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Abstract: Derived Hench bioactive glass (BaG) containing boron (B) is explored in this work as
it plays an important role in bone development and regeneration. B was also found to enhance
BaG dissociation. However, it is only possible to incorporate a limited amount of B. To increase
the amount of B in BaG, bioactive borosilicate glasses (BaG-Bx) were fabricated based on the use of
the solution-gelation process (sol-gel). In this work, a high B content (20 wt.%) in BaG, respecting
the conditions of bioactivity and biodegradability required by Hench, was achieved for the first
time. The capability of BaG-Bx to form an apatite phase was assessed in vitro by immersion in
simulated body fluid (SBF). Then, the chemical structure and the morphological changes in the
fabricated BaG-Bx (x = 0, 5, 10 and 20) were studied. The formation of hydroxyapatite (HAp) layer
was observed with X-ray diffraction (XRD) and infrared (IR) spectroscopy. The presence of HAp layer
was confirmed using scanning electron microscopy (SEM) and transmission electron microscopy
(TEM). Enhanced bioactivity and chemical stability of BaG-Bx were evaluated with an ion exchange
study based on Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) and energy
dispersive spectroscopy (EDS). Results indicate that by increasing the concentration of B in BaG-Bx,
the crystallization rate and the quality of the newly formed HAp layer on BaG-Bx surfaces can
be improved. The presence of B also leads to enhanced degradation of BaGs in SBF. Accordingly,
BAG-Bx can be used for bone regeneration, especially in children, because of its faster degradation as
compared to B-free glass.

Keywords: borosilicate bioactive glass; boron; degradation; physico-chemical characterizations;
hydroxyapatite layer

1. Introduction

Bone defects may result from congenital deficiencies, trauma, infection, tumors, or
surgical removal [1,2]. In children, healing is faster than in older patients, and it follows a
different pattern, e.g., in the skull, bone is laid out externally and resorbed from the inner
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side of the skull [3]. Therefore, the development of biodegradable devices that suit the pace
and mode of bone healing in children was explored [4–6].

Biodegradable polymers could be potential candidates; however, they lack osteocon-
ductivity and often lead to chronic inflammatory reactions [7]. Therefore, bioceramics and
polymer ceramic composites have been explored [8]. The development of bioceramics and
bioactive glass (BaG) in particular [9] has proven to be effective in promoting bone healing
and regeneration both in experimental and clinical settings [10]. BaG induces a biological
response which results in the formation of a chemical bond between the tissue and the bio-
material [11,12]. This bond is formed by a biologically active hydroxyapatite (HAp) layer
that forms on the surface of the biomaterial following its implantation, promoting bonding
with host tissues [13]. There are different types of BaG, the first that was developed by
Hench, the 45S5 Bioglass® (45 wt.% SiO2, 24,5CaO, 6P2O5 and 24,5Na2O) [14]. Larry Hench
started by studying the SiO2-CaO-Na2O ternary diagram in which he systematically added
6% by mass of P2O5 [15]. However, bioactivity and biodegradability were only observed
for certain compositions, which limit the variations in the proportions of SiO2, CaO, and
Na2O [9]. In vitro tests have shown that 45S5 Bioglass® causes a carbonated HAp surface
layer formation. This layer is chemically and structurally similar to bone-carbonated HAp
and allows a direct bond between tissue and implant.

To enhance the degradation of Bioglass® and make it suitable for applications in
pediatric patients, borate-based BaGs (BaG-Bs) were developed [16–19]. This was achieved
through the replacement of SiO2 with B2O3 in the Bioglass® (45S5), respecting the con-
ditions of bioactivity and biodegradability required by Hench [14], and derived glasses
demonstrated acceptable bioactivity in vitro [20,21] with the formation of an HAp layer [22].
In particular, pure BaG-B has recently been explored by Richard, who revealed that not only
can bone regeneration be enhanced using BaG-B, but also a faster rate of BaG degradation
could be achieved, as compared to silicate (SiO4)-based 45S5 Bioglass® [23]. It was found
that (BO3) analogous to 45S5 Bioglass®, in which all SiO2 was replaced with B2O3 (B-45S5),
is totally converted to HAp during the period of 3–4 days, in vitro. This is much faster than
(SiO4) 45S5 glass (Si-45S5), in which the process takes several weeks to convert only 50% of
it into an HAp layer [24–27]. However, for each clinical application a suitable lifetime of
the implant is required. In addition to its low mechanical strength and density, borosilicate
glass is also non-biodegradable due to its high B content (36%) [28–30].

Several researchers studied possibilities to control the degradation rate, mechanical
properties, and electrical and thermal behaviors of BaGs by adjusting their initial chemical
composition and with the introduction of various other oxides such as B2O3, CaF2, and
Al2O3 in BaG [31–33]. Different chemical compositions of BaG-B have been applied as
scaffolds in maxillofacial applications or as coatings of orthopedic implants [34,35]. For
instance, the degradation rate and the bioactivity behavior in vitro of BaG-B were evalu-
ated [36]. Recently, Saranti et al. mentioned that B incorporation in the glass matrix of
CaO–B2O3–P2O5 system has a catalytic effect on enhancing bioactivity [37]. In this context,
Lee et al. proved that adding B enables the fabrication of implants suitable for maxillo-
facial applications due to their low durability in physiological fluids [38,39]. Additional
interesting biological effects of B also include the promotion of extracellular matrix (ECM)
regeneration [40], stimulation of wound healing in vivo, and contribution to bone remodel-
ing [41]. More recently, another study reported that cancellous screws coated with BaG-B
could bond easily to cancellous bone and advance bone-implant osseointegration [42],
without showing cytotoxicity [43]. However, studies cited above reported weak mechanical
properties of developed products, and they were limited to bone-coating applications.
For example, for B2O3-NaCaPO4–SiO2–PO4 BaG composition, several physical and me-
chanical tests proved that the introduction of B in the BaG matrix decreases density and
microstructure. Additionally, B reduces the modulus of rigidity and hardness of BaG [44].

Therefore, the aim of the current study is to develop and investigate in vitro a re-
sorbable sol-gel-derived BaG-B having different amounts of B added into a free-boron glass
(BaG-B0) network to provide the bioactivity and biodegradability required to meet a wide
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range of orthopedic and maxillofacial application needs. After soaking in simulated physio-
logical liquid (SBF), physico-chemical bonds are formed at the interface of BaG-Bx and SBF
resulting in the development of an HAp layer. Depending on the amount of incorporated
B, morphological changes have been revealed for this newly formed crystallized layer.

This study faces the challenge of substituting Si for B in a BaG matrix with a maximum
amount that has never been studied before, while maintaining constant concentrations of
other system modifiers (sodium (Na), phosphate (P), and calcium (Ca)), as well as main-
taining the vitreous structure so that bioactivity, resorbability, and mechanical properties
are optimized according to previously studied compositions [45].

Obtained BaG-B was analyzed for its structure, morphology, and ion exchange after
in vitro simulation in SBF to better understand the resorbability rate and bioactivity process
of a new class of BaG-B that can promote efficient osteoconduction in bone defects in
children, because their skeleton is growing and it is better to avoid the use of permanent
implants that may interfere with skeletal growth and imaging (Figure 1).
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Figure 1. Increasing boron content (B) in bioactive glass (BaG) to 20% results in improved morpholog-
ical and structural properties and accelerates the degradation of borosilicate bioactive glass (BaG-B).
This figure was produced using Biorender.com.

2. Materials and Methods
2.1. Glass Preparation

BaG material (SiO2–CaO–Na2O–P2O5 system) was prepared using the sol-gel method,
according to a previously described protocol [46]. Borosilicate BaG (BaG-B) with varying B
content was then produced (Table 1).

Table 1. Oxide compositions of borosilicate bioactive glasses (BaG-Bx, wt.%) [47].

BaG SiO2 CaO Na2O P2O5 B2O3

BaG-B0 46 24 24 6 0
BaG-B5 41 24 24 6 5
BaG-B10 36 24 24 6 10
BaG-B20 26 24 24 6 20

To fabricate BaG-Bx, stoichiometric amounts of tetraethyl orthosilicate (Si(OC2H5)4:
TEOS) (Fluka, Buchs, Switzerland), triethylphosphate (TEP) (OP(OC2H5)3 (Eastman, Ten-
nessee, USA), calcium carbonate CaCO3 (Merck, Darmstadt, Germany), sodium carbonate
Na2CO3 (Sigma Aldrich, St. Louis, MO, USA), and boron oxide B2O3 (Sigma Aldrich,
Missouri, USA) were added to a 2N aqueous acetic acidic solution, under magnetic stirring.
After the addition of each of the above-mentioned reactants, the solution was stirred for one
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hour. The resultant sol was introduced into a cylindrical Teflon beaker for hydrolysis and
then condensation at room temperature for six days to achieve a homogenous powder at
the molecular level [48]. Chemical mechanisms involved in both steps of sol-gel synthesis
are presented in Figure 2:
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Figure 2. Molecular schematic of the synthesis used to produce borosilicate bioactive glass (BaG-B);
with M = Si, B and R = Na, Ca, P. (a) Hydrolysis mechanism of BaG-B which results in two parallel
internal processes: alkoxolation and oxolation. (b) Polycondensation mechanism (alkoxolation).
(c) Polycondensation mechanism (oxolation).

Formed gel (Figure 2b,c) was then kept at 70 ◦C for three days and dried at 150 ◦C
for 52 h. The resulting dried gel was then analyzed with thermal analysis, under nitro-
gen, to identify the lower temperature required to decompose the initial salts into the
final oxides. Thermo-gravimetric and differential scanning calorimetry (TG/DSC, Labsys
1600 TGDTA/DSC, Setaram, Lyon, France) analyses showed that a thermal stabilization
of the dried gel is achieved at a temperature below 520 ◦C. Obtained dried gel was then
thermally treated at 500 ◦C for 3 h under vacuum with a heating rate of 0.5 ◦C min−1.

2.2. In Vitro Assays

BaGs were immersed in SBF, which was synthesized in this study according to
Kokubo’s method [49]. After various immersion periods, BaG-Bx were retrieved from
SBF, washed with de-ionized water, and dried at room temperature. Then BaG-Bx samples
were maintained at 37 ◦C under controlled agitation (50 rpm) for short (1, 2, 4, 8, 10, 12, and
16 h) and long (1, 2, 5, 10, 15, and 30 days) follow-up times (Figure 3). In vitro assays were
performed under static conditions with a ratio of BaG to SBF volume equal to 0.5 mg/mL
(30 mg/60 mL). SBF was not changed during the experiment. In vitro bioactivity and
chemical stability of BaGs were assessed by study of ion exchange. Structural and chemical
characterizations were performed for each BaG sample after each time point as detailed in
the following sections.
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Figure 3. Immersion manipulation of borosilicate bioactive glass (BaG-B) powders in simulated body
fluid (SBF). (a) BaG-Bx were immersed in SBF placed into sealed polyethylene bottles. (b) Both solid
and liquid phases were properly mixed. (c) Mixtures were placed in an incubator. (d) SBF solution
extraction to wash out powder. (e) Dried powders for structural characterization. (f) SBF solutions
for chemical characterization.

2.3. Structural Characterization
2.3.1. X-ray Diffraction (XRD)

Determination of the nature of the neo-formed layer of BaG-Bx was studied using
AXS D8 ADVANCE diffractometer (BRUKER, Billerica, MA, USA), with voltage U = 30 kV
and current I = 20 mA. The X-ray cannon used has a copper cathode producing radiation
(Kα1 +K α2). The radiation used is monochromatic with wavelength l = 1.5406 Å.

2.3.2. Infrared Spectroscopy (IR)

Infrared spectroscope Equinox 55 (BRUKER, Billerica, MA, USA) at the range of
2000–400 cm−1 was applied to determine the structure of the new layer on the BaG surface.

2.3.3. Scanning Electron Microscopy-Energy-Dispersive Spectrometry (SEM-EDS)

Scanning electron microscopy (SEM, Joel JFC 1100, ZEISS, Stuttgart, Germany) was
used for the evaluation of BaG-B microstructure, after the immersion of BaG-Bx samples
for different periods of time ranging from 1 h to 30 days. Energy-dispersive spectrometry
(EDS) was used for the chemical analysis of BaG surfaces. Samples for SEM and EDS were
covered with a gold–palladium layer to allow surface conduction. Three fields in each
sample were examined using SEM and EDS (one samples for each BaG-B composition).

2.3.4. Transmission Electron Microscope (TEM)

A high-resolution imaging at the nanoscale was performed using a transmission elec-
tron microscope (TEM, JEOL JEM-2010, Ltd., USA), which was equipped with a lanthanum
hexaboride (LaB6) tip gun and a GATAN Dual Vision camera (1300 × 1000 pixels), and the
electrons were accelerated under a maximum voltage of 200 kV.

2.4. Chemical Characterization

Elemental concentrations of SBF (Si, Ca, P, B) were investigated using Inductively
Coupled Plasma–Optical Emission Spectrometry Instrument (ICP-OES, Agilent 5800, LabX,
Santa Clara, CA, USA) for short- (1, 2, 4, 8, 10, 12, and 16 h) and long-term (1, 2, 5, 10, 15,
and 30 days) follow-up times after immersion in SBF.
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3. Results and Discussion
3.1. Physico-Chemical Characterizations after Immersion in SBF
3.1.1. XRD

X-ray diffraction patterns of the surfaces of BaG-Bx (0 ≤ x ≤ 20, in which x is the
weight percentage of B2O3 intercalated in glass matrix) after 30 days of immersion in SBF
showed the typical characteristic of crystalline apatite phase (Figure 4). For reference, a
diffractogram of synthetic HAp was used [50,51].
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Figure 4. X-ray diffractograms of borosilicate bioactive glasses (BaG-Bx) after 30 days of immersion
in simulated body fluid (SBF).

Profiles showed that two crystal structures of BaG-Bx and reference glass BaG-B0 are
iso-typical. Indeed, broad diffraction lines of HAp formed on the BaG particle surfaces
at around 26◦ and 32◦ in 2θ, corresponding to the (002) and (211) planes, respectively,
confirmed the bioactivity of BaG-B chemical compositions. However, with increasing B
content, diffraction lines were more intense, narrower, and brighter, which is characteristic
of crystallized powders. No other crystalline phase was detected with XRD.

Phases, which are usually observed for silicate hydroxyapatite (Si-HAp), tricalcium
phosphate (TCP), silicocarnotite [52], or limes (CaO, CaCO3) [53] were not detected in the
current study. It is also noteworthy that there was a 2θ shift for diffraction peak located at
26◦ of the BaG-Bx compared to that of BaG-B0. Thus, the angular gap between the peaks
located in the 25–27◦ region was narrow.

These angular variations were synonymous with a slight modification of distance
between two diffraction planes (002), probably due to the presence of silicates (SiO4)
and borates (BO3) in the newly formed HAp mesh. The HAp layer is the main mineral
constituent of bone. Moreover, its formation is based on an ion exchange mechanism
between the glass surface and the body fluids.

X-ray diffraction pattern superposition of BaG-B0 glass powder, and BaG-Bx revealed
a significant difference. This could be due to a progressive increase in B in the glass
matrix, which was indicated by the sharpness of the peaks and the increase attributable
to the reflections (0 0 2) and (2 1 1) (Figure 4). These effects can be explained not only
by considering the stability and non-distortion of the SiO4 network generated in the
structure of BaG-Bx due to the substitution of SiO4 groups with BO4 groups, but also by the
presence of carbonate (C-O) in this HAp layer [54]. After immersion in SBF, morphological
modification by the addition of B to the glass leads to a preferential growth mechanism
toward crystallization direction (002) and (211). This depends on the duration of immersion
in SBF and the chemical composition of the fabricated BaG-Bx. Thus, the formation of
crystal needles in BaG structure seems to be favored by the substitution of silicate ions
(Si4+) with borate ions (B4+) [38].
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A similar crystallization evolution on XRD was observed by other investigators when
B was added to Hench Bioglass ® 45S5 [55]. XRD allows us to better understand the
evolution of the BaG-B/SBF system and to detect any structural changes generated on the
surface of BaGs after their immersion in the physiological medium.

3.1.2. Infra-Red Spectroscopic Analysis

After immersion, IR allows us to study the effect of B incorporation within the glass
network on the silicate, phosphate, and carbonate bands. Results confirm the formation of
an apatite layer on the surface of BaG-B glass after 30 days of immersion (Figure 5).
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fluid (SBF).

Characteristic IR bands of vibrational modes of ionic groups in P-O bands (Table 2) [56],
silicate phosphocalcic HAp (Table 3) [57–59], and C-O bands (Table 4) [60,61] compiling
with previously reported results were seen.

Table 2. Infra-red absorption bands characteristic of hydroxyapatite.

Wave Numbers (cm−1) Assignment Mode

1121 P-O, antisymmetric elongation of ions PO4
3− υ3

960 P-O, symmetric elongation of ions PO4
3− υ1

603–562 P-O, antisymmetric deformation of ions PO4
3− υ4

Table 3. Infrared absorption bands characteristic of silicate groups.

Wave Numbers (cm−1) Assignment Mode

1235 Si-O
1045 Si-O-B

699–794 SiO4 on HAp
458 Si-O-Si υ1
475 SiO4 on HAp υ2
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Table 4. Characteristic infrared absorption bands of carbonate groups.

Wave Numbers (cm−1) Assignment Mode

1651 CO3 on site A et B

1492 CO3 on site B υ3

1410 CO3 on site B υ3

873 CO3 on site B υ2

In general, these glasses showed the majority of the absorption bands characteristic
of a carbonated HAp. By definition, “labile” carbonates are clusters that would occupy
poorly organized sites in the HAp crystal and would therefore be more reactive than
carbonates occupying better-organized sites [62] or atmospheric CO2 adsorbed on the
surface of powders.

The presence of bands for the frequency of the antisymmetric deformation
(υ4 = 562 cm−1 and 603 cm−1) and symmetric elongation (υ1 = 960 cm−1) modes of PO4

3-

ions was confirmed for BaG-B glasses after 30 days of immersion in SBF (Table 2). In addi-
tion, the last vibration band of PO4 (υ1 = 960 cm−1) became narrower and more intense for
BaG-B20. As a function of B content, clear modifications of vibrational bands attributable to
the phosphate ions occurred. In particular, the increase in the intensity of the band located
at 1121 cm−1 is related to environment change (isomorphic ionic exchange between PO4
groups and SiO4 and/or BO4 groups, Figure 5). Consequently, P ion affinity to BO4 group is
higher than to SiO4 group, which facilitates rapid formation of a phosphocalcic HAp layer
on the BaG-B surface. The key characteristic of BaG is its ionic atmosphere’s occurrence
that does not exist in crystallized material when immersed in the physiological environ-
ment. These ionic surroundings have been attributed to the surface appearance of an HAp
crystal layer. Moreover, Si-O-Si vibrational band observation of around 475 cm−1 is clear
regardless of the amount of B incorporated in the BaG matrix. The band at approximately
458 cm−1 is assigned to Si-O-Si and O-Si-O bending modes of bridging oxygen (Q4) atoms
overlapped with B-O-B linkages [63]. For compositions richer in B (BaG-B10; BaG-B20), a
band disappearance of υ1 vibration mode frequency attributed to SiO4 cluster (Table 3) was
proven. Indeed, a similar decrease until intensity disappearance was observed due to B
incorporation attributed to other silicate-specific vibrations located at 699 cm−1, 794 cm−1,
and at 1235 cm−1 designated to Si-O in silica [57,64], and Si-O vibration mode (Table 3),
respectively. In addition, the vibrational band located at 1045 cm−1, probably attributed to
Si-O-B cluster, becomes relatively less broad and more intense in the samples that contain
20% B2O3.

The influence of B incorporation on BaG vibrational spectra was confirmed by demon-
strated proportional correlation between XRD results (Figure 4).

The changes reported for SiO4- and PO4 -specific vibrations in BaG structure after
immersion in SBF are due to the vibrational component modifications of SiO4/BO4 and/or
BO3 groups in their environment (modification of local interactions). These modifications
could be related to strong interactions between these groups leading to the “extinction”
of certain vibrations or incorporated B content. Infrared spectrometry allows us to affirm
that B is integrated in silicate apatite structure, when B2O3 content is 5 wt.% or more, as
demonstrated by the appearance of a weak crystalline phase.

However, after 30 days of immersion in SBF, IR spectra indicate that all samples (with
or without B) show the presence of carbonate groups in the majority (vitreous) and minority
(crystalline apatite) structures (Figure 5). The carbonation of boron-free BaG (BaG-B0), thus
BaG-Bx, can be explained by the high atmospheric concentration of CO2, which is partly
adsorbed on the surface of the glass particles and also dissolved in the SBF. At the same
time, CO3

2− ions are among the main components of carbonate (HCO−
3) physiological

solution. Despite precautions taken in this study, carbonation remains inevitable.
IR spectra of produced compounds showed bands around 1492 and 1651 cm−1 at-

tributed to the C-O group. Moreover, the formation of a carbonated HAp layer is proved
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by the clear appearance of bands at 873 and 1410 cm−1 specific to CO3
2- groups in the

apatite structure (Table 4). IR patterns show the presence of CO3
2- bands in the apatite

phase formed on the BaG particle surface. This is evidenced by the angular shift 2θ [65,66]
(Figure 4). These results also explain the effect of incorporating CO3 and BO4 and/or BO3
groups in the BaG structure, and highlight the incorporation mechanisms of BO3/BO4
and CO3 groups in the amorphous and apatite structure during immersion. For this pur-
pose, it can be assumed that the layer formed on the BaGs surface after immersion in SBF
is a layer of phosphocalcic HAp co-substituted in carbonate (CO3) and silicate/borate
(SiO4/BO4) [67]. Accordingly, the incorporation of B in the BaG network leads to enhanced
bioactivity of BaG, as it was evidenced by the sharpness and increase in the band inten-
sity of vibrational modes designated to phosphate (PO4) and carbonate (CO3) groups
characteristic of a crystallized apatite layer [68].

3.1.3. BaG-Bx Surface Modifications

After one month of immersion, the presence of lamellae and filaments of angular
shape and heterogeneous size on the BaG-Bx particle surface [69] was proved for BaG-B20
(Figure 6a). This observation is in agreement with the XRD results of the current study,
which showed that the BaG-B20 surface had an HAp layer at all immersion time points,
being more at longer follow-up times. By 30 days of immersion, the HAp layer became
thicker and had more organized crystals (Figure 6c). With increasing B content from 5 to
20% in BaG, the HAp layer became more consolidated. For example, the surface of BaG-B20
samples was completely covered with a crystallized Hap layer, which can be explained by
the fact that a high content of B is easily released to SBF solution causing the creation of
new active groups capable of accelerating ion exchange between BaG and SBF.

Going from 1 to 4 h of immersion in SBF, the surface of BaG-B20 particles exhibited a
layer of Hap (Figure 6a) similar to that seen with B-free glass (BaG-B0) immersed in SBF
for 30 days (Figure 6c). The crystals formed in Hap of BaG-B20 were smaller, more regular,
and finer than those formed on the surface of BaG-B0 particles (Figure 6c), demonstrating
a better crystallinity of BaG-B20. As it is well known, chemical reactivity of minerals is
related to their surface properties. Our previous recently published study proves that
B presence enhances BaG-Bx densification [45]. A good understanding of the BaG-Bx
morphology leads us to assess the in vitro properties. For BaG-B20, after 16 h of immersion
in SBF, it exhibited an irregular surface (Figure 6a), which was only observed after 30 days
of immersion for BaG-B0 (Figure 6c). After two days of immersion in SBF, the BaG-B20
surface was covered with crystals. On the other hand, the crystallized layer on BaG-B0 was
observed only after 30 days of immersion in SBF. Thus, the solubility of BaG was improved
with increasing B content in BaG (Figure 6c). Additionally, the surface free energy of silicate
(SiO4), borate (BO3), carbonate (CO3), and phosphate (PO4) clusters plays an important
role in the solubility of BaG-Bx in physiological solution, since BaG solubility rates are
dependent on these intermolecular energies.

The distortion of the vitreous network leads to ion formation in the surface of BaG
particles, and increases ion activity energy. These ions (unsaturated atoms) in the mineral
medium of BaG/SBF have a strong capability to attach and/or repulse other chemical
entities. This represents the driving force behind chemisorption and ionic exchange be-
tween SBF and BaG, which leads to its dissociation, allowing surface functional groups to
appear [70]. Furthermore, the chemical composition of BaG determines its ionic activity,
and both of these affect its solubility [38]. In this sense, the formation of an HAp surface
layer controls the solubility of glass. The HAp layer contains mineral labile ions (CO2

3−,
HPO4

2− and PO3
4−).

This phenomenon suggests that some reactions take place at the BaG-Bx/SBF interface
during immersion. Because of its planar geometry, BO3 facilitates these reactions, which
may be limited to preferential adsorption of calcium and/or phosphate ions. However,
solubility can result in a diffusion barrier that ultimately prevents full crystallization of the
BaG-Bx surface.



J. Funct. Biomater. 2023, 14, 364 10 of 18J. Funct. Biomater. 2023, 14, 364 11 of 18 
 

 

 
Figure 6. Microstructural observation and chemical analysis with scanning electron micrography- 
energy dispersive spectrometry (SEM-EDS) for borosilicate bioactive glasses (BaG-Bx). (a) SEM 
micrograph of BaG-B20 powder surface as a function of SBF immersion time. (b) Zone analysis of 
BaG-B20 powder surface after 2, 5, 15, and 30 days of immersion. (c) Micrographs of BaG-Bx powders 
(× 10.000) after 30 days of immersion in SBF. (d) EDS spectra of BaG-Bx powders after 30 days of 
immersion. 

Figure 6. Microstructural observation and chemical analysis with scanning electron micrography-
energy dispersive spectrometry (SEM-EDS) for borosilicate bioactive glasses (BaG-Bx). (a) SEM
micrograph of BaG-B20 powder surface as a function of SBF immersion time. (b) Zone analysis
of BaG-B20 powder surface after 2, 5, 15, and 30 days of immersion. (c) Micrographs of BaG-Bx

powders (×10.000) after 30 days of immersion in SBF. (d) EDS spectra of BaG-Bx powders after
30 days of immersion.
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In the current study, EDS showed that silicon (Si), calcium (Ca), phosphorus (P), and
sodium (Na) were detectable at each time point. Regardless of immersion time, signals
of Ca and P peaks were the most intense (Figure 6b). It was found that Si concentration
decreases with time, which confirms its release to SBF. After one hour of immersion, B
was not detectable in BaG, which explains its high solubility and its fast release to the SBF
physiological solution (Figure 6b). EDS showed that after 30 days, BaG-B20 was biphasic
(silicate amorphous and crystallized phases) due to the high content of Ca (as indicated by
high EDS peak signal intensity, which is slightly stronger than that of P, Figure 6b). This
means that for the same chemical composition of BaG-Bx, the transfer kinetics of some ions
during immersion depends only on contact time between BaG and SBF.

In addition, solid-to-liquid ratio efficiency (BaG mass/SBF volume) is a very important
factor. It allows the control of chemical reactivity and crystallization kinetics and quality. It
is possible to precisely explain results observed in the current study based on the published
literature on ion transfer mechanisms [71,72]. Different factors were hypothesized to cause
BaG solubility, including high chemical affinity of the BaG surface to certain ions (P, Ca), the
nature of clusters present in physiological solution, bonded interactions between particles
at the onset of immersion until saturation, and choice of BaG chemical composition [71,72].
Accordingly, adding B accelerates the growth of crystalline particles on the surface of
BaG particles [40]. EDS analysis of the BaG-Bx surface after 30 days of immersion in SBF
confirms the growth of an amorphous calcium phosphate layer on the surface of BaG
(Figure 6d). Compared to the EDS spectrum obtained for BaG-B0, a significant decrease
in Si quantity according to added B amount was observed (Figure 6d). On the contrary,
quantities of P and Ca have evolved according to the increase in added B amount. This
confirms once again the better calcium phosphate layer crystallization for BaG-B20. In
addition, EDS patterns showed clearly increasing magnesium (Mg) concentration in BaG
with increasing B content (Figure 6d). It is well known that Mg is an essential element for
human metabolism, and it is naturally present in bone matrix [73,74]. In addition, Mg helps
to stimulate bone tissue growth [75–77].

3.1.4. Nano-Structural Changes in BaG-B

An HAp layer formed on the surfaces of BaG-Bx samples after 30 days of immersion in
SBF (Figure 7). The incorporation of B in the BaG structure leads to a dilation in its vitreous
network (formation of BO3 group instead of SiO4), which results in decreased durability of
BaG within SBF. Crystal growth in BaG-Bx after one month of immersion in SBF occurred in
two different geometrical forms, in platelets and in fibers (needles), according to preferred
directions [78] (Figure 7a–d). Therefore, the dissolution rate of BaG-B20 (Figure 7d) was
faster than that of BaG-B5 (Figure 7b). This proves that B ions could act as activators of
HAp nucleation and crystallization.

EDS analysis of the crystallized surface of BaG-B20 demonstrated that high B content
influences BaG tendency to dissolve and favors exchange of Ca, P, and O ions between BaG
and SBF (Figure 7e). As a result, high content of these ions in the BaG was observed on
EDS (Figure 7e), which was also confirmed by the spectroscopic results (Figure 5).

3.1.5. Ion Exchange between BaG-B and SBF

The concentration of Si in SBF proceeded as a function of time after immersion of
BaG, and Si release commenced within the first few hours of immersion (Figure 8a). Then,
after dissolution of the vitreous network, Si quantity in SBF increased. For all samples,
BaG-Bx/SBF contact time required to reach equilibrium determined after 15 days with
a Si concentration in SBF was 65 ppm (Figure 8b). The Si amount released increased
tremendously with increased B content in BaG, demonstrating the effect of B on enhancing
the BaG-B dissociation process. Variation of Si concentration retained by BaG-Bx, as a
function of B content, was clearly indicated by the shape of obtained curves at short and
long test times (Figure 8a,b).
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Figure 7. Transmission electron micrograph (TEM) images, at varying magnifications of borosilicate
bioactive glass (BaG-Bx) after 30 days of immersion in simulated body fluid (SBF). (a) TEM micrograph
of BaG-B0. (b) TEM micrograph of BaG-B5. (c) TEM micrograph of BaG-B10. (d) TEM micrograph
of BaG-B20. (e) Energy dispersive spectrometry (EDS) spectra of BaG-B20 after 30 days’ immersion
in SBF.

Curves indicate that Si saturation level for BaG-B20 is higher than that of BaG-B0.
Comparing BaG-B0 curves with BaG-B20 curves demonstrates the effect of B on the in-
tramolecular bond distortion of SiO4. This attests to the strong affinity of borosilicate groups
(B-O-Si) to SBF solution. Recent research conducted on the interaction of magnesium-doped
glass with SBF shows the same Si release behavior from BaG-Mg [79]. Based on molecular
dynamics simulations, a bioactive glass ionomer cement (GIC) of different compositions
with similar composition and degradability behavior has been generated [80]. Based on the
literature [81–83], the metabolism of bioactive-glass-forming elements (silicon or boron)
comprises clearance by kidneys and elimination through urine.

After immersion of BaG-Bx in SBF, Ca concentration in SBF started to rise within few
hours and continued to increase over two days (Figure 8c,d). For all BaG-Bx, concentration
of Ca2+ ions increased tremendously during the first hours of contact with SBF to reach
a value of 150 ppm (Figure 8c). Moreover, with increased B content in BaG, Ca2+ release
was decreased (as indicated by Ca concentration in SBF) (Figure 8d). This confirms the
affinity of Ca ions existing in SBF to the BaG surface [84]. These results agree with the XRD
and IR analysis results [85–87]. After five days of immersion in SBF, Ca concentration in
SBF of the BaG-Bx decreased according to both the B content and the immersion time, until
equilibrium was reached (Figure 8d). Even after 30 days of immersion, Ca continued to
move to the BaG surface, forming a crystallized apatite layer. Weight ratios (e.g., Si/B)
can be used to control the release of Ca during in vitro tests [88]. Thus, the Ca amount
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that moved from SBF to the BaG surface increased with increasing B content of BaG-Bx.
Moreover, Ca concentration in SBF, measured for BaG-B20 at 30 days, was much lower than
that of boron-free glass (BaG-B0, Figure 8d), with a concentration difference:

∆C (ppm) = CCa
B0 − CCa

B20 = 20.3 ppm
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concentration at long time. (e) Phosphorus (P) concentration at short time. (f) P concentration at long
time. (g) Boron (B) concentration at short time. (h) B concentration at long time.
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Calcium ions (Ca2+) that were not fully incorporated into the crystallized layer struc-
ture that formed on the BaG surface remained in the SBF solution. Consequently, B content
of BaG-B is directly related to the rate of Ca2+ exchange between BaG and SBF [89].

P ion concentrations in SBF gradually increased due to their continuous release from
BaG-B (Figure 8e,f). After 16 h of immersion, P concentrations increased by more than
50 ppm (Figure 8e), indicating a high rate of P release from BaG up to 1 day of immersion,
after which P release from BaG-B started to decrease throughout the observation period
of 30 days. Starting from two days onward, P was also transferred from SBF to the BaG
surface. This is consistent with the precipitation of HAp on the BaG surface. By 30 days, P
was completely transferred from SBF to BaG-B (Figure 8f). Higher P transfer to BaG was
observed with increased B content in the BaG. Accordingly, it can also be contemplated that
B stimulates the transfer of PO4

3− from SBF to the BaG surface to form an HAp layer (the
layer that bonds BaG to bone) [28]. Thus, ICP results showed that two phenomena occur
at the BaG-Bx/SBF solution interface, (1) BaG dissolution in SBF solution; and (2) HAp
layer formation confirmed by the migration of Ca and P ions from SBF solution to the
BaG surface.

B release from BaG-B to SBF commenced within few hours. BaG-B released between
5 and 11 ppm of B by 16 h of immersion (Figure 8g). Indeed, BaGs with a higher B content
dissolved more quickly. By 30 days, 16 ppm B was released from BaG-B5, 35 ppm from
BaG-B10, and 56 ppm from BaG-B20 (Figure 8h). The concentration of B in SBF increased
with increased B content in BaG-B. This can be explained by increased solubility of BaG-B
in physiological fluids with increasing B content [90]. Accordingly, BaG-B with higher B
content can suit clinical applications where healing is relatively fast [28], such as occurs in
children and upper parts of the body.

4. Conclusions

BaG with a high and homogenously distributed B content as well as stable structure
can be developed using a modified sol-gel method. The presence of B improves the
bioactive glass dissolution in SBF solution by disrupting the silica glass network. The
higher the B content of BaG-B, the faster its degradation and B release, as well as ion (Si,
Ca, P, B) exchange between the glass and the solution. All studied glasses (5, 10 and 20% B
content) were bioactive and exhibited HAp layer formation. The HAp layer of the resulting
material becomes denser and thicker as the B content of the material is increased. With these
properties, B containing BaG can be useful for application in younger patients and upper
parts of the body, where healing is relatively fast and BaG degradation is desired. BaG-B
with controlled degradation rate, by controlling its B content, represents an interesting
material for future animal and clinical studies that should be carried out.
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