Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior
Abstract
:1. Introduction
2. Material and Methods
2.1. Support Preparation
2.1.1. Steel Plate Treatment
2.1.2. PPy Coating on 316L SS
2.2. Surface Characterization
2.2.1. Profilometric Analysis
2.2.2. Measure of the Surface Wettability
2.3. Support Bio-Functionalization
2.3.1. Fn Adsorption
2.3.2. Fn Oxidation
2.3.3. Fn Electrodeposition on Support
2.4. Study of Fn Behavior on Each Type of Support
2.4.1. Immunostaining of Fn-Deposited Coatings on Supports
2.4.2. Quantification of Fn Present on Supports
2.4.3. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Cellular Influence of Supports
2.5.1. Human Cell Adhesion on Supports
2.5.2. Bacteria Adhesion on Supports
2.5.3. Mitochondrial Activity
2.5.4. Cell Proliferation
2.5.5. Cell Morphology
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bio-Functionalization and Characterization of Supports
3.1.1. Electrodeposition of PPy Coatings
3.1.2. Surface Wettability of Supports
3.1.3. Support Functionalization with Fn
- AD: simple adsorption of Fn.
- OX: oxidation of precoated Fn.
- ED: electrodeposition of Fn.
3.2. Study of the Bioactivity of Fn Deposited on Each Type of Supports
3.2.1. Quantity of Fn on Substrates
3.2.2. Biological Conformation of Fn
3.3. Effects of Supports on Pre-Osteoblast Early-Stage Behavior
3.3.1. Cell Morphology
3.3.2. 5 Integrins and Cellular Fn Organization
3.4. Early-Stage Bacterial Behavior on Supports
3.5. Pre-Osteoblast Behavior after Culture for 48 h on Supports
3.5.1. Cell Morphology
3.5.2. Mitochondrial Activity
3.5.3. Proliferation of Pre-Osteoblasts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Chandra, G. Bio-Implants Market—Global Opportunity Analysis and Industry Forecast, 2013–2020; Allied Market Research: Wilmington, DE, USA, 2014. [Google Scholar]
- Nikolova, M.P.; Apostolova, M.D. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. Materials 2022, 16, 183. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; García, A.J. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 2015, 94, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Herting, G.; Wallinder, I.O.; Leygraf, C. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium—A comparison. J. Environ. Monit. 2008, 10, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Speranza, G.; Fedel, M.; Andersson, N.E.; Deflorian, F.; Omanovic, S.; Zanella, C. Electropolymerization and Possible Corrosion Protection Effect of Polypyrrole Coatings on AA1050 (UNS A91050) in NaCl Solutions. Corrosion 2019, 75, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Singh, A.; Jackson, M.J.; Coelho, R.T.; Prakash, D.; Charalambous, C.P.; Ahmed, W.; da Silva, L.R.R.; Lawrence, A.A. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1473–1530. [Google Scholar] [CrossRef] [PubMed]
- Fage, S.W.; Muris, J.; Jakobsen, S.S.; Thyssen, J.P. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat. 2016, 74, 323–345. [Google Scholar] [CrossRef] [PubMed]
- Lamret, F.; Colin, M.; Mongaret, C.; Gangloff, S.C.; Reffuveille, F. Antibiotic Tolerance of. Antibiotics 2020, 9, 547. [Google Scholar] [CrossRef]
- Eric Jones, J.; Chen, M.; Yu, Q. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1363–1374. [Google Scholar] [CrossRef]
- Chang, S.-H.; Hsiao, Y.-C. Surface and Protein Adsorption Properties of 316L Stainless Steel Modified with Polycaprolactone Film. Polymers 2017, 9, 545. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, Y.C.; Li, Y.; Yang, L.J.; Wang, M.L.; Wang, Y. Nanosecond laser fabrication of superhydrophobic surface on 316L stainless steel and corrosion protection application. Colloids Surf. A Physicochem. Eng. Asp. 2020, 604, 125259. [Google Scholar] [CrossRef]
- Salahinejad, E.; Hadianfard, M.J.; Macdonald, D.D.; Mozafari, M.; Vashaee, D.; Tayebi, L. A new double-layer sol-gel coating to improve the corrosion resistance of a medical-grade stainless steel in a simulated body fluid. Mater. Lett. 2013, 97, 162–165. [Google Scholar] [CrossRef]
- Goldmann, W.H. Biosensitive and antibacterial coatings on metallic material for medical applications. Cell Biol. Int. 2021, 45, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Liu, S.J.; Han, H.C.; Zhou, Y.; Hu, S.C.; He, C.; Yan, Q.X. Studies on the formation process and anti-corrosion performance of polypyrrole film deposited on the surface of Q235 steel by an electrochemical method. Surf. Coat. Technol. 2018, 341, 95–102. [Google Scholar] [CrossRef]
- Garcia-Cabezon, C.; Salvo-Comino, C.; Garcia-Hernandez, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Nanocomposites of conductive polymers and nanoparticles deposited on porous material as a strategy to improve its corrosion resistance. Surf. Coat. Technol. 2020, 403, 126395. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Silva, T.M.E.; Montemor, M.F.; Fernandes, J.C.S.; Ferreira, M.G.S. Electrodeposition and characterization of polypyrrole films on aluminium alloy 6061-T6. Electrochim. Acta 2008, 53, 4754–4763. [Google Scholar] [CrossRef]
- Gopi, D.; Ramya, S.; Rajeswari, D.; Kavitha, L. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel. Colloids Surf. B Biointerfaces 2013, 107, 130–136. [Google Scholar] [CrossRef]
- Gonzalez, M.B.; Saidman, S.B. Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention. Corros. Sci. 2011, 53, 276–282. [Google Scholar] [CrossRef]
- Vaitkuviene, A.; Ratautaite, V.; Mikoliunaite, L.; Kaseta, V.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloids Surf. A Physicochem. Eng. Asp. 2014, 442, 152–156. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef]
- Liang, Y.; Goh, J.C.H. Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity 2020, 2, 101–119. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Manna, J.S.; Saha, P. Development and relative comparison of polypyrrole-calcium phosphate composite coatings with differential concentration of chlorophyll functionalized polymer particle achieved through pulsed electro deposition. Surf. Coat. Technol. 2019, 363, 221–235. [Google Scholar] [CrossRef]
- Maimaiti, B.; Zhang, N.; Yan, L.; Luo, J.; Xie, C.; Wang, Y.; Ma, C.; Ye, T. Stable ZnO-doped hydroxyapatite nanocoating for anti-infection and osteogenic on titanium. Colloids Surf. B Biointerfaces 2019, 186, 110731. [Google Scholar] [CrossRef] [PubMed]
- Landim, V.P.A.; Foguel, M.V.; Prado, C.M.; Sotomayor, M.P.T.; Vieira, I.C.; Silva, B.V.M.; Dutra, R.F. A Polypyrrole/Nanoclay Hybrid Film for Ultra-Sensitive Cardiac Troponin T Electrochemical Immunosensor. Biosensors 2022, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Molino, P.J.; Wallace, G.G.; Hanks, T.W. Hydrophobic conducting polymer films from post deposition thiol exposure. Synth. Met. 2012, 162, 1464–1470. [Google Scholar] [CrossRef]
- De Giglio, E.; Sabbatini, L.; Colucci, S.; Zambonin, G. Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates. J. Biomater. Sci. Polym. Ed. 2000, 11, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Gossart, A.; Battiston, K.G.; Gand, A.; Pauthe, E.; Santerre, J.P. Mono vs. multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomater. 2018, 66, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Tzoneva, R.; Faucheux, N.; Groth, T. Wettability of substrata controls cell-substrate and cell-cell adhesions. Biochim. Biophys. Acta-Gen. Subj. 2007, 1770, 1538–1547. [Google Scholar] [CrossRef]
- Rapuano, B.E.; MacDonald, D.E. Surface oxide net charge of a titanium alloy: Modulation of fibronectin-activated attachment and spreading of osteogenic cells. Colloids Surf. B Biointerfaces 2011, 82, 95–103. [Google Scholar] [CrossRef]
- Lu, H.H.; Subramony, S.D.; Boushell, M.K.; Zhang, X. Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann. Biomed. Eng. 2010, 38, 2142–2154. [Google Scholar] [CrossRef]
- Ishihara, K.; Mitera, K.; Inoue, Y.; Fukazawa, K. Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids Surf. B Biointerfaces 2020, 194, 111205. [Google Scholar] [CrossRef] [PubMed]
- Heller, M.; Kämmerer, P.W.; Al-Nawas, B.; Luszpinski, M.A.; Förch, R.; Brieger, J. The effect of extracellular matrix proteins on the cellular response of HUVECS and HOBS after covalent immobilization onto titanium. J. Biomed. Mater. Res. Part A 2015, 103, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.J.; Qin, H.; Nie, Y.D.; Ding, H.Y. Control of osteoblast cells adhesion and spreading by microcontact printing of extracellular matrix protein patterns. Colloids Surf. B Biointerfaces 2013, 104, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Neoh, K.G.; Shi, Z.; Kang, E.T.; Tambyah, P.A.; Chiong, E. Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol. Bioeng. 2012, 109, 336–345. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Dai, L.F.; Zhang, X.M.; Sun, Y.N.; Shi, W.; Ge, D.T. The Bioactive Polypyrrole/Polydopamine Nanowire Coating with Enhanced Osteogenic Differentiation Ability with Electrical Stimulation. Coatings 2020, 10, 1189. [Google Scholar] [CrossRef]
- Hamdaoui, S.; Lambert, A.; Khireddine, H.; Agniel, R.; Cousture, A.; Coulon, R.; Gallet, O.; Alfonsi, S.; Hindie, M. An efficient and inexpensive method for functionalizing metallic biomaterials used in orthopedic applications. Colloid Interface Sci. Commun. 2020, 37, 100282. [Google Scholar] [CrossRef]
- Stephansson, S.N.; Byers, B.A.; García, A.J. Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding. Biomaterials 2002, 23, 2527–2534. [Google Scholar] [CrossRef]
- Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011, 29, 739–767. [Google Scholar] [CrossRef]
- Kawabata, S.; Asano, K.; Miyazawa, A.; Satoh, T.; Tabata, Y. Electrodeposition of pronectin for titanium to augment gingival epithelium adhesion. J. Tissue Eng. Regen. Med. 2013, 7, 348–352. [Google Scholar] [CrossRef]
- Sikkema, R.; Baker, K.; Zhitomirsky, I. Electrophoretic deposition of polymers and proteins for biomedical applications. Adv. Colloid Interface Sci. 2020, 284, 102272. [Google Scholar] [CrossRef]
- Wong, J.Y.; Langer, R.; Ingber, D.E. Cell-interactions with fibronectin-coated electrically conducting polypyrrole thin-films. In Proceedings of the Symposium on Biomaterials for Drug and Cell Delivery, Boston, MA, USA, 29 November–1 December 1993; pp. 141–145. [Google Scholar]
- Hindie, M.; Wu, D.N.; Anselme, K.; Gallet, O.; Di Martino, P. Effects of Fibronectin Coating on Bacterial and Osteoblast Progenitor Cells Adherence in a Co-culture Assay. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; Volume 973, pp. 17–30. [Google Scholar]
- Toffoli, A.; Parisi, L.; Bianchi, M.G.; Lumetti, S.; Bussolati, O.; Macaluso, G.M. Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110250. [Google Scholar] [CrossRef] [PubMed]
- Bascetin, R.; Admane, K.; Agniel, R.; Boudou, T.; Doussineau, T.; Antoine, R.; Gallet, O.; Leroy-Dudal, J.; Vendrely, C. Amyloid-like aggregates formation by blood plasma fibronectin. Int. J. Biol. Macromol. 2017, 97, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Maurer, L.M.; Ma, W.; Mosher, D.F. Dynamic structure of plasma fibronectin. Crit. Rev. Biochem. Mol. Biol. 2015, 51, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Bascetin, R.; Blay, L.; Kellouche, S.; Carreiras, F.; Picot, C.R.; Briand, M.; Agniel, R.; Gallet, O.; Vendrely, C.; Leroy-Dudal, J. Fibronectin amyloid-like aggregation alters its extracellular matrix incorporation and promotes a single and sparsed cell migration. Exp. Cell Res. 2018, 371, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Hindié, M.; Camand, E.; Agniel, R.; Carreiras, F.; Pauthe, E.; Van Tassel, P. Effects of human fibronectin and human serum albumin sequential adsorption on preosteoblastic cell adhesion. Biointerphases 2014, 9, 029008. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef]
- Lemanska-Perek, A.; Adamik, B. Fibronectin and its soluble EDA-FN isoform as biomarkers for inflammation and sepsis. Adv. Clin. Exp. Med. 2019, 28, 1561–1567. [Google Scholar] [CrossRef]
- Borges, M.H.R.; Nagay, B.E.; Costa, R.C.; Mathew, M.T.; Bara, V.A.R.; Souza, J.G.S. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv. Colloid Interface Sci. 2023, 314, 102860. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, R.B. Surface electric properties of polypyrrole in aqueous solutions. Langmuir 2003, 19, 10703–10709. [Google Scholar] [CrossRef]
- Demais, V.; Audrain, C.; Mabilleau, G.; Chappard, D.; Baslé, M.F. Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton. Morphologie 2014, 98, 53–64. [Google Scholar] [CrossRef]
- Muhonen, V.; Fauveaux, C.; Olivera, G.; Vigneron, P.; Danilov, A.; Nagel, M.D.; Tuukkanen, J. Fibronectin modulates osteoblast behavior on Nitinol. J. Biomed. Mater. Res. Part A 2009, 88A, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Dalton, C.J.; Lemmon, C.A. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021, 10, 2443. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, C.A.; Dalecki, D.; Hocking, D.C. Regional fibronectin and collagen fibril co-assembly directs cell proliferation and microtissue morphology. PLoS ONE 2013, 8, e77316. [Google Scholar] [CrossRef] [PubMed]
- Kamarajan, P.; Kapila, Y.L. An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of FAK and ERK. Apoptosis 2007, 12, 2221–2231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonsi, S.; Karunathasan, P.; Mamodaly-Samdjee, A.; Balathandayutham, K.; Lefevre, S.; Miranda, A.; Gallet, O.; Seyer, D.; Hindié, M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior. J. Funct. Biomater. 2024, 15, 5. https://doi.org/10.3390/jfb15010005
Alfonsi S, Karunathasan P, Mamodaly-Samdjee A, Balathandayutham K, Lefevre S, Miranda A, Gallet O, Seyer D, Hindié M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior. Journal of Functional Biomaterials. 2024; 15(1):5. https://doi.org/10.3390/jfb15010005
Chicago/Turabian StyleAlfonsi, Séverine, Pithursan Karunathasan, Ayann Mamodaly-Samdjee, Keerthana Balathandayutham, Sarah Lefevre, Anamar Miranda, Olivier Gallet, Damien Seyer, and Mathilde Hindié. 2024. "Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior" Journal of Functional Biomaterials 15, no. 1: 5. https://doi.org/10.3390/jfb15010005
APA StyleAlfonsi, S., Karunathasan, P., Mamodaly-Samdjee, A., Balathandayutham, K., Lefevre, S., Miranda, A., Gallet, O., Seyer, D., & Hindié, M. (2024). Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts’ Adhesion but Affected Their Behavior. Journal of Functional Biomaterials, 15(1), 5. https://doi.org/10.3390/jfb15010005