Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ti Disk Preparation and Study Design
2.2. Surface Roughness Analysis
2.3. Protein Adsorption
2.4. Bacterial Biofilm Evaluation
2.5. FESEM Analysis
2.6. Cell Culture and Viability Assay
2.7. Cell Attachment Assay
2.8. Statistical Analysis
3. Results
3.1. FESEM Analysis
3.2. Surface Roughness Analysis
3.3. Evaluation of Bacterial Biofilm
3.4. Biological Response Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duraccio, D.; Mussano, F.; Faga, M.G. Biomaterials for Dental Implants: Current and Future Trends. J. Mater. Sci. 2015, 50, 4779–4812. [Google Scholar] [CrossRef]
- Romandini, M.; Lima, C.; Pedrinaci, I.; Araoz, A.; Soldini, M.C.; Sanz, M. Prevalence and Risk/Protective Indicators of Peri-implant Diseases: A University-representative Cross-sectional Study. Clin. Oral Implant. Res. 2021, 32, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-Implant Diseases and Conditions: Consensus Report of Workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, S286–S291. [Google Scholar] [CrossRef]
- Berglundh, J.; Romandini, M.; Derks, J.; Sanz, M.; Berglundh, T. Clinical Findings and History of Bone Loss at Implant Sites. Clin. Oral Implant. Res. 2020, 32, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Tomasi, C. Peri-Implant Health and Disease. A Systematic Review of Current Epidemiology. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S158–S171. [Google Scholar] [CrossRef] [PubMed]
- Romandini, M.; Lima, C.; Pedrinaci, I.; Araoz, A.; Costanza Soldini, M.; Sanz, M. Clinical Signs, Symptoms, Perceptions, and Impact on Quality of Life in Patients Suffering from Peri-implant Diseases: A University-representative Cross-sectional Study. Clin. Oral Implant. Res. 2021, 32, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.; Berglundh, T.; Schwarz, F.; Chapple, I.; Jepsen, S.; Sculean, A.; Kebschull, M.; Papapanou, P.N.; Tonetti, M.S.; Sanz, M.; et al. Prevention and Treatment of Peri-Implant Diseases—The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2023, 50, 4–76. [Google Scholar] [CrossRef] [PubMed]
- Romandini, M.; Laforí, A.; Pedrinaci, I.; Baima, G.; Ferrarotti, F.; Lima, C.; Paternó Holtzman, L.; Aimetti, M.; Cordaro, L.; Sanz, M. Effect of Sub-Marginal Instrumentation before Surgical Treatment of Peri-Implantitis: A Multi-Centre Randomized Clinical Trial. J. Clin. Periodontol. 2022, 49, 1334–1345. [Google Scholar] [CrossRef]
- Romandini, M.; De Tullio, I.; Congedi, F.; Kalemaj, Z.; D’Ambrosio, M.; Laforí, A.; Quaranta, C.; Buti, J.; Perfetti, G. Antibiotic Prophylaxis at Dental Implant Placement: Which Is the Best Protocol? A Systematic Review and Network Meta-analysis. J. Clin. Periodontol. 2019, 46, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Ozkocer, O.; Ozkocer, S.E.; Guler, B.; Uraz Corekci, A.; Elmas, C.; Yalım, M. Immunohistochemical Analysis with Apoptosis and Autophagy Markers in Periodontitis and Peri-Implantitis: Clinical Comparative Study. J. Periodontal Res. 2023, 58, 456–464. [Google Scholar] [CrossRef]
- Dreyer, H.; Grischke, J.; Tiede, C.; Eberhard, J.; Schweitzer, A.; Toikkanen, S.E.; Glöckner, S.; Krause, G.; Stiesch, M. Epidemiology and Risk Factors of Peri-Implantitis: A Systematic Review. J. Periodontal Res. 2018, 53, 657–681. [Google Scholar] [CrossRef] [PubMed]
- Djinic Krasavcevic, A.; Nikolic, N.; Milinkovic, I.; Carkic, J.; Jezdic, M.; Jankovic, S.; Aleksic, Z.; Milasin, J. Notch Signalling Cascade and Proinflammatory Mediators in Peri-Implant Lesions with Different RANKL/OPG Ratios-An Observational Study. J. Periodontal Res. 2023, 58, 360–368. [Google Scholar] [CrossRef]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.-L. Peri-Implantitis. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S246–S266. [Google Scholar] [CrossRef] [PubMed]
- Baima, G.; Citterio, F.; Romandini, M.; Romano, F.; Mariani, G.M.; Buduneli, N.; Aimetti, M. Surface Decontamination Protocols for Surgical Treatment of Peri-Implantitis: A Systematic Review with Meta-Analysis. Clin. Oral Implant. Res. 2022, 33, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Citterio, F.; Zanotto, E.; Pellegrini, G.; Annaratore, L.; Barbui, A.M.; Dellavia, C.; Baima, G.; Romano, F.; Aimetti, M. Comparison of Different Chemical and Mechanical Modalities for Implant Surface Decontamination: Activity against Biofilm and Influence on Cellular Regrowth-An In Vitro Study. Front. Surg. 2022, 9, 886559. [Google Scholar] [CrossRef] [PubMed]
- Carcuac, O.; Derks, J.; Abrahamsson, I.; Wennström, J.L.; Petzold, M.; Berglundh, T. Surgical Treatment of Peri-Implantitis: 3-Year Results from a Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2017, 44, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Charalampakis, G.; Ramberg, P.; Dahlén, G.; Berglundh, T.; Abrahamsson, I. Effect of Cleansing of Biofilm Formed on Titanium Discs. Clin. Oral Implant. Res. 2015, 26, 931–936. [Google Scholar] [CrossRef]
- Verket, A.; Koldsland, O.C.; Bunaes, D.; Lie, S.A.; Romandini, M. Non-Surgical Therapy of Peri-Implant Mucositis-Mechanical/Physical Approaches: A Systematic Review. J. Clin. Periodontol. 2023, 50 (Suppl. S26), 135–145. [Google Scholar] [CrossRef]
- Hu, M.-L.; Zheng, G.; Lin, H.; Li, N.; Zhao, P.-F.; Han, J.-M. Network Meta-Analysis of the Treatment Efficacy of Different Lasers for Peri-Implantitis. Lasers Med. Sci. 2021, 36, 619–629. [Google Scholar] [CrossRef]
- Li, R.; Wan, L.; Zhang, X.; Liu, W.; Rong, M.; Li, X.; Lu, H. Effect of a Neodymium-Doped Yttrium Aluminium Garnet Laser on the Physicochemical Properties of Contaminated Titanium Surfaces and Macrophage Polarization. J. Periodontal Res. 2022, 57, 533–544. [Google Scholar] [CrossRef]
- Romeo, U.; Nardi, G.M.; Libotte, F.; Sabatini, S.; Palaia, G.; Grassi, F.R. The Antimicrobial Photodynamic Therapy in the Treatment of Peri-Implantitis. Int. J. Dent. 2016, 2016, 7692387. [Google Scholar] [CrossRef]
- Karlsson, K.; Trullenque-Eriksson, A.; Tomasi, C.; Derks, J. Efficacy of Access Flap and Pocket Elimination Procedures in the Management of Peri-Implantitis: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2023, 50, 244–284. [Google Scholar] [CrossRef] [PubMed]
- Tapia, B.; Valles, C.; Ribeiro-Amaral, T.; Mor, C.; Herrera, D.; Sanz, M.; Nart, J. The Adjunctive Effect of a Titanium Brush in Implant Surface Decontamination at Peri-implantitis Surgical Regenerative Interventions: A Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2019, 46, 586–596. [Google Scholar] [CrossRef]
- Persson, L.G.; Ericsson, I.; Berglundh, T.; Lindhe, J. Osseintegration Following Treatment of Peri-Implantitis and Replacement of Implant Components. J. Clin. Periodontol. 2001, 28, 258–263. [Google Scholar] [CrossRef]
- Cha, J.-K.; Paeng, K.; Jung, U.-W.; Choi, S.-H.; Sanz, M.; Sanz-Martín, I. The Effect of Five Mechanical Instrumentation Protocols on Implant Surface Topography and Roughness: A Scanning Electron Microscope and Confocal Laser Scanning Microscope Analysis. Clin. Oral Implant. Res. 2019, 30, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, S.; Schwarz, F.; Cordaro, L.; Derks, J.; Hämmerle, C.H.F.; Heitz-Mayfield, L.J.; Hernández-Alfaro, F.; Meijer, H.J.A.; Naenni, N.; Ortiz-Vigón, A.; et al. Regeneration of Alveolar Ridge Defects. Consensus Report of Group 4 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019, 46, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Serrabona, J.; Bosch, B.M.; Díez-Tercero, L.; Gil, F.J.; Camps-Font, O.; Valmaseda-Castellón, E.; Gay-Escoda, C.; Sánchez-Garcés, M.Á. Evaluation of the Inflammatory and Osteogenic Response Induced by Titanium Particles Released during Implantoplasty of Dental Implants. Sci. Rep. 2022, 12, 15790. [Google Scholar] [CrossRef]
- Subramani, K.; Wismeijer, D. Decontamination of Titanium Implant Surface and Re-Osseointegration to Treat Peri-Implantitis: A Literature Review. Int. J. Oral Maxillofac. Implant. 2012, 27, 1043–1054. [Google Scholar]
- Renvert, S.; Polyzois, I.; Maguire, R. Re-Osseointegration on Previously Contaminated Surfaces: A Systematic Review. Clin. Oral Implant. Res. 2009, 20 (Suppl. S4), 216–227. [Google Scholar] [CrossRef]
- de Waal, Y.C.M.; Winning, L.; Stavropoulos, A.; Polyzois, I. Efficacy of Chemical Approaches for Implant Surface Decontamination in Conjunction with Sub-Marginal Instrumentation, in the Non-Surgical Treatment of Peri-Implantitis: A Systematic Review. J. Clin. Periodontol. 2023, 50, 212–223. [Google Scholar] [CrossRef]
- Mussano, F.; Genova, T.; Laurenti, M.; Zicola, E.; Munaron, L.; Rivolo, P.; Mandracci, P.; Carossa, S. Early Response of Fibroblasts and Epithelial Cells to Pink-Shaded Anodized Dental Implant Abutments: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2018, 33, 571–579. [Google Scholar] [CrossRef]
- Gold, M.H.; Wilson, A.; Biron, J.A. Treatment of Mild to Moderate Facial Chrono- and Photodamage with a Novel Intense Liquid Trichloroacetic Acid Peel. J. Clin. Aesthet. Dermatol. 2022, 15, E61–E65. [Google Scholar] [PubMed]
- Agrawal, D.; Adil, M.; Amin, S.S.; Mohtashim, M.; Bansal, R.; Tabassum, H. Comparison of Efficacy and Safety of 30% Hydrogen Peroxide with 50% Trichloroacetic Acid in Seborrheic Keratosis: A Randomized Controlled Study. Ital. J. Dermatol. Venerol. 2021, 156, 489–495. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Balighi, K.; Tavakolpour, S.; Daneshpazhooh, M.; Chams-Davatchi, C. Trichloroacetic Acid as a Treatment for Persistent Oral Mucosal Lesions in Pemphigus Vulgaris. J. Am. Acad. Dermatol. 2019, 80, e51–e52. [Google Scholar] [CrossRef]
- Rakic, L.; Lapière, C.M.; Nusgens, B.V. Comparative Caustic and Biological Activity of Trichloroacetic and Glycolic Acids on Keratinocytes and Fibroblasts in Vitro. Skin Pharmacol. Appl. Skin Physiol. 2000, 13, 52–59. [Google Scholar] [CrossRef] [PubMed]
- El-Domyati, M.B.M.; Attia, S.K.; Saleh, F.Y.; Ahmad, H.M.; Uitto, J.J. Trichloroacetic Acid Peeling versus Dermabrasion: A Histometric, Immunohistochemical, and Ultrastructural Comparison. Dermatol. Surg. 2004, 30, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Ben Amara, H.; Lee, S.C.; Leesungbok, R.; Chung, M.A.; Koo, K.-T.; Lee, S.W. Chemical Regeneration of Wound Defects: Relevance to the Canine Palatal Mucosa and Cell Cycle Up-Regulation in Human Gingival Fibroblasts. Tissue Eng. Regen. Med. 2019, 16, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.; Schneider, S.; Petersen, F.C.; Haugen, H.J.; Wohlfahrt, J.C.; Ekstrand, K.; Ekfeldt, A. Chemical Debridement of Contaminated Titanium Surfaces: An in Vitro Study. Acta Odontol. Scand. 2013, 71, 957–964. [Google Scholar] [CrossRef]
- Gosau, M.; Hahnel, S.; Schwarz, F.; Gerlach, T.; Reichert, T.E.; Bürgers, R. Effect of Six Different Peri-Implantitis Disinfection Methods on in Vivo Human Oral Biofilm. Clin. Oral Implant. Res. 2010, 21, 866–872. [Google Scholar] [CrossRef]
- Linley, E.; Denyer, S.P.; McDonnell, G.; Simons, C.; Maillard, J.-Y. Use of Hydrogen Peroxide as a Biocide: New Consideration of Its Mechanisms of Biocidal Action. J. Antimicrob. Chemother. 2012, 67, 1589–1596. [Google Scholar] [CrossRef]
- McDonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef]
- Hauser-Gerspach, I.; Kulik, E.M.; Weiger, R.; Decker, E.-M.; Von Ohle, C.; Meyer, J. Adhesion of Streptococcus sanguinis to Dental Implant and Restorative Materials in Vitro. Dent. Mater. J. 2007, 26, 361–366. [Google Scholar] [CrossRef]
- Pita, P.P.C.; Rodrigues, J.A.; Ota-Tsuzuki, C.; Miato, T.F.; Zenobio, E.G.; Giro, G.; Figueiredo, L.C.; Gonçalves, C.; Gehrke, S.A.; Cassoni, A.; et al. Oral Streptococci Biofilm Formation on Different Implant Surface Topographies. Biomed. Res. Int. 2015, 2015, 159625. [Google Scholar] [CrossRef]
- Carvalho, É.B.S.; Romandini, M.; Sadilina, S.; Sant’Ana, A.C.P.; Sanz, M. Microbiota Associated with Peri-Implantitis-A Systematic Review with Meta-Analyses. Clin. Oral Implant. Res. 2023, 34, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Genova, T.; Tallarico, M.; Gautier, G.; Mussano, F.; Botticelli, D. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study. J. Dent. Res. 2016, 95, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Genova, T.; Chinigò, G.; Munaron, L.; Rivolo, P.; Luganini, A.; Gribaudo, G.; Cavagnetto, D.; Mandracci, P.; Mussano, F. Bacterial and Cellular Response to Yellow-Shaded Surface Modifications for Dental Implant Abutments. Biomolecules 2022, 12, 1718. [Google Scholar] [CrossRef] [PubMed]
- Pistilli, R.; Genova, T.; Canullo, L.; Faga, M.G.; Terlizzi, M.E.; Gribaudo, G.; Mussano, F. Effect of Bioactivation on Traditional Surfaces and Zirconium Nitride: Adhesion and Proliferation of Preosteoblastic Cells and Bacteria. Int. J. Oral Maxillofac. Implant. 2018, 33, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Bjerkan, G.; Witsø, E.; Bergh, K. Sonication Is Superior to Scraping for Retrieval of Bacteria in Biofilm on Titanium and Steel Surfaces in Vitro. Acta Orthop. 2009, 80, 245–250. [Google Scholar] [CrossRef]
- Isler, S.C.; Unsal, B.; Soysal, F.; Ozcan, G.; Peker, E.; Karaca, I.R. The Effects of Ozone Therapy as an Adjunct to the Surgical Treatment of Peri-Implantitis. J. Periodontal Implant. Sci. 2018, 48, 136. [Google Scholar] [CrossRef]
- Wilensky, A.; Shapira, L.; Limones, A.; Martin, C. The Efficacy of Implant Surface Decontamination Using Chemicals during Surgical Treatment of Peri-Implantitis: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2023, 50, 336–358. [Google Scholar] [CrossRef]
- Flanagan, D. Enterococcus faecalis and Dental Implants. J. Oral Implantol. 2017, 43, 8–11. [Google Scholar] [CrossRef]
- Canullo, L.; Rossetti, P.H.O.; Penarrocha, D. Identification of Enterococcus faecalis and Pseudomonas Aeruginosa on and in Implants in Individuals with Peri-Implant Disease: A Cross-Sectional Study. Int. J. Oral Maxillofac. Implant. 2015, 30, 583–587. [Google Scholar] [CrossRef]
- Ntrouka, V.I.; Slot, D.E.; Louropoulou, A.; Van der Weijden, F. The Effect of Chemotherapeutic Agents on Contaminated Titanium Surfaces: A Systematic Review. Clin. Oral Implant. Res. 2011, 22, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Dostie, S.; Alkadi, L.T.; Owen, G.; Bi, J.; Shen, Y.; Haapasalo, M.; Larjava, H.S. Chemotherapeutic Decontamination of Dental Implants Colonized by Mature Multispecies Oral Biofilm. J. Clin. Periodontol. 2017, 44, 403–409. [Google Scholar] [CrossRef]
- Mouhyi, J.; Sennerby, L.; Wennerberg, A.; Louette, P.; Dourov, N.; van Reck, J. Re-Establishment of the Atomic Composition and the Oxide Structure of Contaminated Titanium Surfaces by Means of Carbon Dioxide Laser and Hydrogen Peroxide: An in Vitro Study. Clin. Implant. Dent. Relat. Res. 2000, 2, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Alovisi, M.; Carossa, M.; Mandras, N.; Roana, J.; Costalonga, M.; Cavallo, L.; Pira, E.; Putzu, M.G.; Bosio, D.; Roato, I.; et al. Disinfection and Biocompatibility of Titanium Surfaces Treated with Glycine Powder Airflow and Triple Antibiotic Mixture: An In Vitro Study. Materials 2022, 15, 4850. [Google Scholar] [CrossRef]
- Cha, J.K.; Lee, J.S.; Kim, C.S. Surgical Therapy of Peri-Implantitis with Local Minocycline: A 6-Month Randomized Controlled Clinical Trial. J. Dent. Res. 2019, 98, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Ichioka, Y.; Derks, J.; Dahlén, G.; Berglundh, T.; Larsson, L. In Vitro Evaluation of Chemical Decontamination of Titanium Discs. Sci. Rep. 2021, 11, 22753. [Google Scholar] [CrossRef]
- Soleymani, T.; Lanoue, J.; Rahman, Z. A Practical Approach to Chemical Peels. J. Clin. Aesthet. Dermatol. 2018, 11, 21–28. [Google Scholar]
- Tuna, T.; Wein, M.; Altmann, B.; Steinberg, T.; Fischer, J.; Att, W. Effect of Hydrogen Peroxide on the Surface and Attractiveness of Various Zirconia Implant Materials on Human Osteoblasts: An In Vitro Study. Materials 2023, 16, 961. [Google Scholar] [CrossRef]
- Peñarrieta-Juanito, G.; Sordi, M.B.; Henriques, B.; Dotto, M.E.R.; Teughels, W.; Silva, F.S.; Magini, R.S.; Souza, J.C.M. Surface Damage of Dental Implant Systems and Ions Release after Exposure to Fluoride and Hydrogen Peroxide. J. Periodontal Res. 2019, 54, 46–52. [Google Scholar] [CrossRef]
- Mombelli, A.; Hashim, D.; Cionca, N. What Is the Impact of Titanium Particles and Biocorrosion on Implant Survival and Complications? A Critical Review. Clin. Oral Implant. Res. 2018, 29, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Barberi, J.; Spriano, S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. Materials 2021, 14, 1590. [Google Scholar] [CrossRef]
- Grimbleby, F.H.; Ntailianas, H.A. Binding of Trichloroacetic Acid by Protein. Nature 1961, 189, 835–836. [Google Scholar] [CrossRef] [PubMed]
- Roato, I.; Chinigò, G.; Genova, T.; Munaron, L.; Mussano, F. Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021, 9, 1085. [Google Scholar] [CrossRef] [PubMed]
- Zareidoost, A.; Yousefpour, M.; Ghaseme, B.; Amanzadeh, A. The Relationship of Surface Roughness and Cell Response of Chemical Surface Modification of Titanium. J. Mater. Sci. Mater. Med. 2012, 23, 1479–1488. [Google Scholar] [CrossRef]
- Heithersay, G.S. Treatment of Invasive Cervical Resorption: An Analysis of Results Using Topical Application of Trichloracetic Acid, Curettage, and Restoration. Quintessence Int. 1999, 30, 96–110. [Google Scholar]
- Mukherjee, S.; Dhara, S.; Saha, P. Enhanced Corrosion, Tribocorrosion Resistance and Controllable Osteogenic Potential of Stem Cells on Micro-Rippled Ti6Al4V Surfaces Produced by Pulsed Laser Remelting. J. Manuf. Process. 2021, 65, 119–133. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Antibacterial Coatings on Titanium Implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91B, 470–480. [Google Scholar] [CrossRef]
Pristine | TCAH2O2-Treated | Decontaminated | |||||||
---|---|---|---|---|---|---|---|---|---|
Sa | Ssk | Sku | Sa | Ssk | Sku | Sa | Ssk | Sku | |
MAC | 0.45 ± 0.05 | −0.24 ± 0.12 | 2.93 ± 0.15 | 0.44 ± 0.08 | −0.26 ± 0.14 | 2.80 ± 0.15 | 0.45 ± 0.11 | −0.27 ± 0.14 | 2.73 ± 0.13 |
SBAE | 1.17 ± 0.07 | −0.21 ± 0.53 | 3.26 ± 0.35 | 1.17 ± 0.07 | −0.22 ± 0.55 | 3.29 ± 0.37 | 1.19 ± 0.07 | −0.22 ± 0.58 | 3.17 ± 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baima, G.; Romano, F.; Roato, I.; Mosca Balma, A.; Pedraza, R.; Faga, M.G.; Amoroso, F.; Orrico, C.; Genova, T.; Aimetti, M.; et al. Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces. J. Funct. Biomater. 2024, 15, 21. https://doi.org/10.3390/jfb15010021
Baima G, Romano F, Roato I, Mosca Balma A, Pedraza R, Faga MG, Amoroso F, Orrico C, Genova T, Aimetti M, et al. Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces. Journal of Functional Biomaterials. 2024; 15(1):21. https://doi.org/10.3390/jfb15010021
Chicago/Turabian StyleBaima, Giacomo, Federica Romano, Ilaria Roato, Alessandro Mosca Balma, Riccardo Pedraza, Maria Giulia Faga, Federico Amoroso, Clarissa Orrico, Tullio Genova, Mario Aimetti, and et al. 2024. "Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces" Journal of Functional Biomaterials 15, no. 1: 21. https://doi.org/10.3390/jfb15010021
APA StyleBaima, G., Romano, F., Roato, I., Mosca Balma, A., Pedraza, R., Faga, M. G., Amoroso, F., Orrico, C., Genova, T., Aimetti, M., & Mussano, F. (2024). Efficacy of a Solution Containing 33% Trichloroacetic Acid and Hydrogen Peroxide in Decontaminating Machined vs. Sand-Blasted Acid-Etched Titanium Surfaces. Journal of Functional Biomaterials, 15(1), 21. https://doi.org/10.3390/jfb15010021