Copper Materials for Caries Management: A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection and Data Extraction
2.3. Assessment of Risk of Bias
3. Results
4. Discussion
4.1. Copper and Copper Alloy Materials
4.1.1. Copper Nanoparticles
Copper (Cu) Material [Ref.] | Bacteria | Design | Intervention (Optimal and Range of Concentration Used) and Control(s) | Potential Use |
---|---|---|---|---|
Cu nanoparticles [20] | S. mutans | In vitro | Intervention: 10 μg/mL graphene oxide-Cu nanocomposites Controls: graphene oxide; Cu nanoparticles; water | - |
Cu nanoparticles [31] | S. mutans | In vitro | Intervention: 60 μg/mL Cu-chitosan nanoparticles Controls: chlorhexidine; Cu nanoparticles; water | Topical agent |
Cu nanoparticles [42] | S. mutans | In vitro | Intervention: 5% ZnO + (0.2%, 0.1% or 0.2%) Cu nanoparticles Control: water | Dental adhesive |
Cu nanoparticles [33] | S. mutans | In vitro | Intervention: 1.25% and 2.5% Cu nanocomposites with ZnO and F Control: water | Dental adhesive |
Cu nanoparticles [18] | S. mutans | In vitro | Intervention: (0.25%, 0.05–0.25%) Augmentin-Cu nanoparticles Control: water | Restorative filler |
Cu nanoparticles [45] | S. mutans | Animal | Intervention: 256 μg/mL ZnO-Cu-doped Rose Bengal nanoparticles Controls: chlorhexidine; water | Topical agent |
Cu nanoparticles [21] | S. mutans, S. aureus | In vitro | Intervention: (10%, 1–10%) Ag(NH3)2F-Cu nanoparticle-doped bioglass Control: water | Topical agent |
Cu nanoparticles [34] | S. mutans, S. aureus | In vitro | Intervention: 0.5% Thymus vulgaris-Cu nanoparticles Controls: Ag nanoparticles; metronidazole; water | Restorative filler |
Cu nanoparticles [17] | S. mutans, S. sanguinis | In vitro | Intervention: (4%, 1–4%) Cu nanoparticles Control: water | Restorative filler |
Cu-Ni nanoparticles [26] | S. mutans, S. aureus, E. coli | In vitro | Intervention: (1000 μg/mL, 0.01–1000 μg/mL) Cu-Ni nanoparticles Controls: nanoparticles; Ni nanoparticles; water | - |
Cu-Ti alloy [35] | S. mutans | In vitro | Intervention: Cu-Ti alloy Controls: Ti alloy; water | - |
Cu-Ti alloy [16] | S. mutans, P. gingivalis | In vitro | Intervention: Cu-Ti alloy Controls: Ti alloy; water | Dental implant |
Copper-Iron alloy [43] | S. mutans, S. sanguinis | In vitro | Intervention: (4.5 wt.%, 2.5–4.5 wt.%) Cu-bearing stainless steel Control: stainless steel | Orthodontic appliances |
4.1.2. Copper Alloy Materials
4.2. Copper Salt Materials
4.2.1. Copper Sulfate Materials
4.2.2. Copper Halide Materials
4.2.3. Other Copper Salt Materials
4.3. Copper Oxide Materials
4.3.1. Copper Oxide Materials
Copper Material [Ref.] | Microorganism | Intervention (Optimal and Range of Concentration Used) and Control(s) | Potential Use |
---|---|---|---|
CuO cement [41] | S. mutans | Intervention: commercial CuO cement Control: conventional cement without CuO | Dental adhesive |
CuO cement [39] | S. mutans | Intervention: commercial CuO cement Control: conventional cement without CuO | Restorative filler |
CuO nanoparticles [46] | S. mutans | Intervention: 47.5% Cu, CuO nanoparticles with or without F Control: water | - |
CuO nanoparticles [19] | S. mutans | Intervention: 40 mg/mL hydroxyapatite, 1.5 mg/mL CuO, 3.2 mg/mL TiO2 Control: water | - |
CuO nanoparticles [29] | S. mutans | Intervention: CuO nanoparticle-coated brackets Controls: ZnO-coated brackets; brackets without CuO nanoparticles | Orthodontic brackets |
CuO nanoparticles [32] | S. mutans, L. acidophillus | Intervention: 50 μg/mL CuO nanoparticles with or without chitosan Controls: chitosan; water | Dental adhesive |
CuO nanoparticles [40] | S. mutans, L. acidophilus, L. casei, C. albicans, C. krusei, C. glabrata | Intervention: (1000 μg/mL, 1–1000 μg/mL) CuO nanoparticles Control: water | - |
Cu2O nanoparticles [22] | S. mutans, S. aureus, E. coli | Intervention: 1% Bi12O17Cl2 + 2% Cu2O nanoparticles Control: water | Topical agent |
4.3.2. Cuprous Oxide Materials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Petersen, P.E. World Health Organization Global Policy for Improvement of Oral Health—World Health Assembly 2007. Int. Dent. J. 2008, 58, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Collaborators GDaIIaP. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental Caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Antimicrobial Peptides for the Prevention and Treatment of Dental Caries: A Concise Review. Arch. Oral. Biol. 2021, 122, 105022. [Google Scholar] [CrossRef] [PubMed]
- Xue, V.W.; Yin, I.X.; Niu, J.Y.; Lo, E.C.M.; Chu, C.H.; Zhao, I.S. Effects of a 445 Nm Diode Laser and Silver Diamine Fluoride in Preventing Enamel Demineralisation and Inhibiting Cariogenic Bacteria. J. Dent. 2022, 126, 104309. [Google Scholar] [CrossRef] [PubMed]
- Gadallah, L.K.; Safwat, E.M.; Saleh, R.S.; Azab, S.M.; Azab, M.M. Effect of Silver Diamine Fluoride/Potassium Iodide Treatment on the Prevention of Dental Erosion in Primary Teeth: An in Vitro Study. BDJ Open 2023, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhao, I.S.; Mei, M.L.; Lo, E.C.M.; Tang, J.; Li, Q.; So, L.Y.; Chu, C.H. Synthesis and Characterization of Fluoridated Silver Nanoparticles and Their Potential as a Non-Staining Anti-Caries Agent. Int. J. Nanomed. 2020, 15, 3207–3215. [Google Scholar] [CrossRef]
- Dollwet, H.H.A.; Sorenson, J.R.J. Historic Uses of Copper Compounds in Medicine. Trace Elem. Med. 1985, 2, 80–87. [Google Scholar]
- O’Gorman, J.; Humphreys, H. Application of Copper to Prevent and Control Infection. Where Are We Now? J. Hosp. Infect. 2012, 81, 217–223. [Google Scholar] [CrossRef]
- Meiers, J.C.; Schachtele, C.F. The Effect of an Antibacterial Solution on the Microflora of Human Incipient Fissure Caries. J. Dent. Res. 1984, 63, 47–51. [Google Scholar] [CrossRef]
- Afseth, J.; Amsbaugh, S.M.; Monell-Torrens, E.; Bowen, W.H.; Rölla, G.; Brunelle, J.; Li, S.; Dahl, E. Effect of Topical Application of Copper in Combination with Fluoride in Drinking Water on Experimental Caries in Rats. Caries Res. 1984, 18, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Al-Hijazi, A.Y.; Hasan, N.; Nasr, B.K.; Jasim Al-Khafaji, H.H.; Al-Khafaji, B.; Abdah Alanssari, B.F.; Jalil, A.T. Recent Advances in the Use of Inorganic Nanomaterials as Anti Caries Agents. Heliyon 2023, 9, e15326. [Google Scholar] [CrossRef] [PubMed]
- Essa, A.M.; Khallaf, M.K. Antimicrobial Potential of Consolidation Polymers Loaded with Biological Copper Nanoparticles. BMC Microbiol. 2016, 16, 144. [Google Scholar] [CrossRef] [PubMed]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Lung, C.Y.K.; Yu, O.Y.; Chu, C.H. Caries Management with Non-Metallic Nanomaterials: A Systematic Review. Int. J. Nanomed. 2022, 17, 5809–5824. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, C.; Mennito, A.S.; Wolf, B.J.; Pashley, D.H.; Renné, W.G. Incorporation of Bactericidal Poly-Acrylic Acid Modified Copper Iodide Particles into Adhesive Resins. J. Dent. 2015, 43, 546–555. [Google Scholar] [CrossRef]
- Liu, R.; Memarzadeh, K.; Chang, B.; Zhang, Y.; Ma, Z.; Allaker, R.P.; Ren, L.; Yang, K. Antibacterial Effect of Copper-Bearing Titanium Alloy (Ti-Cu) against Streptococcus Mutans and Porphyromonas Gingivalis. Sci. Rep. 2016, 6, 29985. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Perez, D.; Vargas-Coronado, R.; Cervantes-Uc, J.M.; Rodriguez-Fuentes, N.; Aparicio, C.; Covarrubias, C.; Alvarez-Perez, M.; Garcia-Perez, V.; Martinez-Hernandez, M.; Cauich-Rodriguez, J.V. Antibacterial Activity of a Glass Ionomer Cement Doped with Copper Nanoparticles. Dent. Mater. J. 2020, 39, 389–396. [Google Scholar] [CrossRef]
- Pasha, M.; Muhammad, N.; Nayyer, M.; Bokhari, J.H.; Ashraf, H.; Safi, S.Z.; Kaleem, M. Synthesis of an Anti-Cariogenic Experimental Dental Composite Containing Novel Drug-Decorated Copper Particles. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111040. [Google Scholar] [CrossRef]
- Imani, M.M.; Kiani, M.; Rezaei, F.; Souri, R.; Safaei, M. Optimized Synthesis of Novel Hydroxyapatite/Cuo/Tio2 Nanocomposite with High Antibacterial Activity against Oral Pathogen Streptococcus Mutans. Ceram. Int. 2021, 47, 33398–33404. [Google Scholar] [CrossRef]
- Mao, M.; Zhang, W.; Huang, Z.; Huang, J.; Wang, J.; Li, W.; Gu, S. Graphene Oxide-Copper Nanocomposites Suppress Cariogenic Streptococcus Mutans Biofilm Formation. Int. J. Nanomed. 2021, 16, 7727–7739. [Google Scholar] [CrossRef]
- Bang, S.J.; Jun, S.K.; Kim, Y.J.; Ahn, J.Y.; Vu, H.T.; Mandakhbayar, N.; Han, M.R.; Lee, J.H.; Kim, J.B.; Kim, J.S.; et al. Characterization of Physical and Biological Properties of a Caries-Arresting Liquid Containing Copper Doped Bioglass Nanoparticles. Pharmaceutics 2022, 14, 1137. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, J.; Xu, Y.; Liu, H.; Zhang, J.; Wang, Y.; Sun, Y.; Zhao, M.; Liao, L.; Wang, X. Fast Cross-Linked Hydrogel as a Green Light-Activated Photocatalyst for Localized Biofilm Disruption and Brush-Free Tooth Whitening. ACS Appl. Mater. Interfaces 2022, 14, 28427–28438. [Google Scholar] [CrossRef] [PubMed]
- Afseth, J.; Amsbaugh, S.M.; Monell-Torrens, E.; Bowen, W.H.; Rølla, G.; Brunelle, J.; Dahl, E. Effect of Copper Applied Topically or in Drinking Water on Experimental Caries in Rats. Caries Res. 1984, 18, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Rosalen, P.L.; Bowen, W.H.; Pearson, S.K. Effect of Copper Co-Crystallized with Sugar on Caries Development in Desalivated Rats. Caries Res. 1996, 30, 367–372. [Google Scholar] [CrossRef]
- Abdullah, A.Z.; Strafford, S.M.; Brookes, S.J.; Duggal, M.S. The Effect of Copper on Demineralization of Dental Enamel. J. Dent. Res. 2006, 85, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Argueta-Figueroa, L.; Morales-Luckie, R.A.; Scougall-Vilchis, R.J.; Olea-Mejia, O.F. Synthesis, Characterization and Antibacterial Activity of Copper, Nickel and Bimetallic Cu-Ni Nanoparticles for Potential Use in Dental Materials. Prog. Nat. Sci. -Mater. Int. 2014, 24, 321–328. [Google Scholar] [CrossRef]
- Bakale, R.P.; Pathan, A.H.; Naik, G.N.; Machakanur, S.S.; Mangannavar, C.V.; Muchchandi, I.S.; Gudasi, K.B. Synthesis and Characterization of Transition Metal Complexes of Hydrochloride Salt of 3-Chlorobenzaldehyde Hydralazine Hydrazone: A New Class of Possible Anti-Cariogenic Agents. Appl. Organomet. Chem. 2014, 28, 720–724. [Google Scholar] [CrossRef]
- Girenes, G.; Ulusu, T. An in Vitro Evaluation of the Efficacy of a Novel Iontophoresis Fluoride Tray on Remineralization. J. Clin. Exp. Dent. 2014, 6, e327–e334. [Google Scholar] [CrossRef]
- Ramazanzadeh, B.; Jahanbin, A.; Yaghoubi, M.; Shahtahmassbi, N.; Ghazvini, K.; Shakeri, M.; Shafaee, H. Comparison of Antibacterial Effects of Zno and Cuo Nanoparticles Coated Brackets against Streptococcus Mutans. J. Dent. 2015, 16, 200–205. [Google Scholar]
- Renné, W.G.; Lindner, A.; Mennito, A.S.; Agee, K.A.; Pashley, D.H.; Willett, D.; Sentelle, D.; Defee, M.; Schmidt, M.; Sabatini, C. Antibacterial Properties of Copper Iodide-Doped Glass Ionomer-Based Materials and Effect of Copper Iodide Nanoparticles on Collagen Degradation. Clin. Oral. Investig. 2017, 21, 369–379. [Google Scholar] [CrossRef]
- Covarrubias, C.; Trepiana, D.; Corral, C. Synthesis of Hybrid Copper-Chitosan Nanoparticles with Antibacterial Activity against Cariogenic Streptococcus Mutans. Dent. Mater. J. 2018, 37, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Javed, R.; Rais, F.; Kaleem, M.; Jamil, B.; Ahmad, M.A.; Yu, T.; Qureshi, S.W.; Ao, Q. Chitosan Capping of Cuo Nanoparticles: Facile Chemical Preparation, Biological Analysis, and Applications in Dentistry. Int. J. Biol. Macromol. 2021, 167, 1452–1467. [Google Scholar] [CrossRef] [PubMed]
- Altankhishig, B.; Matsuda, Y.; Nagano-Takebe, F.; Okuyama, K.; Yamamoto, H.; Sakurai, M.; Naito, K.; Hayashi, M.; Sano, H.; Sidhu, S.K.; et al. Potential of Fluoride-Containing Zinc Oxide and Copper Oxide Nanocomposites on Dentin Bonding Ability. Nanomaterials 2022, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Ashour, A.A.; Felemban, M.F.; Felemban, N.H.; Enan, E.T.; Basha, S.; Hassan, M.M.; Gad El-Rab, S.M.F. Comparison and Advanced Antimicrobial Strategies of Silver and Copper Nanodrug-Loaded Glass Ionomer Cement against Dental Caries Microbes. Antibiotics 2022, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.Y.; Yi, Z.; Feng, X.; Tian, W.Z.; Xu, D.K.; Valentino, A.M.C.; Wang, Q.; Sun, H.C. Antibacterial Property of a Gradient Cu-Bearing Titanium Alloy by Laser Additive Manufacturing. Rare Met. 2022, 41, 580–593. [Google Scholar] [CrossRef]
- Maltz, M.; Emilson, C.G. Effect of Copper Fluoride and Copper Sulfate on Dental Plaque, Streptococcus Mutans and Caries in Hamsters. Scand. J. Dent. Res. 1988, 96, 390–392. [Google Scholar] [CrossRef]
- Brookes, S.J.; Shore, R.C.; Robinson, C.; Wood, S.R.; Kirkham, J. Copper Ions Inhibit the Demineralisation of Human Enamel. Arch. Oral. Biol. 2003, 48, 25–30. [Google Scholar] [CrossRef]
- Foley, J.; Blackwell, A. Ion Release from Copper Phosphate Cement and Influence on Streptococcus Mutans Growth in Vitro: A Comparative Study. Caries Res. 2003, 37, 416–424. [Google Scholar] [CrossRef]
- Thneibat, A.; Fontana, M.; Cochran, M.A.; Gonzalez-Cabezas, C.; Moore, B.K.; Matis, B.A.; Lund, M.R. Anticariogenic and Antibacterial Properties of a Copper Varnish Using an in Vitro Microbial Caries Model. Oper. Dent. 2008, 33, 142–148. [Google Scholar] [CrossRef]
- Amiri, M.; Etemadifar, Z.; Daneshkazemi, A.; Nateghi, M. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species. J. Dent. Biomater. 2017, 4, 347–352. [Google Scholar]
- Glauser, S.; Astasov-Frauenhoffer, M.; Müller, J.A.; Fischer, J.; Waltimo, T.; Rohr, N. Bacterial Colonization of Resin Composite Cements: Influence of Material Composition and Surface Roughness. Eur. J. Oral. Sci. 2017, 125, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.F.; Bermudez, J.; Dávila-Sánchez, A.; Alegría-Acevedo, L.F.; Méndez-Bauer, L.; Hernández, M.; Astorga, J.; Reis, A.; Loguercio, A.D.; Farago, P.V.; et al. Zinc Oxide and Copper Nanoparticles Addition in Universal Adhesive Systems Improve Interface Stability on Caries-Affected Dentin. J. Mech. Behav. Biomed. Mater. 2019, 100, 103366. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Yang, J.; Liu, X.; Zhao, H.; Zhang, X.; Yin, X.; Yang, C.; Yang, K.; Liu, Y. Inhibition Efficiency of 304-Cu Stainless Steel against Oral Bacterial Biofilm. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000211065259. [Google Scholar] [CrossRef] [PubMed]
- Mennito, A.S.; Schmidt, M.; Lane, A.; Kelly, A.; Sabatini, C.; Renne, W.; Evans, Z. Assessing the Antimicrobial Properties of Copper-Iodide Doped Adhesives in an in Vitro Caries Model: A Pilot Study. Contemp. Clin. Dent. 2022, 13, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Liu, W.Z.; Huang, Y.M.; Wang, Y.H.; Chen, X.Y.; Chen, Z. Bacterial Biofilm Microenvironment Responsive Copper-Doped Zinc Peroxide Nanocomposites for Enhancing Chemodynamic Therapy. Chem. Eng. J. 2022, 446, 137214. [Google Scholar] [CrossRef]
- Matsuda, Y.; Okuyama, K.; Yamamoto, H.; Fujita, M.; Abe, S.; Sato, T.; Yamada, N.; Koka, M.; Sano, H.; Hayashi, M.; et al. Antibacterial Effect of a Fluoride-Containing Zno/Cuo Nanocomposite. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2019, 458, 184–188. [Google Scholar] [CrossRef]
- Ren, G.; Hu, D.; Cheng, E.W.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Yu, O.Y.; Lung, C.Y.K.; Chu, C.H. Application of Copper Nanoparticles in Dentistry. Nanomaterials 2022, 12, 805. [Google Scholar] [CrossRef]
- Makkar, H.; Patri, G. Fabrication and Appraisal of Poly (Lactic-Co-Glycolic Acid)—Moxifloxacin Nanoparticles Using Vitamin E-Tpgs: A Potential Intracanal Drug Delivery Agent. J. Clin. Diagn. Res. 2017, 11, Zc05–Zc08. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef]
- Liu, H.L.; Nosheen, F.; Wang, X. Noble Metal Alloy Complex Nanostructures: Controllable Synthesis and Their Electrochemical Property. Chem. Soc. Rev. 2015, 44, 3056–3078. [Google Scholar] [CrossRef] [PubMed]
- Rawashdeh, R.Y.; Qabaja, G.; Albiss, B.A. Antibacterial Activity Of multi-Metallic (Ag–Cu–Li) Nanorods with Different Metallic Combination Ratios against Staphylococcus Aureus. BMC Res. Notes 2023, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Ognik, K.; Cholewińska, E.; Juśkiewicz, J.; Zduńczyk, Z.; Tutaj, K.; Szlązak, R. The Effect of Copper Nanoparticles and Copper (Ii) Salt on Redox Reactions and Epigenetic Changes in a Rat Model. J. Anim. Physiol. Anim. Nutr. 2019, 103, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Street, R.A.; Kabera, G.M.; Connolly, C. Copper Sulphate Use in South African Traditional Medicine. Environ. Geochem. Health 2017, 39, 467–474. [Google Scholar] [CrossRef]
First Author, Year [Ref.] | Items of Assessment | Score | Risk of Bias | ||||||
---|---|---|---|---|---|---|---|---|---|
Control Group | Material Quantity | Exposure Time | Sample Size | Material Characterization | Biocompatibility | Observer Blinding | |||
Sabatini, 2015 [15] | 6 | Low (6–7) | |||||||
Liu, 2016 [16] | 6 | Low (6–7) | |||||||
Aguilar-Perez, 2020 [17] | 6 | Low (6–7) | |||||||
Pasha, 2020 [18] | 6 | Low (6–7) | |||||||
Imani, 2021 [19] | 6 | Low (6–7) | |||||||
Mao, 2021 [20] | 6 | Low (6–7) | |||||||
Bang, 2022 [21] | 6 | Low (6–7) | |||||||
Li, 2022 [22] | 6 | Low (6–7) | |||||||
Afseth, 1984 [23] | 5 | Medium (3–5) | |||||||
Afseth, 1984 [11] | 5 | Medium (3–5) | |||||||
Rosalen, 1996 [24] | 5 | Medium (3–5) | |||||||
Abdullah, 2006 [25] | 5 | Medium (3–5) | |||||||
Argueta-Figueroa, 2014 [26] | 5 | Medium (3–5) | |||||||
Bakale, 2014 [27] | 5 | Medium (3–5) | |||||||
Girenes, 2014 [28] | 5 | Medium (3–5) | |||||||
Ramazanzadeh, 2015 [29] | 5 | Medium (3–5) | |||||||
Renné, 2017 [30] | 5 | Medium (3–5) | |||||||
Covarrubias, 2018 [31] | 5 | Medium (3–5) | |||||||
Javed, 2021 [32] | 5 | Medium (3–5) | |||||||
Altankhishig, 2022 [33] | 5 | Medium (3–5) | |||||||
Ashour, 2022 [34] | 5 | Medium (3–5) | |||||||
Fan, 2022 [35] | 5 | Medium (3–5) | |||||||
Meiers, 1984 [10] | 4 | Medium (3–5) | |||||||
Maltz, 1988 [36] | 4 | Medium (3–5) | |||||||
Brookes, 2003 [37] | 4 | Medium (3–5) | |||||||
Foley, 2003 [38] | 4 | Medium (3–5) | |||||||
Thneibat, 2008 [39] | 4 | Medium (3–5) | |||||||
Amiri, 2017 [40] | 4 | Medium (3–5) | |||||||
Glauser, 2017 [41] | 4 | Medium (3–5) | |||||||
Gutiérrez, 2019 [42] | 4 | Medium (3–5) | |||||||
Lan, 2022 [43] | 4 | Medium (3–5) | |||||||
Mennito, 2022 [44] | 4 | Medium (3–5) | |||||||
Zhang, 2022 [45] | 4 | Medium (3–5) | |||||||
Matsuda, 2019 [46] | 3 | Medium (3–5) |
Copper Material [Ref.] | Microorganism | Design | Intervention (Optimal and Range of Concentration Used) and Control(s) | Potential Use |
---|---|---|---|---|
C30H20N8Cl2Cu solution [27] | S. mutans, E. faecalis, C. albicans | In vitro | Intervention: (50 μg/mL, 0.19–50 μg/mL) C30H20N8Cl2Cu solution Controls: C30H21N8Cl3Zn; C31H24N8OCl2Ni; water | - |
CuSO4 solution [10] | S. mutans | In vitro | Intervention: (1.0 mM, 0.5–1.0 mM) CuSO4 solution Control: water | Topical agent |
CuSO4 solution [37] | S. mutans | In vitro | Intervention: (10 mM, 5.0–10 mM) CuSO4 solution Control: water | Topical agent |
CuSO4 solution [25] | S. mutans | Clinical | Intervention: 1.25 mM CuSO4 solution Controls: amine fluoride; water | Mouthwash |
CuSO4 solution [23] | S. mutans | Animal | Intervention: (5.0 mM, 0.1–5.0 mM) CuSO4 solution Controls: NaF solution; water | Drinking water |
CuSO4 solution [11] | S. mutans | Animal | Intervention: (5.0 mM, 1.0–5.0 mM) CuSO4 solution Control: water | Drinking water |
CuSO4 solution [24] | S. sobrinus | Animal | Intervention: (300 ppm, 75–300 ppm) CuSO4 solution Control: water | Sugar |
Cu3(PO4)2 solution [38] | S. mutans | In vitro | Intervention: Cu3(PO4)2 cement Control: conventional cement without Cu3(PO4)2 | Restorative filler |
CuF2 solution [36] | S. mutans | Animal | Intervention: 10 mM CuF2 solution Controls: CuSO4; NaF; water | Topical agent |
CuCl2 solution [28] | S. mutans | In vitro | Intervention: 1% CuCl2 solution Control: water | Topical agent |
CuI nanoparticles [15] | S. mutans | In vitro | Intervention: (1.0 mg/mL, 0.5–1.0 mg/mL) CuI-polyacrylic acid nanoparticles Control: conventional dental adhesive without CuI nanoparticles | Dental adhesive |
CuI nanoparticles [30] | S. mutans | In vitro | Intervention: 0.263 wt% CuI-polyacrylic acid nanoparticles in glass ionomer Control: conventional glass ionomer without CuI nanoparticles | Restorative filler |
CuI nanoparticles [44] | S. mutans, L. acidophilus | In vitro | Intervention: (5.0 μg/mL, 0.5–5.0 μg/mL) CuI nanoparticle dental adhesive Control: conventional dental adhesive without CuI nanoparticles | Dental adhesive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Niu, J.Y.; Yu, O.Y.; Chu, C.-H. Copper Materials for Caries Management: A Scoping Review. J. Funct. Biomater. 2024, 15, 10. https://doi.org/10.3390/jfb15010010
Xu VW, Nizami MZI, Yin IX, Niu JY, Yu OY, Chu C-H. Copper Materials for Caries Management: A Scoping Review. Journal of Functional Biomaterials. 2024; 15(1):10. https://doi.org/10.3390/jfb15010010
Chicago/Turabian StyleXu, Veena Wenqing, Mohammed Zahedul Islam Nizami, Iris Xiaoxue Yin, John Yun Niu, Ollie Yiru Yu, and Chun-Hung Chu. 2024. "Copper Materials for Caries Management: A Scoping Review" Journal of Functional Biomaterials 15, no. 1: 10. https://doi.org/10.3390/jfb15010010
APA StyleXu, V. W., Nizami, M. Z. I., Yin, I. X., Niu, J. Y., Yu, O. Y., & Chu, C. -H. (2024). Copper Materials for Caries Management: A Scoping Review. Journal of Functional Biomaterials, 15(1), 10. https://doi.org/10.3390/jfb15010010