2023. "Study on the Restoration of Class II Carious Cavities by Virtual Methods: Simulation of Mechanical Behavior" Journal of Functional Biomaterials 14, no. 7: 354. https://doi.org/10.3390/jfb14070354
APA StyleȚuculină, M. J., Staicu, A. N., Munteanu, M. C., Cumpătă, C. N., Dimitriu, B., Rîcă, A. M., Beznă, M. C., Popa, D. L., Popescu, A. D., & Țîrcă, T. (2023). Study on the Restoration of Class II Carious Cavities by Virtual Methods: Simulation of Mechanical Behavior. Journal of Functional Biomaterials, 14(7), 354. https://doi.org/10.3390/jfb14070354