A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Titanium Discs and Decontamination Groups
2.2. Dental Pellicle Model—Pellicle Formation and Decontamination
2.3. X-ray Photoelectron Spectroscopy (XPS)—Analysis of Chemical Surface Composition
2.4. Cell Culture and Cytotoxicity Assay
2.5. Clinical Safety Assessment
- Good general health
- Between 18 and 65 years of age
- Healthy oral tissues.
- At least ten remaining teeth and/or fixed implants.
- No active oral pathologies.
- Signed Informed Consent was obtained before the start.
- Psychological appropriateness.
- Consent to complete follow-up interview.
- Not optimal general health condition
- Abscess or infection anywhere in the body at the time of study entry.
- Current pregnancy or nursing.
- Not optimal general health condition
- Abscess or infection anywhere in the body at the time of study entry.
- Current pregnancy or nursing.
- Any condition or current treatment for any condition, which in the opinion of the investigator and/or consulting physician, may constitute an unwarranted risk.
- The presence of psychological characteristics such as inappropriate attitude or motivation, which, in the investigator’s opinion, are incompatible with the risks involved with the cleaning procedure and the prosthesis.
- Unwillingness to undergo a post-procedure interview.
- If, in the medical opinion of the dental professional, conditions are such that dental cleaning is deemed unsuitable for the patient.
- Intake of Non-Steroidal Anti-Inflammatory Drugs (NSAID), pain-killers or antibiotics one week before and three days after the procedure.
2.6. Statistics
3. Results
3.1. XPS
3.2. Cytotoxicity
3.3. Clinical Safety Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campoccia, D.; Montanaro, L.; Arciola, C.R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006, 27, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Grundy, E.M.; Murphy, M. Population ageing in Europe. In Oxford Textbook of Geriatric Medicine; Oxford University Press: Oxford, UK, 2017; p. 11. [Google Scholar]
- Owens, C.D.; Stoessel, K. Surgical site infections: Epidemiology, microbiology and prevention. J. Hosp. Infect. 2008, 70 (Suppl. 2), 3–10. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms and device-associated infections. Emerg. Infect. Dis. 2001, 7, 277–281. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Stevens, P.M.; Klatt, J.B. Guided growth for pathological physes: Radiographic improvement during realignment. J. Pediatr. Orthop. 2008, 28, 632–639. [Google Scholar] [CrossRef]
- Prathapachandran, J.; Suresh, N. Management of peri-implantitis. Dent. Res. J. 2012, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-T.; Huang, Y.-W.; Zhu, L.; Weltman, R. Prevalences of peri-implantitis and peri-implant mucositis: Systematic review and meta-analysis. J. Dent. 2017, 62, 1–12. [Google Scholar] [CrossRef]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89 (Suppl. 1), S313–S318. [Google Scholar] [CrossRef]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-implantitis update: Risk indicators, diagnosis, and treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef]
- Chawhuaveang, D.D.; Yu, O.Y.; Yin, I.X.; Lam, W.Y.; Mei, M.L.; Chu, C.H. Acquired salivary pellicle and oral diseases: A literature review. J. Dent. Sci. 2021, 16, 523–529. [Google Scholar] [CrossRef]
- Länge, K.; Herold, M.; Scheideler, L.; Geis-Gerstorfer, J.; Wendel, H.P.; Gauglitz, G. Investigation of initial pellicle formation on modified titanium dioxide (TiO2) surfaces by reflectometric interference spectroscopy (RIfS) in a model system. Dent. Mater. 2004, 20, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Sterzenbach, T.; Helbig, R.; Hannig, C.; Hannig, M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin. Oral. Investig. 2020, 24, 4237–4260. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Haugen, H.J.; Aass, A.M.; Sanz, M.; Antonoglou, G.N.; Bouchard, P.; Bozic, D.; Eickholz, P.; Jepsen, K.; Jepsen, S. Peri-Implant Health and the Knowing-Doing Gap—A Digital Survey on Procedures and Therapies. Front. Dent. Med. 2021, 2, 726607. [Google Scholar] [CrossRef]
- Buser, D.; Sennerby, L.; De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol. 2000 2017, 73, 7–21. [Google Scholar] [CrossRef]
- Lamolle, S.F.; Monjo, M.; Rubert, M.; Haugen, H.J.; Lyngstadaas, S.P.; Ellingsen, J.E. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 2009, 30, 736–742. [Google Scholar] [CrossRef]
- Zhu, X.; Wen, G.; Liu, H.; Han, S.; Chen, S.; Kong, Q.; Feng, W. One-step hydrothermal synthesis and characterisation of Cu-doped TiO2 nanoparticles/nanobucks/nanorods with enhanced photocatalytic performance under simulated solar light. J. Mater. Sci. Mater. Electron. 2019, 30, 13826–13834. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, Y.; Wan, W.; Wang, F.; Zhang, Q.; Lin, Y. Nanoporous TiO2/polyaniline composite films with enhanced photoelectrochemical properties. Mater. Lett. 2014, 130, 150–153. [Google Scholar] [CrossRef]
- Caracciolo, L.; Madec, L.; Martinez, H. XPS analysis of K-based reference compounds to allow reliable studies of solid electrolyte interphase in K-ion batteries. ACS Appl. Energy Mater. 2021, 4, 11693–11699. [Google Scholar] [CrossRef]
- Valencia-Alvarado, R.; De La Piedad-Beneitez, A.; López-Callejas, R.; Rodríguez-Méndez, B.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A.; De La Rosa-Vázquez, J. Sequential processes to produce N-TiO2 films through Rf plasmas. MATEC Web Conf. 2016, 67, 06075. [Google Scholar] [CrossRef]
- Natu, V.; Benchakar, M.; Canaff, C.; Habrioux, A.; Celerier, S.; Barsoum, M.W. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 2021, 4, 1224–1251. [Google Scholar] [CrossRef]
- Popov, A.A.; Tikhonowski, G.V.; Shakhov, P.V.; Popova-Kuznetsova, E.A.; Tselikov, G.I.; Romanov, R.I.; Markeev, A.M.; Klimentov, S.M.; Kabashin, A.V. Synthesis of titanium nitride nanoparticles by pulsed laser ablation in different aqueous and organic solutions. Nanomaterials 2022, 12, 1672. [Google Scholar] [CrossRef]
- Peña-Juárez, M.G.; Robles-Martínez, M.; Méndez-Rodríguez, K.B.; López-Esparza, R.; Pérez, E.; Gonzalez-Calderon, J.A. Role of the chemical modification of titanium dioxide surface on the interaction with silver nanoparticles and the capability to enhance antimicrobial properties of poly(lactic acid) composites. Polym. Bull. 2021, 78, 2765–2790. [Google Scholar] [CrossRef]
- Vitanov, P.; Stefanov, P.; Harizanova, A.; Ivanova, T. XPS characterization of thin (Al2O3) x (TiO2) 1-x films deposited on silicon. J. Phys. Conf. Ser. 2008, 113, 012036. [Google Scholar] [CrossRef]
- Buser, D.; Janner, S.F.; Wittneben, J.G.; Brägger, U.; Ramseier, C.A.; Salvi, G.E. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: A retrospective study in 303 partially edentulous patients. Clin. Implant. Dent. Relat. Res. 2012, 14, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Simão Jr, B.S.; Costa, D.D.; Cangussu, M.C.T.; Sotto-Maior, B.S.; Devita, R.L.; de Carvalho, J.J.; da Silva Brum, I. Observational Study on the Success Rate of Osseointegration: A Prospective Analysis of 15,483 Implants in a Public Health Setting. BioMed 2022, 2, 422–430. [Google Scholar] [CrossRef]
- Derks, J.; Schaller, D.; Hakansson, J.; Wennstrom, J.L.; Tomasi, C.; Berglundh, T. Peri-implantitis—Onset and pattern of progression. J. Clin. Periodontol. 2016, 43, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Gulati, K.; Arora, H.; Han, P.; Fournier, B.; Ivanovski, S. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent. Mater. 2021, 37, 816–831. [Google Scholar] [CrossRef]
- Campbell, M.K.; Farrell, S.O.; McDougal, O.M. Amino Acids and Peptides. In Biochemistry, 9th ed.; Cengage Learning: Boston, MA, USA, 2016; pp. 60–74. [Google Scholar]
- Habibovic, P.; Barralet, J. Bioinorganics and biomaterials: Bone repair. Acta Biomater. 2011, 7, 3013–3026. [Google Scholar] [CrossRef]
- Anitua, E.; Piñas, L.; Murias, A.; Prado, R.; Tejero, R. Effects of calcium ions on titanium surfaces for bone regeneration. Colloids Surf. B Biointerfaces 2015, 130, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Kant, V.; Gopal, A.; Kumar, D.; Gopalkrishnan, A.; Pathak, N.N.; Kurade, N.P.; Tandan, S.K.; Kumar, D. Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochem. 2014, 116, 5–13. [Google Scholar] [CrossRef]
- Percival, S.L.; Chen, R.; Mayer, D.; Salisbury, A.M. Mode of action of poloxamer-based surfactants in wound care and efficacy on biofilms. Int. Wound J. 2018, 15, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Narendrakumar, K.; Kulkarni, M.; Addison, O.; Mazare, A.; Junkar, I.; Schmuki, P.; Sammons, R.; Iglič, A. Adherence of oral streptococci to nanostructured titanium surfaces. Dent. Mater. 2015, 31, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Neoh, K.G.; Wang, R.; Kang, E.T. 7—Surface nanoengineering for combating biomaterials infections. In Biomaterials and Medical Device-Associated Infections; Barnes, L., Cooper, I.R., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 133–161. [Google Scholar]
- Astolfi, V.; Ríos-Carrasco, B.; Gil-Mur, F.J.; Ríos-Santos, J.V.; Bullón, B.; Herrero-Climent, M.; Bullón, P. Incidence of Peri-Implantitis and Relationship with Different Conditions: A Retrospective Study. Int. J. Environ. Res. Public Health 2022, 19, 4147. [Google Scholar] [CrossRef] [PubMed]
- Bosshardt, D.D.; Brodbeck, U.R.; Rathe, F.; Stumpf, T.; Imber, J.-C.; Weigl, P.; Schlee, M. Evidence of re-osseointegration after electrolytic cleaning and regenerative therapy of peri-implantitis in humans: A case report with four implants. Clin. Oral Investig. 2022, 26, 3735–3746. [Google Scholar] [CrossRef] [PubMed]
Product Name | Content | In Clinical Dental Use |
---|---|---|
PrefGel® | 24% EDTA + hydrogel | Yes |
Perisolv® | Sodium hypochlorite + a hydrogel | Yes |
Hydrogen peroxide | 3% H2O2 in water | Yes |
Pluronic® F-127 | 28% Poloxamer in water | No |
NuBone® Clean | 3% H2O2 + a hydrogel (poloxamer) | No |
GUM® Paroex® | 0.12% Chlorhexidine digluconate + 0.05% Cetylpyridinium chloride | Yes |
Elemental Analysis after Decontamination (Atomic% ± Standard Deviation) | ||||||
Element | PrefGel | Perisolv | H2O2 | Pluronic | NuBoneClean | GumPareox |
C 1s% | 61.9 ± 1.9 | 62.2 ± 8.8 | 50.0 ± 2.8 * | 56.5 ± 4.0 * | 38.8 ± 1.9 * | 56.0 ± 1.7 * |
N 1s% | 10.0 ± 0.7 | 5.1 ± 3.7 | 8.5 ± 0.5 | 7.2 ± 2.1 | 2.2 ± 0.1 * | 8.7 ± 0.0 |
O 1s% | 26.1 ± 1.6 * | 28.6 ± 2.2 * | 32.3 ± 1.8 * | 30.0 ± 1.0 * | 43.4 ± 1.0 * | 28.1 ± 1.4 * |
Na 1s% | 0.9 ± 1.3 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Si 2p% | 0.9 ± 0.5 | 0.1 ± 0.1 | 0.5 ± 0.2 | 0.4 ± 0.3 | 0.7 ± 0.0 | 0.1 ± 0.1 |
P 2p% | 0.0 ± 0.0 | 0.5 ± 0.4 | 1.0 ± 0.3 | 0.4 ± 0.2 | 1.7 ± 0.4 | 0.5 ± 0.1 |
S 2p% | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.2 ± 0.1 | 0.1 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.1 |
Cl 2p% | 0.0 ± 0.0 | 0.6 ± 0.0 | 0.4 ± 0.3 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.0 |
K 2p% | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Ca 2p% | 0.0 ± 0.0 | 1.2 ± 0.9 | 2.6 ± 0.5 * | 1.2 ± 0.1 | 4.6 ± 0.7 * | 1.0 ± 0.1 |
Ti 2p% | 0.0 ± 0.1 | 2.3 ± 1.8 | 4.6 ± 1.4 * | 4.1 ± 1.4 * | 7.9 ± 2.2 * | 5.3 ± 0.6 * |
Elemental Analysis after Both Decontamination and Re-Contaminations with Saliva (Atomic% ± Standard Deviation) | ||||||
Element | PrefGel | Perisolv | H2O2 | Pluronic | NuBoneClean | GumPareox |
C 1s% | 63.4 ± 2.2 | 49.7 ± 4.5 * | 47.6 ± 3.3 * | 60.8 ± 9.2 | 48.2 ± 2.2 * | 57.7 ± 2.1 * |
N 1s% | 10.8 ± 0.4 | 7.4 ± 1.1 | 8.6 ± 1.3 | 4.9 ± 3.7 | 8.4 ± 0.5 | 10.2 ± 0.2 |
O 1s% | 24.6 ± 1.4 * | 33.6 ± 3.7 * | 33.4 ± 2.3 * | 29.7 ± 3.1 * | 33.7 ± 1.9 * | 26.4 ± 1.2 * |
Na 1s% | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Si 2p% | 0.1 ± 0.2 | 0.4 ± 0.2 | 0.2 ± 0.2 | 0.2 ± 0.2 | 0.1 ± 0.2 | 0.0 ± 0.0 |
P 2p% | 0.1 ± 0.1 | 1.3 ± 0.2 * | 1.6 ± 0.7 | 0.6 ± 0.4 | 1.7 ± 0.4 | 0.7 ± 0.2 |
S 2p% | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.2 ± 0.1 | 0.0 ± 0.0 | 0.1 ± 0.1 | 0.1 ± 0.1 |
Cl 2p% | 0.2 ± 0.1 | 0.3 ± 0.3 | 0.4 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.0 |
K 2p% | 0.1 ± 0.1 | 0.4 ± 0.2 | 0.6 ± 0.6 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Ca 2p% | 0.1 ± 0.1 | 3.0 ± 0.4 * | 2.8 ± 0.9 * | 1.2 ± 0.6 | 3.6 ± 0.9 * | 1.7 ± 0.4 |
Ti 2p% | 0.5 ± 0.6 | 3.8 ± 2.0 * | 4.7 ± 0.3 * | 2.5 ± 1.3 | 4.1 ± 1.4 * | 3.0 ± 0.7 |
Controls (at% ± SD) | ||
---|---|---|
Element | Without Pellicle | With Pellicle |
C 1s% | 32.1 ± 0.5 | 73.4 ± 3.3 |
N 1s% | 0.9 ± 0.1 | 6.1 ± 0.8 |
O 1s% | 47.6 ± 0.5 | 17.1 ± 1.8 |
Na 1s% | 0.0 ± 0.0 | 0.0 ± 0.0 |
Si 2p% | 0.2 ± 0.2 | 0.0 ± 0.0 |
P 2p% | 0.2 ± 0.2 | 0.4 ± 0.1 |
S 2p% | 0.0 ± 0.0 | 0.4 ± 0.1 |
Cl 2p% | 0.1 ± 0.2 | 0.1 ± 0.0 |
K 2p% | 0.0 ± 0.1 | 2.2 ± 0.6 |
Ca 2p% | 0.0 ± 0.1 | 0.1 ± 0.1 |
Ti 2p% | 18.7 ± 0.3 | 0.0 ± 0.0 |
Patient | Patient Satisfaction Score |
---|---|
1 | 10 |
2 | 10 |
3 | 10 |
4 | 10 |
5 | 10 |
6 | 10 |
7 | 10 |
8 | 10 |
9 | 10 |
10 | 5 |
11 | 10 |
12 | 10 |
Mean | 9.6 |
Median | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, B.; Khan, S.; Agger, A.E.; Ellingsen, J.E.; Lyngstadaas, S.P.; Bueno, J.; Haugen, H.J. A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces. J. Funct. Biomater. 2023, 14, 394. https://doi.org/10.3390/jfb14080394
Hussain B, Khan S, Agger AE, Ellingsen JE, Lyngstadaas SP, Bueno J, Haugen HJ. A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces. Journal of Functional Biomaterials. 2023; 14(8):394. https://doi.org/10.3390/jfb14080394
Chicago/Turabian StyleHussain, Badra, Sadia Khan, Anne Eriksson Agger, Jan Eirik Ellingsen, Ståle Petter Lyngstadaas, Jaime Bueno, and Håvard J. Haugen. 2023. "A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces" Journal of Functional Biomaterials 14, no. 8: 394. https://doi.org/10.3390/jfb14080394
APA StyleHussain, B., Khan, S., Agger, A. E., Ellingsen, J. E., Lyngstadaas, S. P., Bueno, J., & Haugen, H. J. (2023). A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces. Journal of Functional Biomaterials, 14(8), 394. https://doi.org/10.3390/jfb14080394