Next Issue
Volume 15, February
Previous Issue
Volume 14, December
 
 

J. Funct. Biomater., Volume 15, Issue 1 (January 2024) – 25 articles

Cover Story (view full-size image): The electrodeposition of a conductive polymer film, which is a well-known approach, was used in this study. Polypyrrole (PPy), polyaniline (PA), and poly (3,4-ethylene-dioxyethiophene) (PEDOT) are three of the conductive polymers most used for the protection of active metals from corrosion. Electrodeposition maintains the chemical composition and thickness of the coating, so coating depositions are reproducible. The conducting polymer chosen for this study was PPy because of its high resistance to corrosion, its easy synthesis and good biocompatibility. Since the biological inertia of the PPy surface reduces cell affinity, an alternative method of protein bio-functionalization was employed to improve the bioactivity of our implants coated with a PPy film: fibronectin (Fn) electrodeposition. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 4732 KiB  
Article
Chemical and Ultrastructural Characterization of Dentin Treated with Remineralizing Dentifrices
by Dimitra Athanasiadou, Denise Eymael, Beshr Hajhamid, Karina M. M. Carneiro and Anuradha Prakki
J. Funct. Biomater. 2024, 15(1), 25; https://doi.org/10.3390/jfb15010025 - 16 Jan 2024
Cited by 2 | Viewed by 2310
Abstract
The aim of this study is to investigate dentin chemical and ultrastructural changes upon exposure to remineralizing dentifrices. Dentin disks were obtained from permanent human molars and treated for 7 days with the dentifrices: (1) C group—control (no dentifrice); (2) S group—Sensodyne Repair [...] Read more.
The aim of this study is to investigate dentin chemical and ultrastructural changes upon exposure to remineralizing dentifrices. Dentin disks were obtained from permanent human molars and treated for 7 days with the dentifrices: (1) C group—control (no dentifrice); (2) S group—Sensodyne Repair & Protect; (3) D group—Dentalclean Daily Regenerating Gel; and (4) DB group—D group + Dentalclean regenerating booster. Afterwards, samples were submitted to an additional 7 days of toothbrushing associated with daily acidic challenge. Samples were imaged and analyzed (days 1, 7, and 14) for Young’s modulus by atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). SEM and AFM revealed precipitate deposition on dentin surfaces in groups S, D, and DB, formed as early as day 1. Surface elemental analysis showed a Si increase on all brushed surfaces. Similar surface morphology was maintained after the acidic challenge period. Bright-field TEM/SAED revealed the formation of nanocrystalline hydroxyapatite inside the dentin tubules of groups S, D, and DB after day 7. Group C presented a gradual reduction of Young’s modulus from days-1–14, whereas all remaining groups had increased values. All evaluated dentifrices led to successful formation of hydroxyapatite and increased dentin stiffness. Full article
Show Figures

Figure 1

15 pages, 3572 KiB  
Article
Surface Properties of a Biocompatible Thermoplastic Polyurethane and Its Anti-Adhesive Effect against E. coli and S. aureus
by Elisa Restivo, Emanuela Peluso, Nora Bloise, Giovanni Lo Bello, Giovanna Bruni, Marialaura Giannaccari, Roberto Raiteri, Lorenzo Fassina and Livia Visai
J. Funct. Biomater. 2024, 15(1), 24; https://doi.org/10.3390/jfb15010024 - 15 Jan 2024
Cited by 2 | Viewed by 3007
Abstract
Thermoplastic polyurethane (TPU) is a polymer used in a variety of fields, including medical applications. Here, we aimed to verify if the brush and bar coater deposition techniques did not alter TPU properties. The topography of the TPU-modified surfaces was studied via AFM [...] Read more.
Thermoplastic polyurethane (TPU) is a polymer used in a variety of fields, including medical applications. Here, we aimed to verify if the brush and bar coater deposition techniques did not alter TPU properties. The topography of the TPU-modified surfaces was studied via AFM demonstrating no significant differences between brush and bar coater-modified surfaces, compared to the un-modified TPU (TPU Film). The effect of the surfaces on planktonic bacteria, evaluated by MTT assay, demonstrated their anti-adhesive effect on E. coli, while the bar coater significantly reduced staphylococcal planktonic adhesion and both bacterial biofilms compared to other samples. Interestingly, Pearson’s R coefficient analysis showed that Ra roughness and Haralick’s correlation feature were trend predictors for planktonic bacterial cells adhesion. The surface adhesion property was evaluated against NIH-3T3 murine fibroblasts by MTT and against human fibrinogen and human platelet-rich plasma by ELISA and LDH assay, respectively. An indirect cytotoxicity experiment against NIH-3T3 confirmed the biocompatibility of the TPUs. Overall, the results indicated that the deposition techniques did not alter the antibacterial and anti-adhesive surface properties of modified TPU compared to un-modified TPU, nor its bio- and hemocompatibility, confirming the suitability of TPU brush and bar coater films in the biomedical and pharmaceutical fields. Full article
Show Figures

Graphical abstract

5 pages, 179 KiB  
Editorial
State-of-the-Art Functional Biomaterials in China
by Yuqin Qiao and Huiliang Cao
J. Funct. Biomater. 2024, 15(1), 23; https://doi.org/10.3390/jfb15010023 - 15 Jan 2024
Viewed by 1955
Abstract
In recent years, rapid advancements in multidisciplinary fields (materials, biology, chemical physics, etc [...] Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
19 pages, 6150 KiB  
Article
Synthesis of Tubular Hydroxyapatite and Its Application in Polycaprolactone Scaffold Materials
by Ziyi Hong, Shaohui Wang and Fengyu Liu
J. Funct. Biomater. 2024, 15(1), 22; https://doi.org/10.3390/jfb15010022 - 14 Jan 2024
Cited by 1 | Viewed by 2306
Abstract
Nano-hydroxyapatite (HAp) is an ideal material in the field of biomedicine due to its good biocompatibility and bioactivity. However, a significant drawback of pure HAp materials is their inferior mechanical properties. Therefore, in this rigorous investigation, the optimal calcium-to-phosphorus ratio for the synthesis [...] Read more.
Nano-hydroxyapatite (HAp) is an ideal material in the field of biomedicine due to its good biocompatibility and bioactivity. However, a significant drawback of pure HAp materials is their inferior mechanical properties. Therefore, in this rigorous investigation, the optimal calcium-to-phosphorus ratio for the synthesis of HAp was meticulously delineated, followed by its nuanced modification using KH550 (γ-aminopropyltriethoxysilane). This was further amalgamated with polycaprolactone (PCL) with the aim of providing a superior material alternative within the domain of bone scaffold materials. The post-modified HAp demonstrated enhanced interfacial compatibility with PCL, bestowing the composite with superior mechanical characteristics, notably a peak bending strength of 6.38 ± 0.037 MPa and a tensile strength of 3.71 ± 0.040 MPa. Scanning electron microscope (SEM) imagery revealed an intriguing characteristic of the composite: an initial ascension in porosity upon HAp integration, subsequently followed by a decline. Beyond this, the composite not only exhibited stellar auto-degradation prowess but also realized a sustained release cycle of 24 h, markedly optimizing drug utility efficiency. A kinetic model for drug dispensation was developed, positing an adherence to a pseudo-second-order kinetic principle. In tandem, through the formulation of an intra-particle diffusion model, the diffusion mechanisms pre- and post-modification were deeply probed. Cytotoxicity assays underscored the composite’s exemplary biocompatibility. Such findings accentuate the vast potential of the modified HAp–PCL composite in bone tissue engineering, heralding a novel and efficacious avenue for impending bone defect amelioration. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

13 pages, 5750 KiB  
Article
Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces
by Giacomo Baima, Federica Romano, Ilaria Roato, Alessandro Mosca Balma, Riccardo Pedraza, Maria Giulia Faga, Federico Amoroso, Clarissa Orrico, Tullio Genova, Mario Aimetti and Federico Mussano
J. Funct. Biomater. 2024, 15(1), 21; https://doi.org/10.3390/jfb15010021 - 12 Jan 2024
Cited by 1 | Viewed by 1957
Abstract
This in vitro study assessed the efficacy of a solution containing 33% trichloroacetic acid (CCl3COOH; TCA) and hydrogen peroxide (H2O2) in decontaminating machined (MAC) and sand-blasted acid-etched (SBAE) titanium surfaces. A total of 80 titanium disks were [...] Read more.
This in vitro study assessed the efficacy of a solution containing 33% trichloroacetic acid (CCl3COOH; TCA) and hydrogen peroxide (H2O2) in decontaminating machined (MAC) and sand-blasted acid-etched (SBAE) titanium surfaces. A total of 80 titanium disks were prepared (40 MAC and 40 SBAE). Streptococcus sanguinis and Enterococcus faecalis strains were incubated on 36 samples, while the remaining 44 were kept as controls. Roughness analysis and scanning electron microscopy were used to evaluate the surface features before and after TCAH2O2 treatment. The viability of human adipose-derived mesenchymal stem cells (ASCs) after TCAH2O2 decontamination was assessed with a chemiluminescent assay along with cell morphology through fluorescent staining. TCAH2O2 preserved the surface topography of MAC and SBAE specimens. It also effectively eradicated bacteria on both types of specimens without altering the surface roughness (p > 0.05). Also, no significant differences in protein adsorption between the pristine and TCAH2O2-treated surfaces were found (p = 0.71 and p = 0.94). While ASC proliferation remained unchanged on MAC surfaces, a decrease was observed on the decontaminated SBAE specimens at 24 and 48 h (p < 0.05), with no difference at 72 h (p > 0.05). Cell morphology showed no significant changes after 72 h on both surface types even after decontamination. This study suggests TCAH2O2 as a promising decontamination agent for titanium surfaces, with potential implications for peri-implant health and treatment outcomes. Full article
(This article belongs to the Special Issue New Trends in Biomaterials and Implants for Dentistry)
Show Figures

Figure 1

16 pages, 5352 KiB  
Article
Development of a Nanoparticle System for Controlled Release in Bioprinted Respiratory Scaffolds
by Amanda Zimmerling, Christina Sunil, Yan Zhou and Xiongbiao Chen
J. Funct. Biomater. 2024, 15(1), 20; https://doi.org/10.3390/jfb15010020 - 12 Jan 2024
Cited by 1 | Viewed by 3049
Abstract
The use of nanoparticle systems for the controlled release of growth factors is a promising approach to mimicking of the biochemical environment of native tissues in tissue engineering. However, sustaining growth factor release inside an appropriate therapeutic window is a challenge, particularly in [...] Read more.
The use of nanoparticle systems for the controlled release of growth factors is a promising approach to mimicking of the biochemical environment of native tissues in tissue engineering. However, sustaining growth factor release inside an appropriate therapeutic window is a challenge, particularly in bioprinted scaffolds. In this study, a chitosan-coated alginate-based nanoparticle system loaded with hepatocyte growth factor was developed and then incorporated into bioprinted scaffolds. The release kinetics were investigated with a focus on identifying the impact of the chitosan coating and culture conditions. Our results demonstrated that the chitosan coating decreased the release rate and lessened the initial burst release, while culturing in dynamic conditions had no significant impact compared to static conditions. The nanoparticles were then incorporated into bioinks at various concentrations, and scaffolds with a three-dimensional (3D) structure were bioprinted from the bioinks containing human pulmonary fibroblasts and bronchial epithelial cells to investigate the potential use of a controlled release system in respiratory tissue engineering. It was found that the bioink loaded with a concentration of 4 µg/mL of nanoparticles had better printability compared to other concentrations, while the mechanical stability of the scaffolds was maintained over a 14-day culture period. The examination of the incorporated cells demonstrated a high degree of viability and proliferation with visualization of the beginning of an epithelial barrier layer. Taken together, this study demonstrates that a chitosan-coated alginate-based nanoparticle system allows the sustained release of growth factors in bioprinted respiratory tissue scaffolds. Full article
Show Figures

Figure 1

15 pages, 5775 KiB  
Article
New 3D Printed Scaffolds Based on Walstromite Synthesized by Sol–Gel Method
by Ştefania Chiriac, Roxana-Cristina Popescu, Mihnea-Mihăiță Pele, Cristina-Daniela Ghiţulică, Andreia Cucuruz, Ruxandra-Elena Geanaliu-Nicolae, Izabela-Cristina Stancu, Georgeta Voicu and Lucian-Toma Ciocan
J. Funct. Biomater. 2024, 15(1), 19; https://doi.org/10.3390/jfb15010019 - 8 Jan 2024
Cited by 1 | Viewed by 2315
Abstract
This study explores the potential utilization of walstromite (BaCa2Si3O9) as a foundational material for creating new bioceramics in the form of scaffolds through 3D printing technology. To achieve this objective, this study investigates the chemical–mineralogical, morphological, and [...] Read more.
This study explores the potential utilization of walstromite (BaCa2Si3O9) as a foundational material for creating new bioceramics in the form of scaffolds through 3D printing technology. To achieve this objective, this study investigates the chemical–mineralogical, morphological, and structural characteristics, as well as the biological properties, of walstromite-based bioceramics. The precursor mixture for walstromite synthesis is prepared through the sol–gel method, utilizing pure reagents. The resulting dried gelatinous precipitate is analyzed through complex thermal analysis, leading to the determination of the optimal calcination temperature. Subsequently, the calcined powder is characterized via X-ray diffraction and scanning electron microscopy, indicating the presence of calcium and barium silicates, as well as monocalcium silicate. This powder is then employed in additive 3D printing, resulting in ceramic scaffolds. The specific ceramic properties of the scaffold, such as apparent density, absorption, open porosity, and compressive strength, are assessed and fall within practical use limits. X-ray diffraction analysis confirms the formation of walstromite as a single phase in the ceramic scaffold. In vitro studies involving immersion in simulated body fluid (SBF) for 7 and 14 days, as well as contact with osteoblast-like cells, reveal the scaffold’s ability to form a phosphate layer on its surface and its biocompatibility. This study concludes that the walstromite-based ceramic scaffold exhibits promising characteristics for potential applications in bone regeneration and tissue engineering. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

20 pages, 6414 KiB  
Article
The Association of Nanostructured Carbonated Hydroxyapatite with Denatured Albumin and Platelet-Rich Fibrin: Impacts on Growth Factors Release and Osteoblast Behavior
by Renata de Lima Barbosa, Neilane Rodrigues Santiago Rocha, Emanuelle Stellet Lourenço, Victor Hugo de Souza Lima, Elena Mavropoulos, Rafael Coutinho Mello-Machado, Carolina Spiegel, Carlos Fernando Mourão and Gutemberg Gomes Alves
J. Funct. Biomater. 2024, 15(1), 18; https://doi.org/10.3390/jfb15010018 - 5 Jan 2024
Cited by 5 | Viewed by 2413
Abstract
Platelet-rich Fibrin (PRF), a second-generation blood concentrate, offers a versatile structure for bone regeneration due to its composition of fibrin, growth factors, and cytokines, with adaptations like denatured albumin-enriched with liquid PRF (Alb-PRF), showing potential for enhanced stability and growth factor dynamics. Researchers [...] Read more.
Platelet-rich Fibrin (PRF), a second-generation blood concentrate, offers a versatile structure for bone regeneration due to its composition of fibrin, growth factors, and cytokines, with adaptations like denatured albumin-enriched with liquid PRF (Alb-PRF), showing potential for enhanced stability and growth factor dynamics. Researchers have also explored the combination of PRF with other biomaterials, aiming to create a three-dimensional framework for enhanced cell recruitment, proliferation, and differentiation in bone repair studies. This study aimed to evaluate a combination of Alb-PRF with nanostructured carbonated hydroxyapatite microspheres (Alb-ncHA-PRF), and how this association affects the release capacity of growth factors and immunomodulatory molecules, and its impact on the behavior of MG63 human osteoblast-like cells. Alb-PRF membranes were prepared and associated with nanocarboapatite (ncHA) microspheres during polymerization. MG63 cells were exposed to eluates of both membranes to assess cell viability, proliferation, mineralization, and alkaline phosphatase (ALP) activity. The ultrastructural analysis has shown that the spheres were shattered, and fragments were incorporated into both the fibrin mesh and the albumin gel of Alb-PRF. Alb-ncHA-PRF presented a reduced release of growth factors and cytokines when compared to Alb-PRF (p < 0.05). Alb-ncHA-PRF was able to stimulate osteoblast proliferation and ALP activity at lower levels than those observed by Alb-PRF and was unable to positively affect in vitro mineralization by MG63 cells. These findings indicate that the addition of ncHA spheres reduces the biological activity of Alb-PRF, impairing its initial effects on osteoblast behavior. Full article
Show Figures

Figure 1

17 pages, 4089 KiB  
Article
Micro-Morphological Features of the Er:YAG-Lased Interface in Primary Teeth: 12 Months Randomized Split-Mouth Trial
by Osama Felemban, Raghdah Abdrabuh, Omar El Meligy, Najat Farsi, Ahmed Samir Bakry and Tariq Abu Haimed
J. Funct. Biomater. 2024, 15(1), 17; https://doi.org/10.3390/jfb15010017 - 1 Jan 2024
Viewed by 2116
Abstract
Despite considerable improvements in oral health, dental caries remains a public health issue. The most frequently used technique to remove caries is through rotating drills. New minimally invasive strategies were introduced into dental practice, such as the use of lasers to perform highly [...] Read more.
Despite considerable improvements in oral health, dental caries remains a public health issue. The most frequently used technique to remove caries is through rotating drills. New minimally invasive strategies were introduced into dental practice, such as the use of lasers to perform highly controlled tissue ablation while limiting pain and discomfort, as well as overcoming drill phobia. The objective was to assess and compare treatment with Er:YAG laser versus a conventional rotary treatment during cavity preparation in children with regard to bond interface quality. In a randomized trial using a split-mouth design, 40 (9–12 year-old) children with 80 carious primary molars were included. The cavity in one quadrant was treated conventionally using a bur, while the cavity in the other quadrant was prepared using an Er:YAG laser. Twenty restored teeth were extracted after one year. The SEM histological evaluation of bond interface results demonstrated no statistically significant differences between restorations placed following bur preparation and those placed following the Er:YAG laser preparation, and both treatments demonstrated promising results. Over a one-year period, no statistically significant differences in the bond interface quality were observed following class I cavity preparation in primary teeth with either Er:YAG laser or a conventional rotary bur. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

15 pages, 8168 KiB  
Article
Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses
by Abdulaziz Alhotan, Zbigniew Raszewski, Katarzyna Chojnacka, Marcin Mikulewicz, Julita Kulbacka, Razan Alaqeely, Amani Mirdad and Julfikar Haider
J. Funct. Biomater. 2024, 15(1), 16; https://doi.org/10.3390/jfb15010016 - 31 Dec 2023
Cited by 1 | Viewed by 2066
Abstract
The colonisation of the surface of removable acrylic dentures by various types of microorganisms can lead to the development of various diseases. Therefore, the creation of a bioactive material is highly desirable. This study aimed to develop a denture base material designed to [...] Read more.
The colonisation of the surface of removable acrylic dentures by various types of microorganisms can lead to the development of various diseases. Therefore, the creation of a bioactive material is highly desirable. This study aimed to develop a denture base material designed to release bioactive ions into the oral environment during use. Four types of bioactive glasses (BAG)—S53P4, Biomin F, 45S5, and Biomin C—were incorporated into the PMMA acrylic resin, with each type constituting 20 wt.% (10 wt.% non-silanised and 10% silanised) of the mixture, while PMMA acrylic resin served as the control group. The specimens were subsequently immersed in distilled water, and pH measurements of the aqueous solutions were taken every seven days for a total of 38 days. Additionally, surface roughness and translucency measurements were recorded both after preparation and following seven days of immersion in distilled water. The cytotoxicity of these materials on human fibroblast cells was evaluated after 24 and 48 h using Direct Contact and MTT assays. Ultimately, the elemental composition of the specimens was determined through energy-dispersive X-ray (EDX) spectroscopy. In general, the pH levels of water solutions containing BAG-containing acrylics gradually increased over the storage period, reaching peak values after 10 days. Notably, S53P4 glass exhibited the most significant increase, with pH levels rising from 5.5 to 7.54. Surface roughness exhibited minimal changes upon immersion in distilled water, while a slight decrease in material translucency was observed, except for Biomin C. However, significant differences in surface roughness and translucency were observed among some of the BAG-embedded specimens under both dry and wet conditions. The composition of elements declared by the glass manufacturer was confirmed by EDX analysis. Importantly, cytotoxicity analysis revealed that specimens containing BAGs, when released into the environment, did not adversely affect the growth of human gingival fibroblast cells after 48 h of exposure. This suggests that PMMA acrylics fabricated with BAGs have the potential to release ions into the environment and can be considered biocompatible materials. Further clinical trials are warranted to explore the practical applications of these materials as denture base materials. Full article
(This article belongs to the Special Issue Bioactive Glasses and Their Multiple Applications in Biomedicine)
Show Figures

Figure 1

19 pages, 1940 KiB  
Review
Biomimetic Coatings in Implant Dentistry: A Quick Update
by Mohammed Aso Abdulghafor, Mohammed Khalid Mahmood, Herve Tassery, Delphine Tardivo, Arthur Falguiere and Romain Lan
J. Funct. Biomater. 2024, 15(1), 15; https://doi.org/10.3390/jfb15010015 - 30 Dec 2023
Cited by 11 | Viewed by 5038
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface’s chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have [...] Read more.
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface’s chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper). Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

11 pages, 2678 KiB  
Article
Reversible Stabilization of Nanofiber-Polyplexes through Introducing Cross-Linkages
by Ryuta Aono, Kenta Nomura, Eiji Yuba and Atsushi Harada
J. Funct. Biomater. 2024, 15(1), 14; https://doi.org/10.3390/jfb15010014 - 30 Dec 2023
Cited by 1 | Viewed by 1802
Abstract
Non-viral gene delivery systems are typically designed vector systems with contradictory properties, namely sufficient stability before cellular uptake and instability to ensure the release of nucleic acid cargoes in the transcription process after being taken up into cells. We reported previously that poly-(L-lysine) [...] Read more.
Non-viral gene delivery systems are typically designed vector systems with contradictory properties, namely sufficient stability before cellular uptake and instability to ensure the release of nucleic acid cargoes in the transcription process after being taken up into cells. We reported previously that poly-(L-lysine) terminally bearing a multi-arm PEG (maPEG-PLL) formed nanofiber-polyplexes that suppressed excessive DNA condensation via steric repulsion among maPEGs and exhibited effective transcriptional capability in PCR amplification experiments and a cell-free gene expression system. In this study, the reversible stabilization of a nanofiber-polyplex without impairing the effective transcriptional capability was investigated by introducing cross-links between the PLL side chains within the polyplex using a cross-linking reagent with disulfide (SS) bonds that can be disrupted under reducing conditions. In the presence of dextran sulfate and/or dithiothreitol, the stability of the polyplex and the reactivity of the pDNA were evaluated using agarose gel electrophoresis and real-time PCR. We succeeded in reversibly stabilizing nanofiber-polyplexes using dithiobis (succinimidyl propionate) (DSP) as the cross-linking reagent. The effect of the reversible stabilization was confirmed in experiments using cultured cells, and the DSP-crosslinked polyplexes exhibited gene expression superior to that of polyethyleneimine polyplexes, which are typical polyplexes. Full article
(This article belongs to the Section Biomaterials for Drug Delivery)
Show Figures

Figure 1

17 pages, 3341 KiB  
Article
Effects of Novel Dental Composites on Streptococcus mutans Biofilms
by Rayan B. Yaghmoor, Mohammad Abdel-Hadi, Haralampos Petridis, Elaine Allan and Anne M. Young
J. Funct. Biomater. 2024, 15(1), 13; https://doi.org/10.3390/jfb15010013 - 29 Dec 2023
Viewed by 2341
Abstract
With the phase-out of amalgam and the increase in minimally invasive dentistry, there is a growing need for high-strength composite materials that can kill residual bacteria and promote tooth remineralization. This study quantifies how antibacterial polylysine (PLS) and re-mineralizing monocalcium phosphate monohydrate (MCPM) [...] Read more.
With the phase-out of amalgam and the increase in minimally invasive dentistry, there is a growing need for high-strength composite materials that can kill residual bacteria and promote tooth remineralization. This study quantifies how antibacterial polylysine (PLS) and re-mineralizing monocalcium phosphate monohydrate (MCPM) affect Streptococcus mutans biofilms and the strength of dental composites. For antibacterial studies, the MCPM-PLS filler percentages were 0-0, 8-4, 12-6, and 16-8 wt% of the composite filler phase. Composite discs were immersed in 0.1% sucrose-supplemented broth containing Streptococcus mutans (UA159) and incubated in an anaerobic chamber for 48 h. Surface biomass was determined by crystal violet (CV) staining. Growth medium pH was measured at 24 and 48 h. Biofilm bacterial viability (CFU), exo-polysaccharide (water-soluble glucan (WSG) and water-insoluble glucan (WIG)), and extracellular DNA (eDNA) were quantified. This was by serial dilution plate counting, phenol-sulfuric acid microassay, and fluorometry, respectively. The biaxial flexural strengths were determined after water immersion for 1 week, 1 month, and 1 year. The MCPM-PLS wt% were 8-4, 8-8, 16-4 and 16-8. The normalized biomass, WSG, and WIG showed a linear decline of 66%, 64%, and 55%, respectively, as the PLS level increased up to 8%. The surrounding media pH (4.6) was all similar. A decrease in bacterial numbers with the 12-6 formula and a significant reduction with 16-8 compared to the 0-0 formulation was observed. The eDNA concentrations in biofilms formed on 12-6 and 16-8 formulations were significantly less than the 0-0 control and 8-4 formulations. Doubling MCPM and PLS caused a 14 and 19% reduction in strength in 1 week, respectively. Average results were lower at 1 month and 1 year but affected less upon doubling MCPM and PLS levels. Moreover, a 4% PLS may help to reduce total biomass and glucan levels in biofilms on the above composites. Higher levels are required to reduce eDNA and provide bactericidal action, but these can decrease early strength. Full article
(This article belongs to the Special Issue Recent Advances in Dental Resin Composites)
Show Figures

Figure 1

13 pages, 1994 KiB  
Article
Effect of Ceramic Thickness and Technician Variability on the Shade Duplication of Dental Ceramo-Metallic Restorations
by Rasha M. Abdelraouf, Taheya A. Moussa, Tamer M. Hamdy, Reem A. Abuhaimed, Alanoud M. Alotaibi, Carlos A. Jurado, Abdulaziz Alhotan, Bushra Alhelal and Nour A. Habib
J. Funct. Biomater. 2024, 15(1), 12; https://doi.org/10.3390/jfb15010012 - 28 Dec 2023
Viewed by 1833
Abstract
Ceramic thickness and technicians’ manipulative variables are critical factors affecting the resultant shade of dental ceramo-metallic restorations. This study investigated the effect of the following variables on shade duplication of ceramo-metallic specimens: (a) ceramic thickness; (b) differences between several technicians (inter-technician variability); and [...] Read more.
Ceramic thickness and technicians’ manipulative variables are critical factors affecting the resultant shade of dental ceramo-metallic restorations. This study investigated the effect of the following variables on shade duplication of ceramo-metallic specimens: (a) ceramic thickness; (b) differences between several technicians (inter-technician variability); and (c) the ability of each technician to repeat the resultant shade (intra-technician variability). Ninety ceramo-metallic specimens were prepared and divided into three main groups (n = 30/gp) according to the different technicians who built up the veneering ceramic of the specimens. Each group was further subdivided into three subgroups (n = 10/subgroup) according to the thickness of the ceramic (1, 1.5, and 2 mm built over a 0.5 mm-thick metal substructure). Three different technicians were asked to follow the same protocol as regards the same ceramic batch (Shade 3M2, Vita VM13, Zahnfabrik, Germany), firing temperature, and number of firing cycles. Meanwhile, each technician followed his own protocol with regard to other ceramic manipulative variables. The duplicated shades of the specimens were investigated using the Vita Easyshade spectrophotometer by using the verify shade mode. Color difference (∆E) values were calculated between the target shade (3M2) and the duplicated shades of the specimens automatically by the Vita Easyshade spectrophotometer (Vita, Zahnfabrik, Germany). The effect of ceramic thickness and inter- and intra-technician variability on the duplication of the target shade was investigated. The results showed that the effect of ceramic thickness on the duplicated shades depended on inter-technician variability. High inter-technician variability (∆E = 2–6.4) was noticed in contrast to low intra-technician variability (∆E = 0.2–1.5). It could be concluded that proper shade-duplication of ceramo-metallic restoration was a cumulative technique intimately related to manipulative variables and ceramic thickness. Full article
(This article belongs to the Special Issue Biomaterials in Conservative Dentistry and Prosthodontics)
Show Figures

Figure 1

14 pages, 2773 KiB  
Article
Hydroxyapatite-Based Coatings on Silicon Wafers and Printed Zirconia
by Antoine Chauvin, Marie-Rose Garda, Nathan Snyder, Bai Cui, Nicolas Delpouve and Li Tan
J. Funct. Biomater. 2024, 15(1), 11; https://doi.org/10.3390/jfb15010011 - 27 Dec 2023
Cited by 2 | Viewed by 2221
Abstract
Dental surgery needs a biocompatible implant design that can ensure both osseointegration and soft tissue integration. This study aims to investigate the behavior of a hydroxyapatite-based coating, specifically designed to be deposited onto a zirconia substrate that was intentionally made porous through additive [...] Read more.
Dental surgery needs a biocompatible implant design that can ensure both osseointegration and soft tissue integration. This study aims to investigate the behavior of a hydroxyapatite-based coating, specifically designed to be deposited onto a zirconia substrate that was intentionally made porous through additive manufacturing for the purpose of reducing the cost of material. Layers were made via sol–gel dip coating by immersing the porous substrates into solutions of hydroxyapatite that were mixed with polyethyleneimine to improve the adhesion of hydroxyapatite to the substrate. The microstructure was determined by using X-ray diffraction, which showed the adhesion of hydroxyapatite; and atomic force microscopy was used to highlight the homogeneity of the coating repartition. Thermogravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed successful, selective removal of the polymer and a preserved hydroxyapatite coating. Finally, scanning electron microscopy pictures of the printed zirconia ceramics, which were obtained through the digital light processing additive manufacturing method, revealed that the mixed coating leads to a thicker, more uniform layer in comparison with a pure hydroxyapatite coating. Therefore, homogeneous coatings can be added to porous zirconia by combining polyethyleneimine with hydroxyapatite. This result has implications for improving global access to dental care. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications)
Show Figures

Figure 1

12 pages, 1459 KiB  
Article
An In Vivo Investigation of Non-Metallic vs. Metallic Hand Scalers on Zirconia Implant-Supported Crowns: A Year-Long Analysis of Peri-Implant Maintenance
by Dayna L. Roemermann, Reem Atout, Igor Pesun, Anastasia Kelekis-Cholakis, Chrysi Stavropoulou, Stefan N. Renvert and Rodrigo França
J. Funct. Biomater. 2024, 15(1), 9; https://doi.org/10.3390/jfb15010009 - 23 Dec 2023
Viewed by 1812
Abstract
This study examined whether the degree of abutment surface modification that may occur with regular periodontal instrumentation has a clinical impact in terms of increased plaque accumulation and increased peri-implant tissue inflammation on zirconia implant abutments. Thirteen patients who had zirconia implant crowns [...] Read more.
This study examined whether the degree of abutment surface modification that may occur with regular periodontal instrumentation has a clinical impact in terms of increased plaque accumulation and increased peri-implant tissue inflammation on zirconia implant abutments. Thirteen patients who had zirconia implant crowns were recruited in this randomized clinical trial. Each patient acted as their control and had either the buccal or lingual surface of their screw-retained implant restoration scaled with a metallic scaler and the other surface with a non-metallic scaler at 3, 6, 9, and 12 months. Cytokine testing of the peri-implant crevicular fluid was completed at 0, 3, and 12 months for IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, or IFNγ. Implant crowns were removed at 12 months and evaluated under an atomic force microscope for the average roughness (Ra). The implant crowns were polished and re-inserted. The results were analyzed using the Kruskal–Wallis test, and post hoc tests were conducted with a significance level of α = 0.05. Significant differences in surface roughness (Ra) were observed between the metallic and non-metallic scalers. The median Ra values were 274.0 nm for metallic scalers and 147.1 nm for non-metallic scalers. However, there were no significant differences between the type of scaler used and the amount of clinical inflammation or cytokine production. Metallic scalers produced deeper, more aggressive surface alterations to the abutment/crown zirconia surface, but there was no statistically significant difference between the degree of surface alterations, amount of BOP, and the amplitude of cytokine inflammation produced. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Oral Implantology—2nd Edition)
Show Figures

Figure 1

16 pages, 6114 KiB  
Article
Changes in Gloss Alteration, Surface Roughness, and Color of Direct Dental Restorative Materials after Professional Dental Prophylaxis
by Aya Miyashita-Kobayashi, Akiko Haruyama, Keigo Nakamura, Chia-Ying Wu, Akihiro Kuroiwa, Nobuo Yoshinari and Atsushi Kameyama
J. Funct. Biomater. 2024, 15(1), 8; https://doi.org/10.3390/jfb15010008 - 23 Dec 2023
Cited by 2 | Viewed by 2158
Abstract
In the context of optimizing dental care for patients who are elderly, the purpose of this in vitro study was to evaluate the surface gloss (with a micro-area gloss meter) of, surface roughness (with a compact surface roughness measuring instrument) of, and color [...] Read more.
In the context of optimizing dental care for patients who are elderly, the purpose of this in vitro study was to evaluate the surface gloss (with a micro-area gloss meter) of, surface roughness (with a compact surface roughness measuring instrument) of, and color change (with a dental colorimeter) in two commercially available injectable resin-based composites (Estelite Universal Flow (EUF) and Beautifil Flow Plus F00 (BFP)) as well as two glass–ionomer cements (GC Fuji II LC CAPSULE (FLC) and GC Fuji IX GP EXTRA CAPSULE (FGP)), before and after dental prophylaxis. After 24 h, the surfaces of each specimen were polished at 2500 rpm with a prophy brush (Mersage Brush, Shofu) and one-step prophylaxis paste (Prophy Paste Pro, Directa): under 100 or 300 gf load, and for 10 or 30 s, 4× cycles of cleaning. After mechanical cleaning, conditions were found for a significant reduction in the gloss level (EUF, BFP, or FLC; p < 0.05) and a significant increase in surface roughness (BFP; 300 gf load, 10 s × four cycles of cleaning). Overall, the longer time or higher prophylaxis load tended to decrease the surface gloss. However, the observed change in surface roughness varied between the restorative materials. There was no color change post-prophylaxis. Full article
Show Figures

Figure 1

15 pages, 2054 KiB  
Review
Copper Materials for Caries Management: A Scoping Review
by Veena Wenqing Xu, Mohammed Zahedul Islam Nizami, Iris Xiaoxue Yin, John Yun Niu, Ollie Yiru Yu and Chun-Hung Chu
J. Funct. Biomater. 2024, 15(1), 10; https://doi.org/10.3390/jfb15010010 - 23 Dec 2023
Cited by 5 | Viewed by 2383
Abstract
This study comprehensively reviewed the types, properties and potential applications of copper materials for caries management. Two researchers independently searched English publications using PubMed, Scopus and Web of Science. They screened the titles and abstracts of publications presenting original studies for review. They [...] Read more.
This study comprehensively reviewed the types, properties and potential applications of copper materials for caries management. Two researchers independently searched English publications using PubMed, Scopus and Web of Science. They screened the titles and abstracts of publications presenting original studies for review. They included 34 publications on copper materials, which were categorized as copper and copper alloy materials (13/34, 38%), copper salt materials (13/34, 38%) and copper oxide materials (8/34, 24%). All reported copper materials inhibited the growth of cariogenic bacteria such as Streptococcus mutans and Candida albicans. The materials could be doped into topical agents, restorative fillers, dental adhesives, drinking water, dental implants, orthodontic appliances, mouthwash and sugar. Most publications (29/34, 83%) were laboratory studies, five (5/34, 14%) were animal studies and only one paper (1/34, 3%) was clinical research. In conclusion, copper and copper alloy materials, copper salt materials and copper oxide materials have an antimicrobial property that inhibits cariogenic bacteria and Candida albicans. These copper materials may be incorporated into dental materials and even drinking water and sugar for caries prevention. Most publications are laboratory studies. Further clinical studies are essential to validate the effectiveness of copper materials in caries prevention. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Caries Prevention)
Show Figures

Figure 1

32 pages, 2937 KiB  
Review
Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications
by Iosif-Aliodor Timofticiuc, Octavian Călinescu, Adrian Iftime, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Andreea Cristiana Didilescu, Constantin Caruntu and Cristian Scheau
J. Funct. Biomater. 2024, 15(1), 7; https://doi.org/10.3390/jfb15010007 - 22 Dec 2023
Cited by 15 | Viewed by 3330
Abstract
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D [...] Read more.
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D printing, with its main advantages being a high printing speed and the ability to produce high-resolution structures. A major challenge in using VPP 3D-printed materials in medicine is the general incompatibility of standard VPP resin mixtures with the requirements of biocompatibility and biofunctionality. Instead of developing completely new materials, an alternate approach to solving this problem involves adapting existing biomaterials. These materials are incompatible with VPP 3D printing in their pure form but can be adapted to the VPP chemistry and general process through the use of innovative mixtures and the addition of specific pre- and post-printing steps. This review’s primary objective is to highlight biofunctional and biocompatible materials that have been adapted to VPP. We present and compare the suitability of these adapted materials to different medical applications and propose other biomaterials that could be further adapted to the VPP 3D printing process in order to fulfill patient-specific medical requirements. Full article
(This article belongs to the Special Issue Biomaterials in Medical Diagnosis and Treatment)
Show Figures

Figure 1

21 pages, 45973 KiB  
Article
Temperature Sensing Properties of Biocompatible Yb/Er-Doped GdF3 and YF3 Mesocrystals
by Ivana Dinić, Marina Vuković, Maria Eugenia Rabanal, Milica Milošević, Marta Bukumira, Nina Tomić, Miloš Tomić, Lidija Mančić and Nenad Ignjatović
J. Funct. Biomater. 2024, 15(1), 6; https://doi.org/10.3390/jfb15010006 - 22 Dec 2023
Cited by 1 | Viewed by 2033
Abstract
Y0.8−xGdxF3:Yb/Er mesocrystals with a biocompatible surface and diverse morphological characteristics were successfully synthesized using chitosan-assisted solvothermal processing. Their structural properties, studied using X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and energy dispersive [...] Read more.
Y0.8−xGdxF3:Yb/Er mesocrystals with a biocompatible surface and diverse morphological characteristics were successfully synthesized using chitosan-assisted solvothermal processing. Their structural properties, studied using X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and energy dispersive X-ray analysis, were further correlated with the up-conversion emission (λexc = 976 nm) recorded in function of temperature. Based on the change in the visible green emissions originating from the thermally coupled 2H11/2 and 4S3/2 levels of Er3+, the corresponding LIR was acquired in the physiologically relevant range of temperatures (25–50 °C). The detected absolute sensitivity of about 0.0042 °C−1, along with the low cytotoxicity toward both normal human lung fibroblasts (MRC-5) and cancerous lung epithelial (A549) cells, indicate a potential for use in temperature sensing in biomedicine. Additionally, their enhanced internalization in cells, without suppression of cell viability, enabled in vitro labeling of cancer and healthy cells upon 976 nm laser irradiation. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Graphical abstract

19 pages, 8907 KiB  
Article
Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior
by Séverine Alfonsi, Pithursan Karunathasan, Ayann Mamodaly-Samdjee, Keerthana Balathandayutham, Sarah Lefevre, Anamar Miranda, Olivier Gallet, Damien Seyer and Mathilde Hindié
J. Funct. Biomater. 2024, 15(1), 5; https://doi.org/10.3390/jfb15010005 - 21 Dec 2023
Cited by 1 | Viewed by 1994
Abstract
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization [...] Read more.
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization of low-cost 316L stainless steel substrates through the successive electrodeposition of a polypyrrole film (PPy) and a calcium phosphate deposit doped with silicon was previously carried out by our labs, we have also developed a bio-functional coating by electrodepositing or oxidating of fibronectin (Fn) coating. Fn is an extracellular matrix glycoprotein involved in cell adhesion and differentiation. Impacts of either electrodeposition or oxidation on the structure and functionality of Fn were first studied. Thus, electrodeposition is the technique that permits the highest deposition of fibronectin, compared to adsorption or oxidation. Furthermore, electrodeposition seems to strongly modify Fn conformation by the formation of intermingled long fibers, resulting in changes to the accessibility of the molecular probes tested (antibodies directed against Fn whole molecule and Fn cell-binding domain). Then, the effects of either electrodeposited Fn or oxidized Fn were validated by the resulting pre-osteoblast behavior. Electrodeposition reduced pre-osteoblasts’ ability to remodel Fn coating on supports because of a partial modification of Fn conformation, which reduced accessibility to the cell-binding domain. Electrodeposited Fn also diminished α5 integrin secretion and clustering along the plasma membrane. However, the N-terminal extremity of Fn was not modified by electrodeposition as demonstrated by Staphylococcus aureus attachment after 3 h of culture on a specific domain localized in this region. Moreover, the number of pre-osteoblasts remains stable after 3 h culture on either adsorbed, oxidized, or electrodeposited Fn deposits. In contrast, mitochondrial activity and cell proliferation were significantly higher on adsorbed Fn compared with electrodeposited Fn after 48 h culture. Hence, electro-deposited Fn seems more favorable to pre-osteoblast early-stage behavior than during a longer culture of 24 h and 48 h. The electrodeposition of matrix proteins could be improved to maintain their bio-activity and to develop this promising, fast technique to bio-functionalize metallic implants. Full article
Show Figures

Figure 1

15 pages, 4166 KiB  
Article
Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application
by Valeria Ambrogi, Morena Nocchetti, Donatella Pietrella, Giulia Quaglia, Alessandro Di Michele and Loredana Latterini
J. Funct. Biomater. 2024, 15(1), 4; https://doi.org/10.3390/jfb15010004 - 20 Dec 2023
Cited by 1 | Viewed by 1961
Abstract
Oleogels containing silica–silver-based nanomaterials were prepared to be used as potential antimicrobial treatment for preventing and curing skin infections. Fumed silica was used as a bifunctional excipient able to offer support to silver-based nanoparticle growth and act as a gelling agent for oleogel [...] Read more.
Oleogels containing silica–silver-based nanomaterials were prepared to be used as potential antimicrobial treatment for preventing and curing skin infections. Fumed silica was used as a bifunctional excipient able to offer support to silver-based nanoparticle growth and act as a gelling agent for oleogel formulation. First, silica–silver composites were prepared following a sustainable method by contact of fumed silica and silver nitrate in the presence of ethanol and successive UV irradiation. The composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ATR FT-IR spectroscopy and UV-Vis spectrophotometry. The presence of 8–20 nm spherical nanoparticles, in addition to the silica aggregates and AgNO3 crystals, was detected. The composites showed good antimicrobial activity against the Gram-negative Pseudomonas aeruginosa and the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Thus, they were formulated in an oleogel, obtained using fumed silica as a gelling agent. For comparison, oleogels containing AgNO3 were prepared according to two different formulative techniques. The silica–silver-based oleogels showed good antimicrobial activity and did not show cytotoxic effects for fibroblasts and keratinocytes. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

11 pages, 3566 KiB  
Communication
Montmorillonite-Sodium Alginate Oral Colon-Targeting Microcapsule Design for WGX-50 Encapsulation and Controlled Release in Gastro-Intestinal Tract
by Yibei Jiang, Zhou Wang, Ke Cao, Lu Xia, Dongqing Wei and Yi Zhang
J. Funct. Biomater. 2024, 15(1), 3; https://doi.org/10.3390/jfb15010003 - 19 Dec 2023
Cited by 1 | Viewed by 1997
Abstract
The montmorillonite-sodium alginate (MMT-SA) colon-targeting microcapsules have been designed as a WGX-50 encapsulation and controlled release vehicle used in oral administration. The MMT-SA microcapsule was formed from a cross-linking reaction, and the stable micropore in the microcapsule changed with a different MMT-SA mixed [...] Read more.
The montmorillonite-sodium alginate (MMT-SA) colon-targeting microcapsules have been designed as a WGX-50 encapsulation and controlled release vehicle used in oral administration. The MMT-SA microcapsule was formed from a cross-linking reaction, and the stable micropore in the microcapsule changed with a different MMT-SA mixed mass ratio. The MMT-SA microcapsule has a reinforced micropore structure and an enhanced swell–dissolution in SIF and SCF with alkaline environment, which is attributed to the incorporated MMT. The MMT-SA microcapsule exhibited a high WGX-50 encapsulation rate up to 98.81 ± 0.31% and an obvious WGX-50 controlled release in the simulated digestive fluid in vitro. The WGX-50 loaded with MMT-SA microcapsule showed a weak minimizing drug loss in SGF (Simulated Gastric Fluid) with an acidic environment, while it showed a strong maximizing drug release in SIF (Simulated Intestinal Fluid) and SCF (Simulated Colonic Fluid) with an alkaline environment. These features make the MMT-SA microcapsule a nominated vehicle for colon disease treatment used in oral administration. Full article
Show Figures

Figure 1

13 pages, 3581 KiB  
Article
Sacrificial-Rotating Rod-Based 3D Bioprinting Technique for the Development of an In Vitro Cardiovascular Model
by Jooyoung Lee and Hyungseok Lee
J. Funct. Biomater. 2024, 15(1), 2; https://doi.org/10.3390/jfb15010002 - 19 Dec 2023
Viewed by 2234
Abstract
Several studies have attempted to develop complex cardiovascular models, but the use of multiple cell types and poor cell alignments after fabrication have limited the practical application of these models. Among various bioprinting methods, extrusion-based bioprinting is the most widely used in the [...] Read more.
Several studies have attempted to develop complex cardiovascular models, but the use of multiple cell types and poor cell alignments after fabrication have limited the practical application of these models. Among various bioprinting methods, extrusion-based bioprinting is the most widely used in the bioengineering field. This method not only has the potential to construct complex 3D biological structures but it also enables the alignment of cells in the printing direction owing to the application of shear stress to the cells during the printing process. Therefore, this study developed an in vitro cardiovascular model using an extrusion-based bioprinting method that utilizes a rotating rod as a printing platform. The rotating rod was made of polyvinyl alcohol (PVA) and used as a sacrificial rod. This rotating platform approach enabled the printing of longer tubular-vascular structures of multiple shapes, including disease models, and the water-soluble properties of PVA facilitated the isolation of the printed vascular models. In addition, this method enabled the printing of the endothelial cells in the bloodstream direction and smooth muscle cells in the circumferential direction to better mimic the anatomy of real blood vessels. Consequently, a cardiovascular model was successfully printed using a gelatin methacryloyl bioink with cells. In conclusion, the proposed fabrication method can facilitate the fabrication of various cardiovascular models that mimic the alignment of real blood vessels. Full article
Show Figures

Figure 1

12 pages, 3021 KiB  
Article
Specimen Shape and Elution Time Affect the Mineralization and Differentiation Potential of Dental Pulp Stem Cells to Biodentine
by Valene Phang, Ritika Malhotra, Nah Nah Chen, Kyung-San Min, Victoria Soo Hoon Yu, Vinicius Rosa and Nileshkumar Dubey
J. Funct. Biomater. 2024, 15(1), 1; https://doi.org/10.3390/jfb15010001 - 19 Dec 2023
Cited by 1 | Viewed by 1999
Abstract
The liquid extract method is commonly used to evaluate the cytotoxicity and bioactivity of materials. Although ISO has recommended guidelines for test methods, variations in elution period, and shape of samples can influence the biological outcomes. The aim of this study was to [...] Read more.
The liquid extract method is commonly used to evaluate the cytotoxicity and bioactivity of materials. Although ISO has recommended guidelines for test methods, variations in elution period, and shape of samples can influence the biological outcomes. The aim of this study was to investigate the influence of material form and elution period of Biodentine on dental pulp stem cells (DPSCs)’ proliferation and mineralization. Biodentine (0.2 g) discs or powder were immersed in culture media (10 mL) for 1, 3 or 7 days (D1, D3 and D7). The eluents were filtered and used to treat DPSC. The calcium release profile and pH were determined. Cell proliferation was evaluated by MTS for 3 days, and mineralization and differentiation were assessed by alizarin red S staining (Ca2+/ng of DNA) and qRT-PCR (MEPE, DSPP, DMP-1, RUNX2, COL-I and OCN) for 14 days. Statistical analysis was performed with a one or two-way ANOVA and post hoc Tukey’s test (pH, calcium release and proliferation) or Mann–Whitney test (α = 0.05). pH and calcium ion release of powdered eluents were significantly higher than disc eluents. Powdered eluent promoted extensive cell death, while the disc form was cytocompatible. All disc eluents significantly increased the gene expression and mineralization after 14 days compared to the untreated control. D7 induced less mineralization and differentiation compared to D1 and D3. Thus, the materials’ form and elution time are critical aspects to be considered when evaluating the bioactivity of materials, since this binomial can affect positively and negatively the biological outcomes. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop