Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- the average distance between the pits (either 0.025 mm or 0.05 mm),
- the pattern type (either an aligned grid or a random pattern),
- the depth of the pits (either 6 μm or 18 μm).
2.2. SEM Analysis
2.3. Roughness Evaluation
2.4. Wettability and SFE
2.5. Protein Adsorption Assay
2.6. Cell Culture
2.7. Cell Adhesion Assay
2.8. Cell Viability Assay
2.9. Statistical Analysis
3. Results
3.1. Surface Characterization of the Samples
3.2. Early Biological Response
3.3. Cell Viability
3.4. Experimental Design-Based Factorial Analysis
3.5. Multiple Linear Regression Based on Roughness Parameters
3.6. Correlation between Cell Adhesion, Protein Adsorption, and SFE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karoussis, I.K.; Brägger, U.; Salvi, G.E.; Bürgin, W.; Lang, N.P. Effect of Implant Design on Survival and Success Rates of Titanium Oral Implants: A 10-Year Prospective Cohort Study of the ITI Dental Implant System. Clin. Oral Implants Res. 2004, 15, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.B.; Swain, M.V. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Kurup, A.; Dhatrak, P.; Khasnis, N. Surface Modification Techniques of Titanium and Titanium Alloys for Biomedical Dental Applications: A Review. Mater. Today Proc. 2021, 39, 84–90. [Google Scholar] [CrossRef]
- Duraccio, D.; Mussano, F.; Faga, M.G. Biomaterials for Dental Implants: Current and Future Trends. J. Mater. Sci. 2015, 50, 4779–4812. [Google Scholar] [CrossRef]
- Michelle Grandin, H.; Berner, S.; Dard, M. A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants. Materials 2012, 5, 1348–1360. [Google Scholar] [CrossRef]
- Sul, Y.-T.; Johansson, C.; Wennerberg, A.; Cho, L.-R.; Chang, B.-S.; Albrektsson, T. Optimum Surface Properties of Oxidized Implants for Reinforcement of Osseointegration: Surface Chemistry, Oxide Thickness, Porosity, Roughness, and Crystal Structure. Int. J. Oral Maxillofac. Implants 2005, 20, 349–359. [Google Scholar]
- Schierano, G.; Mussano, F.; Faga, M.G.; Menicucci, G.; Manzella, C.; Sabione, C.; Genova, T.; von Degerfeld, M.M.; Peirone, B.; Cassenti, A.; et al. An Alumina Toughened Zirconia Composite for Dental Implant Application: In Vivo Animal Results. Biomed Res. Int. 2015, 2015, 157360. [Google Scholar] [CrossRef]
- Mendes, V.C.; Moineddin, R.; Davies, J.E. Discrete Calcium Phosphate Nanocrystalline Deposition Enhances Osteoconduction on Titanium-Based Implant Surfaces. J. Biomed. Mater. Res. Part A 2009, 90A, 577–585. [Google Scholar] [CrossRef]
- Lang, N.P.; Salvi, G.E.; Huynh-Ba, G.; Ivanovski, S.; Donos, N.; Bosshardt, D.D. Early Osseointegration to Hydrophilic and Hydrophobic Implant Surfaces in Humans. Clin. Oral Implants Res. 2011, 22, 349–356. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. Effects of Titanium Surface Topography on Bone Integration: A Systematic Review. Clin. Oral Implants Res. 2009, 20, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Gittens, R.A.; Olivares-Navarrete, R.; McLachlan, T.; Cai, Y.; Hyzy, S.L.; Schneider, J.M.; Schwartz, Z.; Sandhage, K.H.; Boyan, B.D. Differential Responses of Osteoblast Lineage Cells to Nanotopographically-Modified, Microroughened Titanium-Aluminum-Vanadium Alloy Surfaces. Biomaterials 2012, 33, 8986–8994. [Google Scholar] [CrossRef] [PubMed]
- Lincks, J.; Boyan, B.D.; Blanchard, C.R.; Lohmann, C.H.; Liu, Y.; Cochran, D.L.; Dean, D.D.; Schwartz, Z. Response of MG63 Osteoblast-like Cells to Titanium and Titanium Alloy Is Dependent on Surface Roughness and Composition. Biomaterials 1998, 19, 2219–2232. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Sylvia, V.L.; Liu, Y.; Sagun, R.; Cochran, D.L.; Lohmann, C.H.; Dean, D.D.; Schwartz, Z. Surface Roughness Mediates Its Effects on Osteoblasts via Protein Kinase A and Phospholipase A2. Biomaterials 1999, 20, 2305–2310. [Google Scholar] [CrossRef] [PubMed]
- Deligianni, D.D.; Katsala, N.; Ladas, S.; Sotiropoulou, D.; Amedee, J.; Missirlis, Y.F. Effect of Surface Roughness of the Titanium Alloy Ti-6Al-4V on Human Bone Marrow Cell Response and on Protein Adsorption. Biomaterials 2001, 22, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Rupp, F.; Scheideler, L.; Eichler, M.; Geis-Gerstorfer, J. Wetting Behavior of Dental Implants. Int. J. Oral Maxillofac. Implants 2011, 26, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, R.; Barhoum, A.; Uludag, H. A Review of Nanostructured Surfaces and Materials for Dental Implants: Surface Coating, Patterning and Functionalization for Improved Performance. Biomater. Sci. 2018, 6, 1312–1338. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dhara, S.; Saha, P. Enhancing the Biocompatibility of Ti6Al4V Implants by Laser Surface Microtexturing: An in Vitro Study. Int. J. Adv. Manuf. Technol. 2015, 76, 5–15. [Google Scholar] [CrossRef]
- Jones, S.E.; Nichols, L.; Elder, S.H.; Priddy, L.B. Laser Microgrooving and Resorbable Blast Texturing for Enhanced Surface Function of Titanium Alloy for Dental Implant Applications. Biomed. Eng. Adv. 2023, 5, 100090. [Google Scholar] [CrossRef]
- Blateyron, F. New 3D parameters and filtration techniques for surface metrology. Qual. Mag. 2006, 3, 1–7. [Google Scholar]
- Canullo, L.; Genova, T.; Trujillo, E.G.; Pradies, G.; Petrillo, S.; Muzzi, M.; Carossa, S.; Mussano, F. Fibroblast Interaction with Different Abutment Surfaces: In Vitro Study. Int. J. Mol. Sci. 2020, 21, 1919. [Google Scholar] [CrossRef] [PubMed]
- Waldner, C.; Hirn, U. Modeling Liquid Penetration into Porous Materials Based on Substrate and Liquid Surface Energies. J. Colloid Interface Sci. 2023, 640, 445–455. [Google Scholar] [CrossRef]
- Annamalai, M.; Gopinadhan, K.; Han, S.A.; Saha, S.; Park, H.J.; Cho, E.B.; Kumar, B.; Patra, A.; Kim, S.W.; Venkatesan, T. Surface Energy and Wettability of van Der Waals Structures. Nanoscale 2016, 8, 5764–5770. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Mussano, F.; Genova, T.; Serra, F.; Carossa, M.; Munaron, L.; Carossa, S. Nano-Pore Size of Alumina Affects Osteoblastic Response. Int. J. Mol. Sci. 2018, 19, 528. [Google Scholar] [CrossRef]
- Mussano, F.; Genova, T.; Verga Falzacappa, E.; Scopece, P.; Munaron, L.; Rivolo, P.; Mandracci, P.; Benedetti, A.; Carossa, S.; Patelli, A. In Vitro Characterization of Two Different Atmospheric Plasma Jet Chemical Functionalizations of Titanium Surfaces. Appl. Surf. Sci. 2017, 409, 314–324. [Google Scholar] [CrossRef]
- Duraccio, D.; Strongone, V.; Faga, M.G.G.; Auriemma, F.; Mussano, F.D.D.; Genova, T.; Malucelli, G. The Role of Different Dry-Mixing Techniques on the Mechanical and Biological Behavior of UHMWPE/Alumina-Zirconia Composites for Biomedical Applications. Eur. Polym. J. 2019, 120, 109274. [Google Scholar] [CrossRef]
- Genova, T.; Cavagnetto, D.; Tasinato, F.; Petrillo, S.; Ruffinatti, F.A.; Mela, L.; Carossa, M.; Munaron, L.; Roato, I.; Mussano, F. Isolation and Characterization of Buccal Fat Pad and Dental Pulp MSCs from the Same Donor. Biomedicines 2021, 9, 265. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Lu, R.; Cao, X.; Yuan, D.; Chen, S. Influence of Surface Nanotopography and Wettability on Early Phases of Peri-Implant Soft Tissue Healing: An in-Vivo Study in Dogs. BMC Oral Health 2023, 23, 651. [Google Scholar] [CrossRef]
- Jacobs, T.W.; Dillon, J.T.; Cohen, D.J.; Boyan, B.D.; Schwartz, Z. Different Methods to Modify the Hydrophilicity of Titanium Implants with Biomimetic Surface Topography to Induce Variable Responses in Bone Marrow Stromal Cells. Biomimetics 2024, 9, 227. [Google Scholar] [CrossRef]
- Matteson, J.L.; Greenspan, D.C.; Tighe, T.B.; Gilfoy, N.; Stapleton, J.J. Assessing the Hierarchical Structure of Titanium Implant Surfaces. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Kouveliotis, G.; Dimitriadis, K.; Kourtis, S.; Zinelis, S. Surface, Microstructural and Mechanical Characterization of Contemporary Implant Abutment Screws. Dent. Mater. 2024, 40, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Mistretta, L.; Delgado-Ruiz, R.; Romanos, G. Wettability of Different Zirconia Implant Surfaces after Glycine and Erythritol Treatment. Int. J. Oral Maxillofac. Implants 2024, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.H.; Moon, S.W.; Lee, D.W. Surface Modification of Titanium with BMP-2/GDF-5 by a Heparin Linker and Its Efficacy as a Dental Implant. Int. J. Mol. Sci. 2017, 18, 229. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Nguyen, K.T.; Nguyen, M.T.; You, J.S.; Kim, B.H.; Choe, H.C.; Ahn, S.G. DMP1 and IFITM5 Regulate Osteogenic Differentiation of MC3T3-E1 on PEO-Treated Ti-6Al-4V-Ca2+/Pi Surface. ACS Biomater. Sci. Eng. 2023, 9, 1377–1390. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.; Ravindran, S.; Henriques, B.; Silva, F.S.; Aparicio, C.; Cooper, L.F. Nano-Scale Modification of Titanium Implant Surfaces to Enhance Osseointegration. Acta Biomater. 2019, 94, 112–131. [Google Scholar] [CrossRef]
- Nugent, P. A Superficial History of Surface Finish. Qual. Mag. 2011, 50, 28–30. [Google Scholar]
- Erbulut, D.U.; Lazoglu, I. Biomaterials for Improving the Blood and Tissue Compatibility of Total Artificial Hearts (TAH) and Ventricular Assist Devices (VAD). Biomater. Artif. Organs 2011, 207–235. [Google Scholar] [CrossRef]
- Hench, L.L. Genetic Design of Bioactive Glass. J. Eur. Ceram. Soc. 2009, 29, 1257–1265. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, H. Interaction of Switchable Biomaterials Surfaces with Proteins. Switch. Responsive Surfaces Mater. Biomed. Appl. 2015, 167–188. [Google Scholar] [CrossRef]
- Norde, W. My Voyage of Discovery to Proteins in Flatland...and beyond. Colloids Surf. B. Biointerfaces 2008, 61, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Deville, J.P.; Cojocaru, C.S. Spectroscopic Analyses of Surfaces and Thin Films. In Materials Surface Processing by Directed Energy Techniques; Elsevier: Amsterdam, The Netherlands, 2006; pp. 411–441. [Google Scholar] [CrossRef]
- Yano, Y.F. Kinetics of Protein Unfolding at Interfaces. J. Phys. Condens. Matter 2012, 24, 503101. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.J. The Interaction of Proteins with Solid Surfaces. Curr. Opin. Struct. Biol. 2004, 14, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.A.; Martins, M.C.L. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair; Woodhead Publishing: Sawston, UK, 2018; ISBN 9780081008034. [Google Scholar]
- Vogler, E.A. Protein Adsorption in Three Dimensions. Biomaterials 2012, 33, 1201–1237. [Google Scholar] [CrossRef]
- Watanabe, K.; Okawa, S.; Kanatani, M.; Homma, K. Surface Analysis of Commercially Pure Titanium Implant Retrieved from Rat Bone. Part 1: Initial Biological Response of Sandblasted Surface. Dent. Mater. J. 2009, 28, 178–184. [Google Scholar] [CrossRef]
- Scopelliti, P.E.; Borgonovo, A.; Indrieri, M.; Giorgetti, L.; Bongiorno, G.; Carbone, R.; Podestà, A.; Milani, P. The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption. PLoS ONE 2010, 5, e11862. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Hong, Q.; Rao, C.; Zhang, H.; Dong, Y.; Huang, L.; Lu, X.; Bao, N. Bovine Serum Albumin Adsorption in Mesoporous Titanium Dioxide: Pore Size and Pore Chemistry Effect. Langmuir 2016, 32, 3995–4003. [Google Scholar] [CrossRef]
- Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High Surface Energy Enhances Cell Response to Titanium Substrate Microstructure. J. Biomed. Mater. Res.—Part A 2005, 74, 49–58. [Google Scholar] [CrossRef]
- Stoilov, M.; Stoilov, L.; Enkling, N.; Stark, H.; Winter, J.; Marder, M.; Kraus, D. Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study. J. Funct. Biomater. 2022, 13, 143. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. On Implant Surfaces: A Review of Current Knowledge and Opinions. Int. J. Oral Maxillofac. Implants 2009, 25, 63–74. [Google Scholar] [CrossRef]
Surface ID | Power | Frequency (kHz) | Application Time (s) | Interpoint Distance (mm) | Depth (µm) | Pattern (Aligned/Random) |
---|---|---|---|---|---|---|
1—25A06 | 100% | 130 | 28 | 0.025 | 6 | A |
2—25A18 | 100% | 130 | 38 | 0.025 | 18 | A |
3—25R06 | 100% | 130 | 28 | 0.025 | 6 | R |
4—25R18 | 100% | 130 | 38 | 0.025 | 18 | R |
5—50A06 | 100% | 130 | 9 | 0.050 | 6 | A |
6—50A18 | 100% | 130 | 11 | 0.050 | 18 | A |
7—50R06 | 100% | 130 | 9 | 0.050 | 6 | R |
8—50R18 | 100% | 130 | 11 | 0.050 | 18 | R |
Liquid | (mN/m) | (mN/m) | (mN/m) |
---|---|---|---|
Water | 43.70 | 29.10 | 72.80 |
Diiodomethane | 2.60 | 47.40 | 50.00 |
Surface | Sa | Sku | Sp | Sq | Ssk | Sv | Sz | Sdq | Sdr | Sal | Str |
---|---|---|---|---|---|---|---|---|---|---|---|
25A06 | 4.491 | 3.234 | 35.79 | 5.652 | 0.274 | 28.51 | 64.30 | 2.578 | 225.70 | 6.841 | 0.447 |
25A18 | 17.530 | 3.071 | 80.41 | 22.210 | 0.063 | 81.43 | 161.80 | 5.688 | 907.20 | 23.900 | 0.662 |
25R06 | 5.196 | 3.426 | 36.75 | 6.547 | 0.480 | 39.85 | 76.60 | 2.468 | 207.00 | 12.310 | 0.629 |
25R18 | 26.210 | 2.617 | 99.87 | 32.300 | 0.247 | 123.80 | 223.70 | 7.456 | 1497.00 | 26.140 | 0.644 |
50A06 | 3.407 | 3.647 | 68.02 | 4.037 | 0.651 | 28.92 | 96.94 | 1.343 | 68.16 | 11.030 | 0.542 |
50A18 | 8.866 | 2.547 | 104.80 | 10.510 | 0.694 | 68.15 | 173.00 | 2.824 | 251.40 | 12.620 | 0.562 |
50R06 | 3.288 | 3.447 | 56.38 | 3.961 | 0.410 | 29.56 | 85.93 | 1.350 | 65.61 | 12.620 | 0.604 |
50R18 | 11.140 | 2.853 | 102.40 | 13.380 | 0.587 | 79.93 | 182.30 | 3.329 | 331.80 | 18.410 | 0.693 |
Surface | (mN/m) | SE (mN/m) |
---|---|---|
25A06 | 15.44 | 0.45 |
25A18 | 25.32 | 1.23 |
25R06 | 24.04 | 0.57 |
25R18 | 35.93 | 1.81 |
50A06 | 15.64 | 0.01 |
50A18 | 22.35 | 0.99 |
50R18 | 26.91 | 1.28 |
Surface | 25A06 | 25A18 | 25R06 | 25R18 | 50A06 | 50A18 | 50R06 | 50R18 |
---|---|---|---|---|---|---|---|---|
Replicate 1 | 198 | 321 | 372 | 280 | 97 | 270 | 186 | 243 |
Replicate 2 | 12 | 287 | 271 | 405 | 123 | 186 | 162 | 330 |
Replicate 3 | 235 | 375 | 221 | 345 | 84 | 323 | 278 | 207 |
Coefficients | Estimate | Std. Error | t-Value | p-Value |
---|---|---|---|---|
distance | −69.42 | 28.75 | −2.414 | 2.55 × 10−2 |
pattern | 65.75 | 28.75 | 2.287 | 3.32 × 10−2 |
depth | 111.08 | 28.75 | 3.864 | 9.67 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruffinatti, F.A.; Genova, T.; Roato, I.; Perin, M.; Chinigò, G.; Pedraza, R.; Della Bella, O.; Motta, F.; Aimo Boot, E.; D’Angelo, D.; et al. Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces. J. Funct. Biomater. 2024, 15, 303. https://doi.org/10.3390/jfb15100303
Ruffinatti FA, Genova T, Roato I, Perin M, Chinigò G, Pedraza R, Della Bella O, Motta F, Aimo Boot E, D’Angelo D, et al. Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces. Journal of Functional Biomaterials. 2024; 15(10):303. https://doi.org/10.3390/jfb15100303
Chicago/Turabian StyleRuffinatti, Federico Alessandro, Tullio Genova, Ilaria Roato, Martina Perin, Giorgia Chinigò, Riccardo Pedraza, Olivio Della Bella, Francesca Motta, Elisa Aimo Boot, Domenico D’Angelo, and et al. 2024. "Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces" Journal of Functional Biomaterials 15, no. 10: 303. https://doi.org/10.3390/jfb15100303
APA StyleRuffinatti, F. A., Genova, T., Roato, I., Perin, M., Chinigò, G., Pedraza, R., Della Bella, O., Motta, F., Aimo Boot, E., D’Angelo, D., Gatti, G., Scarpellino, G., Munaron, L., & Mussano, F. (2024). Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces. Journal of Functional Biomaterials, 15(10), 303. https://doi.org/10.3390/jfb15100303