Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Preparation
2.2. Protein Extraction
2.3. LC-MS/MS
2.4. Bioinformatic and Statistical Analysis
3. Results
3.1. Global Profiling of Adsorbed Serum Proteins
3.2. Functional Analysis of Adsorbed Serum Proteins
3.3. Identification of Major Bone-Related Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, C.J.; Clegg, R.E.; Leavesley, D.I.; Pearcy, M.J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Brash, J.L.; Horbett, T.A.; Latour, R.A.; Tengvall, P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater. 2019, 94, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Gruber, R.; Stadlinger, B.; Terheyden, H. Cell-to-cell communication in guided bone regeneration: Molecular and cellular mechanisms. Clin. Oral Implant. Res. 2017, 28, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Anselme, K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, X.; Guo, B.; Yang, X.; Zhou, Y.; Zhu, X.; Zhang, K.; Fan, Y.; Tu, C.; Zhang, X. A serum protein adsorption profile on BCP ceramics and influence of the elevated adsorption of adhesive proteins on the behaviour of MSCs. J. Mater. Chem. B 2018, 6, 7383–7395. [Google Scholar] [CrossRef]
- da Costa Marques, R.; Simon, J.; d’Arros, C.; Landfester, K.; Jurk, K.; Mailander, V. Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. Regen. Biomater. 2022, 9, rbac044. [Google Scholar] [CrossRef]
- Sela, M.N.; Badihi, L.; Rosen, G.; Steinberg, D.; Kohavi, D. Adsorption of human plasma proteins to modified titanium surfaces. Clin. Oral Implant. Res. 2007, 18, 630–638. [Google Scholar] [CrossRef]
- Romero-Gavilán, F.; Gomes, N.C.; Ródenas, J.; Sánchez, A.; Azkargorta, M.; Iloro, I.; Elortza, F.; Arnáez, I.G.; Gurruchaga, M.; Goñi, I.; et al. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling 2017, 33, 98–111. [Google Scholar] [CrossRef]
- Jepsen, S.; Schwarz, F.; Cordaro, L.; Derks, J.; Hämmerle, C.H.F.; Heitz-Mayfield, L.J.; Hernández-Alfaro, F.; Meijer, H.J.A.; Naenni, N.; Ortiz-Vigón, A.; et al. Regeneration of alveolar ridge defects. Consensus report of group 4 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019, 46 (Suppl. S21), 277–286. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef]
- Benic, G.I.; Hammerle, C.H. Horizontal bone augmentation by means of guided bone regeneration. Periodontol. 2000 2014, 66, 13–40. [Google Scholar] [CrossRef] [PubMed]
- Urban, I.A.; Monje, A. Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Mizraji, G.; Davidzohn, A.; Gursoy, M.; Gursoy, U.; Shapira, L.; Wilensky, A. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol. 2000 2023, 93, 56–76. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Fan, L.; Alkildani, S.; Liu, L.; Emmert, S.; Najman, S.; Rimashevskiy, D.; Schnettler, R.; Jung, O.; Xiong, X.; et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int. J. Mol. Sci. 2022, 23, 14987. [Google Scholar] [CrossRef] [PubMed]
- De Lauretis, A.; Ovrebo, O.; Romandini, M.; Lyngstadaas, S.P.; Rossi, F.; Haugen, H.J. From Basic Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative Biomaterials. Adv. Sci. 2024, 11, e2308848. [Google Scholar] [CrossRef]
- Omar, O.; Elgali, I.; Dahlin, C.; Thomsen, P. Barrier membranes: More than the barrier effect? J. Clin. Periodontol. 2019, 46 (Suppl. S21), 103–123. [Google Scholar] [CrossRef]
- Toledano-Osorio, M.; de Luna-Bertos, E.; Toledano, M.; Manzano-Moreno, F.J.; García-Recio, E.; Ruiz, C.; Osorio, R.; Sanz, M. Doxycycline-doped collagen membranes accelerate in vitro osteoblast proliferation and differentiation. J. Periodontal Res. 2023, 58, 296–307. [Google Scholar] [CrossRef]
- Kuchler, U.; Rybaczek, T.; Dobask, T.; Heimel, P.; Tangl, S.; Klehm, J.; Menzel, M.; Gruber, R. Bone-conditioned medium modulates the osteoconductive properties of collagen membranes in a rat calvaria defect model. Clin. Oral Implant. Res. 2018, 29, 381–388. [Google Scholar] [CrossRef]
- Nasirzade, J.; Alccayhuaman, K.A.A.; Kargarpour, Z.; Kuchler, U.; Strauss, F.J.; Panahipour, L.; Kampleitner, C.; Heimel, P.; Schwarz, F.; Gruber, R. Acid Dentin Lysate Failed to Modulate Bone Formation in Rat Calvaria Defects. Biology 2021, 10, 196. [Google Scholar] [CrossRef]
- Shanbhag, S.; Kampleitner, C.; Al-Sharabi, N.; Mohamed-Ahmed, S.; Alccayhuaman, K.A.A.; Heimel, P.; Tangl, S.; Beinlich, A.; Rana, N.; Sanz, M.; et al. Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects. Cells 2023, 12, 767. [Google Scholar] [CrossRef]
- Shanbhag, S.; Al-Sharabi, N.; Kampleitner, C.; Mohamed-Ahmed, S.; Kristoffersen, E.K.; Tangl, S.; Mustafa, K.; Gruber, R.; Sanz, M. The use of mesenchymal stromal cell secretome to enhance guided bone regeneration in comparison with leukocyte and platelet-rich fibrin. Clin. Oral Implant. Res. 2024, 35, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Caballe-Serrano, J.; Abdeslam-Mohamed, Y.; Munar-Frau, A.; Fujioka-Kobayashi, M.; Hernandez-Alfaro, F.; Miron, R. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: A systematic review. Arch. Oral Biol. 2019, 100, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.; Cillero Pastor, B.; van Rijt, S.; Habibovic, P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 2018, 167, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surf. B Biointerfaces 2020, 188, 110756. [Google Scholar] [CrossRef] [PubMed]
- Pieper, R.; Gatlin, C.L.; Makusky, A.J.; Russo, P.S.; Schatz, C.R.; Miller, S.S.; Su, Q.; McGrath, A.M.; Estock, M.A.; Parmar, P.P.; et al. The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 2003, 3, 1345–1364. [Google Scholar] [CrossRef]
- Paul, J.; Veenstra, T.D. Separation of Serum and Plasma Proteins for In-Depth Proteomic Analysis. Separations 2022, 9, 89. [Google Scholar] [CrossRef]
- Chan, K.C.; Lucas, D.A.; Hise, D.; Schaefer, C.F.; Xiao, Z.; Janini, G.M.; Buetow, K.H.; Issaq, H.J.; Veenstra, T.D.; Conrads, T.P. Analysis of the human serum proteome. Clin. Proteom. 2004, 1, 101–225. [Google Scholar] [CrossRef]
- Deng, F.; Zhai, W.; Yin, Y.; Peng, C.; Ning, C. Advanced protein adsorption properties of a novel silicate-based bioceramic: A proteomic analysis. Bioact. Mater. 2021, 6, 208–218. [Google Scholar] [CrossRef]
- Millioni, R.; Tolin, S.; Puricelli, L.; Sbrignadello, S.; Fadini, G.P.; Tessari, P.; Arrigoni, G. High abundance proteins depletion vs low abundance proteins enrichment: Comparison of methods to reduce the plasma proteome complexity. PLoS ONE 2011, 6, e19603. [Google Scholar] [CrossRef]
- Lee, J.S.; Mitulovic, G.; Panahipour, L.; Gruber, R. Proteomic Analysis of Porcine-Derived Collagen Membrane and Matrix. Materials 2020, 13, 5187. [Google Scholar] [CrossRef]
- Caballe-Serrano, J.; Sawada, K.; Miron, R.J.; Bosshardt, D.D.; Buser, D.; Gruber, R. Collagen barrier membranes adsorb growth factors liberated from autogenous bone chips. Clin. Oral Implant. Res. 2017, 28, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Al-Sharabi, N.; Gruber, R.; Sanz, M.; Mohamed-Ahmed, S.; Kristoffersen, E.K.; Mustafa, K.; Shanbhag, S. Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin. Int. J. Mol. Sci. 2023, 24, 13057. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Reimand, J.; Kull, M.; Peterson, H.; Hansen, J.; Vilo, J. g:Profiler—A web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007, 35, W193–W200. [Google Scholar] [CrossRef] [PubMed]
- Pathan, M.; Keerthikumar, S.; Ang, C.-S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015, 15, 2597–2601. [Google Scholar] [CrossRef]
- Weadock, K.S.; Wolff, D.; Silver, F.H. Diffusivity of 125I-labelled macromolecules through collagen: Mechanism of diffusion and effect of adsorption. Biomaterials 1987, 8, 105–112. [Google Scholar] [CrossRef]
- Hempel, U.; Hintze, V.; Moller, S.; Schnabelrauch, M.; Scharnweber, D.; Dieter, P. Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor beta1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomater. 2012, 8, 659–666. [Google Scholar] [CrossRef]
- Geiger, M.; Li, R.H.; Friess, W. Collagen sponges for bone regeneration with rhBMP-2. Adv. Drug Deliv. Rev. 2003, 55, 1613–1629. [Google Scholar] [CrossRef]
- Jung, N.; Park, J.; Park, S.-H.; Oh, S.; Kim, S.; Cho, S.-W.; Kim, J.-E.; Moon, H.S.; Park, Y.-B. Improving Bone Formation by Guided Bone Regeneration Using a Collagen Membrane with rhBMP-2: A Novel Concept. J. Funct. Biomater. 2023, 14, 170. [Google Scholar] [CrossRef]
- Clemmons, D.R. Use of mutagenesis to probe IGF-binding protein structure/function relationships. Endocr. Rev. 2001, 22, 800–817. [Google Scholar] [CrossRef]
- Rosú, S.A.; Aguilar, J.; Urbano, B.F.; Tarraga, W.A.; Ramella, N.A.; Longo, G.S.; Finarelli, G.S.; Donoso, S.A.S.; Tricerri, M.A. Interactions of variants of human apolipoprotein A-I with biopolymeric model matrices. Effect of collagen and heparin. Arch. Biochem. Biophys. 2023, 750, 109805. [Google Scholar] [CrossRef] [PubMed]
- Paiva, K.B.S.; Granjeiro, J.M. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog. Mol. Biol. Transl. Sci. 2017, 148, 203–303. [Google Scholar] [PubMed]
- Collier, I.E.; Legant, W.; Marmer, B.; Lubman, O.; Saffarian, S.; Wakatsuki, T.; Elson, E.; Goldberg, G.I. Diffusion of MMPs on the surface of collagen fibrils: The mobile cell surface-collagen substratum interface. PLoS ONE 2011, 6, e24029. [Google Scholar] [CrossRef]
- Musiime, M.; Chang, J.; Hansen, U.; Kadler, K.E.; Zeltz, C.; Gullberg, D. Collagen Assembly at the Cell Surface: Dogmas Revisited. Cells 2021, 10, 662. [Google Scholar] [CrossRef] [PubMed]
- Parisi, L.; Toffoli, A.; Mozzoni, B.; Rivara, F.; Ghezzi, B.; Cutrera, M.; Lumetti, S.; Macalus, G.M. Is selective protein adsorption on biomaterials a viable option to promote periodontal regeneration? Med. Hypotheses 2019, 132, 109388. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Schmidt, D.R.; Joyce, E.J.; Kao, W.J. Application of MS-based proteomics to study serum protein adsorption/absorption and complement C3 activation on poly(ethylene glycol) hydrogels. J. Biomater. Sci. Polym. Ed. 2011, 22, 1343–1362. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.; Pavlovic, E.; Oscarsson, S.; Krajewski, A.; Ravaglioli, A.; Piancastelli, A. Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials 2002, 23, 1237–1247. [Google Scholar] [CrossRef]
- Visalakshan, R.M.; MacGregor, M.N.; Sasidharan, S.; Ghazaryan, A.; Mierczynska-Vasilev, A.M.; Morsbach, S.; Mailänder, V.; Landfester, K.; Hayball, J.D.; Vasilev, K. Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses. ACS Appl. Mater. Interfaces 2019, 11, 27615–27623. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, C.; Hong, Y.; Zhang, X. A review of protein adsorption on bioceramics. Interface Focus 2012, 2, 259–277. [Google Scholar] [CrossRef]
- Yang, Y.; Knust, S.; Schwiderek, S.; Qin, Q.; Yun, Q.; Grundmeier, G.; Keller, A. Protein Adsorption at Nanorough Titanium Oxide Surfaces: The Importance of Surface Statistical Parameters beyond Surface Roughness. Nanomaterials 2021, 11, 357. [Google Scholar] [CrossRef]
- Wei, J.; Igarashi, T.; Okumori, N.; Igarashi, T.; Maetani, T.; Liu, B.; Yoshinari, M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed. Mater. 2009, 4, 045002. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Ning, C.; Tang, T. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite. J. Biomed. Mater. Res. Part A 2013, 101, 1955–1961. [Google Scholar] [CrossRef] [PubMed]
- Caballe-Serrano, J.; Munar-Frau, A.; Delgado, L.; Perez, R.; Hernandez-Alfaro, F. Physicochemical characterization of barrier membranes for bone regeneration. J. Mech. Behav. Biomed. Mater. 2019, 97, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Marques, D.; Teixeira, L.N.; Elias, C.N.; Lemos, A.B.; Martinez, E.F. Surface topography of resorbable porcine collagen membranes, and their effect on early osteogenesis: An in vitro study. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101607. [Google Scholar] [CrossRef]
- Valencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Comparison of Physiochemical Properties and Biocompatiblity of Two Commercially Available Natural Xenogeneic Collagen Membranes: In-vitro Study. J. Clin. Diagn. Res. 2024, 18, ZC30–ZC35. [Google Scholar]
- Zhu, M.; Duan, B.; Hou, K.; Mao, L.; Wang, X. A comparative in vitro and in vivo study of porcine- and bovine-derived non-cross-linked collagen membranes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 568–578. [Google Scholar] [CrossRef]
- Zhou, J.-Y.; Dann, G.P.; Shi, T.; Wang, L.; Gao, X.; Su, D.; Nicora, C.D.; Shukla, A.K.; Moore, R.J.; Liu, T.; et al. Simple sodium dodecyl sulfate-assisted sample preparation method for LC-MS-based proteomics applications. Anal. Chem. 2012, 84, 2862–2867. [Google Scholar] [CrossRef]
- Hortin, G.L.; Sviridov, D. The dynamic range problem in the analysis of the plasma proteome. J. Proteom. 2010, 73, 629–636. [Google Scholar] [CrossRef]
- Linkhart, T.A.; Mohan, S.; Baylink, D.J. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 1996, 19 (Suppl. S1), 1S–12S. [Google Scholar] [CrossRef]
- Bonewald, L.F.; Mundy, G.R. Role of transforming growth factor-beta in bone remodeling. Clin. Orthop. Relat. Res. 1990, 250, 261–276. [Google Scholar] [CrossRef]
- Lee, K.E.; Kang, C.M.; Jeon, M.; Kim, S.O.; Lee, J.H.; Choi, H.J. General gene expression patterns and stemness of the gingiva and dental pulp. J. Dent. Sci. 2022, 17, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Z.Y.; Lv, F.Y.; Tu, M.; Guo, X.L. Apolipoprotein A1 is associated with osteocalcin and bone mineral density rather than high-density lipoprotein cholesterol in Chinese postmenopausal women with type 2 diabetes mellitus. Front. Med. 2023, 10, 1182866. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tan, N.; Zhang, Y.; Xiao, M.; Li, L.; Ning, Z.; Liu, M.; Jin, H. Associations between apolipoprotein B and bone mineral density: A population-based study. BMC Musculoskelet. Disord. 2023, 24, 861. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Ebina, K.; Hirao, M.; Otsuru, S.; Guess, A.J.; Kawase, R.; Ohama, T.; Yamashita, S.; Etani, Y.; Okamura, G.; et al. Apolipoprotein E plays crucial roles in maintaining bone mass by promoting osteoblast differentiation via ERK1/2 pathway and by suppressing osteoclast differentiation via c-Fos, NFATc1, and NF-kappaB pathway. Biochem. Biophys. Res. Commun. 2018, 503, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.; Holden, R.; Roschlau, W. Experimental and clinical study of new growth of bone in a cavity. Am. J. Surg. 1957, 93, 385–387. [Google Scholar] [CrossRef]
- Melcher, A.H.; Dreyer, C.J. Protection of the blood clot in healing circumscribed bone defects. J. Bone Jt. Surg. Br. Vol. 1962, 44, 424–430. [Google Scholar] [CrossRef]
- Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of bone defects by guided tissue regeneration. Plast. Reconstr. Surg. 1988, 81, 672–676. [Google Scholar] [CrossRef]
- Schenk, R.K.; Buser, D.; Hardwick, W.R.; Dahlin, C. Healing pattern of bone regeneration in membrane-protected defects: A histologic study in the canine mandible. Int. J. Oral Maxillofac. Implant. 1994, 9, 13–29. [Google Scholar]
- Turri, A.; Elgali, I.; Vazirisani, F.; Johansson, A.; Emanuelsson, L.; Dahlin, C.; Thomsen, P.; Omar, O. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials 2016, 84, 167–183. [Google Scholar] [CrossRef]
- Omar, O.; Dahlin, A.; Gasser, A.; Dahlin, C. Tissue dynamics and regenerative outcome in two resorbable non-cross-linked collagen membranes for guided bone regeneration: A preclinical molecular and histological study in vivo. Clin. Oral Implant. Res. 2018, 29, 7–19. [Google Scholar] [CrossRef]
- Hankenson, K.D.; Dishowitz, M.; Gray, C.; Schenker, M. Angiogenesis in bone regeneration. Injury 2011, 42, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Al-Maawi, S.; Herrera-Vizcaíno, C.; Orlowska, A.; Willershausen, I.; Sader, R.; Miron, R.J.; Choukroun, J.; Ghanaati, S. Biologization of Collagen-Based Biomaterials Using Liquid-Platelet-Rich Fibrin: New Insights into Clinically Applicable Tissue Engineering. Materials 2019, 12, 3993. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Rothamel, D.; Herten, M.; Sager, M.; Becker, J. Angiogenesis pattern of native and cross-linked collagen membranes: An immunohistochemical study in the rat. Clin. Oral Implant. Res. 2006, 17, 403–409. [Google Scholar] [CrossRef]
- Dau, M.; Volprich, L.; Grambow, E.; Vollmar, B.; Frerich, B.; Al-Nawas, B.; Kämmerer, P.W. Collagen membranes of dermal and pericardial origin—In vivo evolvement of vascularization over time. J. Biomed. Mater. Res. Part A 2020, 108, 2368–2378. [Google Scholar] [CrossRef]
- Alkildani, S.; Ren, Y.; Liu, L.; Rimashevskiy, D.; Schnettler, R.; Radenković, M.; Najman, S.; Stojanović, S.; Jung, O.; Barbeck, M. Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects. Int. J. Mol. Sci. 2023, 24, 6833. [Google Scholar] [CrossRef] [PubMed]
- Rothamel, D.; Schwarz, F.; Sculean, A.; Herten, M.; Scherbaum, W.; Becker, J. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin. Oral Implant. Res. 2004, 15, 443–449. [Google Scholar] [CrossRef]
- El-Jawhari, J.J.; Moisley, K.; Jones, E.; Giannoudis, P.V. A crosslinked collagen membrane versus a non-crosslinked bilayer collagen membrane for supporting osteogenic functions of human bone marrow-multipotent stromal cells. Eur. Cell Mater. 2019, 37, 292–309. [Google Scholar] [CrossRef]
- Moog, S.; Mangin, P.; Lenain, N.; Strassel, C.; Ravanat, C.; Schuhler, S.; Freund, M.; Santer, M.; Kahn, M.; Nieswandt, B.; et al. Platelet glycoprotein V binds to collagen and participates in platelet adhesion and aggregation. Blood 2001, 98, 1038–1046. [Google Scholar] [CrossRef]
- Farndale, R.W.; Sixma, J.J.; Barnes, M.J.; de Groot, P.G. The role of collagen in thrombosis and hemostasis. J. Thromb. Haemost. 2004, 2, 561–573. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Moursi, A.M.; Damsky, C.H.; Lull, J.; Zimmerman, D.; Doty, S.B.; Aota, S.-I.; Globus, R.K. Fibronectin regulates calvarial osteoblast differentiation. J. Cell Sci. 1996, 109 Pt 6, 1369–1380. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Starup-Linde, J.; Viggers, R.; Handberg, A. Osteoglycin and Bone-a Systematic Review. Curr. Osteoporos. Rep. 2019, 17, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Rosset, E.M.; Bradshaw, A.D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 2016, 52, 78–87. [Google Scholar] [CrossRef]
- Wewer, U.M.; Ibaraki, K.; Schjorring, P.; Durkin, M.E.; Young, M.F.; Albrechtsen, R. A potential role for tetranectin in mineralization during osteogenesis. J. Cell Biol. 1994, 127 Pt 1, 1767–1775. [Google Scholar] [CrossRef]
- Litvin, J.; Selim, A.; Montgomery, M.O.; Lehmann, K.; Rico, M.C.; Devlin, H.; Bednarik, D.P.; Safadi, F.F. Expression and function of periostin-isoforms in bone. J. Cell Biochem. 2004, 92, 1044–1061. [Google Scholar] [CrossRef]
- Wang, D.; Cao, H.; Hua, W.; Gao, L.; Yuan, Y.; Zhou, X.; Zeng, Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair. Membranes 2022, 2, 716. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Tian, W. Strategies of cell and cell-free therapies for periodontal regeneration: The state of the art. Stem Cell Res. Ther. 2022, 13, 536. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Cutler, J.; Ivanovski, S.; Lee, R.S.; Han, P. Microbial- and host immune cell-derived extracellular vesicles in the pathogenesis and therapy of periodontitis: A narrative review. J. Periodontal Res. 2024, 59. Online ahead of print. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Chitti, S.V.; Gummadi, S.; Kang, T.; Shahi, S.; Marzan, A.L.; Nedeva, C.; Sanwlani, R.; Bramich, K.; Stewart, S.; Petrovska, M.; et al. Vesiclepedia 2024: An extracellular vesicles and extracellular particles repository. Nucleic Acids Res. 2024, 52, D1694–D1698. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Pathak, J.L.; Wu, W.; Li, J.; Huang, W.; Wu, Q.; Xin, M.; Wu, Y.; Huang, Y.; Ge, L.; et al. Human serum-derived exosomes modulate macrophage inflammation to promote VCAM1-mediated angiogenesis and bone regeneration. J. Cell. Mol. Med. 2023, 27, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Al-Sharabi, N.; Mohamed-Ahmed, S.; Shanbhag, S.; Kampleitner, C.; Elnour, R.; Yamada, S.; Rana, N.; Birkeland, E.; Tangl, S.; Gruber, R.; et al. Osteogenic human MSC-derived extracellular vesicles regulate MSC activity and osteogenic differentiation and promote bone regeneration in a rat calvarial defect model. Stem Cell Res. Ther. 2024, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Panahipour, L.; Kargarpour, Z.; Luza, B.; Lee, J.S.; Gruber, R. TGF-beta Activity Related to the Use of Collagen Membranes: In Vitro Bioassays. Int. J. Mol. Sci. 2020, 21, 6636. [Google Scholar] [CrossRef] [PubMed]
- Spinell, T.; Saliter, J.; Hackl, B.; Unger, K.; Hickel, R.; Folwaczny, M. In-vitro cytocompatibility and growth factor content of GBR/GTR membranes. Dent. Mater. 2019, 35, 963–969. [Google Scholar] [CrossRef]
- Shi, X.; Li, X.; Tian, Y.; Qu, X.; Zhai, S.; Liu, Y.; Jia, W.; Cui, Y.; Chu, S. Physical, mechanical, and biological properties of collagen membranes for guided bone regeneration: A comparative in vitro study. BMC Oral Health 2023, 23, 510. [Google Scholar] [CrossRef]
GO Term | Term ID | Term Size (n) | Proteins Identified (n) | % |
---|---|---|---|---|
wound healing | GO:0042060 | 411 | 42 | 10.22 |
blood coagulation | GO:0007596 | 248 | 37 | 14.92 |
platelet aggregation | GO:0070527 | 53 | 5 | 9.43 |
angiogenesis | GO:0001525 | 381 | 17 | 4.46 |
cell adhesion | GO:0007155 | 1333 | 38 | 2.85 |
extracellular matrix organization | GO:0030198 | 315 | 21 | 6.67 |
osteoblast differentiation | GO:0001649 | 156 | 5 | 3.21 |
bone development | GO:0060348 | 212 | 9 | 4.25 |
bone mineralization | GO:0030282 | 64 | 5 | 7.81 |
EN | RG | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Name | Det. | Cov. % | Pep. n | Unique n | Det. | Cov. % | Pep. n | Unique n |
Coagulation | |||||||||
PPBP | Platelet basic protein | Y * | 38 | 5 | 5 | Y | 38 | 5 | 5 |
GP5 | Platelet glycoprotein V | Y * | 16 | 5 | 5 | Y | - | - | - |
PF4 | Platelet factor 4 | Y | 19 | 2 | 1 | Y * | 27 | 5 | 4 |
VWF | von Willebrand factor | Y | 1 | 2 | 2 | Y * | 2 | 3 | 3 |
GP1BA | Platelet glycoprotein Ib alpha chain | N | Y | 5 | 3 | 3 | |||
Extracellular matrix | |||||||||
MMP2 | Matrix metallopeptidase-2 (72 kDa type IV collagenase) | Y * | 28 | 14 | 14 | Y | 3 | 1 | 1 |
MMP9 | Matrix metalloproteinase-9 (92 kDa type IV collagenase) | Y | 9 | 5 | 5 | Y | - | - | - |
COL3A1 | Collagen alpha-1(III) chain | Y * | 3 | 4 | 2 | Y | 1 | 2 | 1 |
COL18A1 | Collagen alpha-1(XVIII) chain | Y * | 4 | 5 | 5 | Y | - | - | - |
COL6A3 | Collagen alpha-3(VI) chain | Y * | 14 | 33 | 19 | Y | 5 | 12 | 1 |
COL1A2 | Collagen alpha-2(I) chain | Y | 7 | 7 | 2 | Y * | 7 | 8 | 4 |
COL6A1 | Collagen alpha-1(VI) chain | Y | 6 | 5 | 2 | Y | - | - | - |
PRG4 | Proteoglycan 4 | Y * | 9 | 11 | 11 | Y | 10 | 10 | 10 |
SPP2 | Secreted phosphoprotein 24 | Y * | 10 | 2 | 2 | Y | 6 | 1 | 1 |
CLEC3B | Tetranectin | Y * | 64 | 10 | 10 | Y | 54 | 12 | 9 |
HABP2 | Hyaluronan-binding protein 2 | Y * | 15 | 10 | 10 | Y | 25 | 10 | 10 |
EFEMP1 | EGF-containing fibulin-like extracellular matrix protein 1 | Y | 10 | 4 | 4 | Y * | 26 | 8 | 8 |
FMOD | Fibromodulin | Y | 9 | 3 | 3 | Y * | 6 | 2 | 2 |
LGALS1 | Galectin-1 | Y | - | - | - | Y * | 20 | 2 | 2 |
LGALS3BP | Galectin-3-binding protein | Y | 11 | 4 | 4 | Y * | 31 | 12 | 12 |
LUM | Lumican | Y | 30 | 8 | 4 | Y * | 41 | 14 | 14 |
SPARC | Osteonectin | Y | 4 | 1 | 1 | Y * | 26 | 4 | 4 |
CHAD | Chondroadherin | Y | 23 | 4 | 4 | Y | - | - | - |
OGN | Osteoglycin (Mimecan) | Y * | 36 | 10 | 4 | Y | 19 | 6 | 1 |
ECM1 | Extracellular matrix protein 1 | Y | 33 | 13 | 13 | Y | 27 | 10 | 10 |
FBLN1 | Fibulin-1 | Y | 18 | 10 | 10 | Y | 28 | 14 | 14 |
LTF | Lactotransferrin | Y | 18 | 11 | 11 | Y | - | - | - |
CRTAC1 | Cartilage acidic protein 1 | Y * | 38 | 15 | 15 | Y | 24 | 10 | 10 |
POSTN | Periostin | Y | 5 | 2 | 2 | Y | 2 | 1 | 1 |
PCOLCE | Procollagen C-endopeptidase enhancer 1 | Y | 20 | 7 | 7 | Y | 13 | 3 | 3 |
TNXB | Tenascin-X | Y | 4 | 8 | 8 | Y | 1 | 3 | 3 |
COMP | Cartilage oligomeric matrix protein | Y | 8 | 4 | 3 | N | |||
Growth factors | |||||||||
TGFB1 | Transforming growth factor beta-1 proprotein | Y | 7 | 2 | 2 | N | |||
TGFBI | Transforming growth factor-beta-induced protein ig-h3 | Y * | 27 | 13 | 13 | Y | 23 | 10 | 10 |
LTBP1 | Latent-transforming growth factor beta-binding protein 1 | Y | 4 | 5 | 5 | Y | - | - | - |
IGF2 | Insulin-like growth factor II | Y | 4 | 1 | 1 | Y | - | - | - |
IGFALS | IGF-binding protein complex acid labile subunit | Y * | 35 | 16 | 16 | Y | 35 | 15 | 15 |
IGFBP3 | IGF-binding protein 3 | Y | 10 | 3 | 3 | Y | 21 | 4 | 4 |
IGFBP6 | IGF-binding protein 6 | Y | 10 | 2 | 2 | N | |||
IGFBP7 | IGF-binding protein 7 | Y | 10 | 2 | 2 | N | |||
IGFBP5 | IGF-binding protein 5 | Y | 7 | 2 | 2 | N | |||
HGFAC | Hepatocyte growth factor activator | Y | 13 | 5 | 5 | Y * | 15 | 6 | 6 |
MST1 | Hepatocyte growth factor-like protein | Y | 15 | 10 | 10 | Y | 18 | 8 | 8 |
Angiogenesis | |||||||||
ANG | Angiogenin | Y * | 18 | 3 | 3 | Y | 20 | 2 | 2 |
ANGPTL3 | Angiopoietin-related protein 3 | Y * | 17 | 5 | 5 | Y | - | - | - |
AGT | Angiotensinogen | Y | 31 | 9 | 9 | Y * | 44 | 13 | 13 |
VCAM1 | Vascular cell adhesion protein 1 | Y | - | - | - | Y * | 5 | 2 | 2 |
Cell adhesion | |||||||||
VCL | Vinculin | Y * | 5 | 3 | 3 | Y | - | - | - |
VTN | Vitronectin | Y * | 29 | 13 | 13 | Y | 32 | 14 | 13 |
CDH1 | Cadherin-1 | Y | 2 | 2 | 2 | Y * | - | - | - |
CDH5 | Cadherin-5 | Y | 5 | 3 | 3 | Y | 2 | 2 | 2 |
FGA | Fibrinogen alpha chain | Y | 16 | 10 | 10 | Y | 7 | 4 | 4 |
FN1 | Fibronectin | Y | 33 | 51 | 23 | Y | 41 | 64 | 64 |
Inflammation | |||||||||
CD14 | Monocyte differentiation antigen CD14 | Y | 20 | 5 | 5 | Y * | 45 | 13 | 13 |
CRP | C-reactive protein | Y | 14 | 3 | 3 | Y | 15 | 2 | 2 |
MPO | Myeloperoxidase | Y | 5 | 3 | 3 | N | |||
Lipoproteins | |||||||||
APOA1 | Apolipoprotein A–I | Y * | 85 | 40 | 37 | Y | 84 | 44 | 42 |
APOB | Apolipoprotein B | Y * | 62 | 229 | 229 | Y | 51 | 192 | 189 |
APOD | Apolipoprotein D | Y | 34 | 6 | 6 | Y * | 35 | 8 | 8 |
APOE | Apolipoprotein E | Y | 50 | 16 | 16 | Y | 50 | 18 | 16 |
Soft-tissue healing | |||||||||
SERPINF1 | Pigment epithelium-derived factor | Y * | 67 | 25 | 18 | Y | 63 | 20 | 14 |
KRTDAP | Keratinocyte differentiation-associated protein | Y | 26 | 2 | 2 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanbhag, S.; Al-Sharabi, N.; Fritz-Wallace, K.; Kristoffersen, E.K.; Bunæs, D.F.; Romandini, M.; Mustafa, K.; Sanz, M.; Gruber, R. Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. J. Funct. Biomater. 2024, 15, 302. https://doi.org/10.3390/jfb15100302
Shanbhag S, Al-Sharabi N, Fritz-Wallace K, Kristoffersen EK, Bunæs DF, Romandini M, Mustafa K, Sanz M, Gruber R. Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. Journal of Functional Biomaterials. 2024; 15(10):302. https://doi.org/10.3390/jfb15100302
Chicago/Turabian StyleShanbhag, Siddharth, Niyaz Al-Sharabi, Katarina Fritz-Wallace, Einar K. Kristoffersen, Dagmar Fosså Bunæs, Mario Romandini, Kamal Mustafa, Mariano Sanz, and Reinhard Gruber. 2024. "Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes" Journal of Functional Biomaterials 15, no. 10: 302. https://doi.org/10.3390/jfb15100302
APA StyleShanbhag, S., Al-Sharabi, N., Fritz-Wallace, K., Kristoffersen, E. K., Bunæs, D. F., Romandini, M., Mustafa, K., Sanz, M., & Gruber, R. (2024). Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. Journal of Functional Biomaterials, 15(10), 302. https://doi.org/10.3390/jfb15100302