Stem Cells: Present Understanding and Prospects for Regenerative Dentistry
Abstract
:1. Introduction
2. Materials and Methods
Quality Assessment
3. Results
Quality Assessment and Risk of Bias of Included Articles
4. Discussion
4.1. Pulp Regeneration
4.2. Periodontal Regeneration
4.3. Bone Regeneration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKT | Protein kinase B |
ALP | Alkaline phosphatase |
ANNEXIN V | apoptotic marker |
bFGF | Basic fibroblast growth factor |
BMP-2 | Bone morphogenetic protein 2 |
BMSCs | Bone marrow mesenchymal stem cells |
ceRNA | Competing endogenous RNA |
circRNA | Circular RNA |
CDCA7L | Gene name |
CCL2 | Gene name |
DPSC | Dental pulp stem cell |
ECM | Extracellular matrix |
ERAP2 | Gene name |
ERK | Extracellular signal-regulated kinase |
GMSCs | Gingival-derived mesenchymal stem cells |
GSK-3 | Name of the molecule |
hDPSC | Human dental pulp stem cells |
IPScs | Induced pluripotent stem cells |
LPS | Lipopolysaccharide |
LXA4 | Lipoxin A4 |
mRNAs | Messenger RNAs |
MAPK | Mitogen-activated protein kinase |
MSC | Mesenchymal stem cells |
OT | Oxytocin |
PDL | Periodontal ligament |
PDLSCs | Periodontal ligament stem cells |
PGD2, E2, F2a | Prostaglandins D2, E2, F2a |
PGRN | Progranulin |
PIP | Prolactin-induced protein |
PMN | Polymorphonuclear neutrophils |
PRDX5, PRDX6, TXN2 | Gene names |
Qpcr | Quantitative polymerase chain reaction |
qRT-PCR | Quantitative real-time polymerase chain reaction |
QKI | Quaking |
RME | Rapid maxillary expansion |
RNA | Ribonucleic acid |
Runx2 | Runt-related transcription factor 2 |
SCAPs | Stem cells from the apical papilla |
shRNA | Short airpin RNA |
SLA | Sandblasted and acid etched |
SPMs | Specialized pro-resolving lipid mediators |
THSG | 2,3,5,4′-tetrahydroxystilbene-2-O-β-glucoside |
TNF-α | Tumor necrosis factor alpha |
References
- Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N.S.; Svorcik, V.; Kolska, Z.; Motarjemi, H.; et al. Stem Cells: Their Source, Potency and Use in Regenerative Therapies with Focus on Adipose-Derived Stem Cells—A Review. Biotechnol. Adv. 2018, 36, 1111–1126. [Google Scholar] [CrossRef] [PubMed]
- Dedera, D.A.; Waller, E.K.; LeBrun, D.P.; Sen-Majumdar, A.; Stevens, M.E.; Barsh, G.S.; Cleary, M.L. Chimeric Homeobox Gene E2A-PBX1 Induces Proliferation, Apoptosis, and Malignant Lymphomas in Transgenic Mice. Cell 1993, 74, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Shi, L.; Lu, Y.; Wang, B.; Tang, T.; Fu, W.; He, W.; Li, G.; Zhang, J. Linc-ROR Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Functioning as a Competing Endogenous RNA for miR-138 and miR-145. Mol. Ther.–Nucleic Acids 2018, 11, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Inchingolo, A.M.; Latini, G.; Palmieri, G.; Pede, C.D.; Trilli, I.; Ferrante, L.; Inchingolo, A.D.; Palermo, A.; Lorusso, F.; et al. Application of Graphene Oxide in Oral Surgery: A Systematic Review. Materials 2023, 16, 6293. [Google Scholar] [CrossRef]
- Grawish, M.E.; Saeed, M.A.; Sultan, N.; Scheven, B.A. Therapeutic Applications of Dental Pulp Stem Cells in Regenerating Dental, Periodontal and Oral-Related Structures. World J. Meta-Anal. 2021, 9, 176–192. [Google Scholar] [CrossRef]
- Secretome—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/immunology-and-microbiology/secretome (accessed on 16 July 2024).
- Alnasser, M.; Alshammari, A.H.; Siddiqui, A.Y.; Alothmani, O.S.; Issrani, R.; Iqbal, A.; Khattak, O.; Prabhu, N. Tissue Regeneration on Rise: Dental Hard Tissue Regeneration and Challenges-A Narrative Review. Scientifica 2024, 2024, 9990562. [Google Scholar] [CrossRef]
- Inchingolo, A.; Patano, A.; Piras, F.; Ruvo, E.; Ferrante, L.; Noia, A.; Dongiovanni, L.; Palermo, A.; Inchingolo, F.; Inchingolo, A.; et al. Orthognathic Surgery and Relapse: A Systematic Review. Bioengineering 2023, 10, 1071. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.; Latini, G.; Vecchio, G.; Trilli, I.; Ferrante, L.; Dipalma, G.; Palermo, A.; Inchingolo, A. Low-Level Light Therapy in Orthodontic Treatment: A Systematic Review. Appl. Sci. 2023, 13, 10393. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.; Latini, G.; Ferrante, L.; Ruvo, E.; Campanelli, M.; Longo, M.; Palermo, A.; Inchingolo, A.; Dipalma, G. Difference in the Intestinal Microbiota between Breastfeed Infants and Infants Fed with Artificial Milk: A Systematic Review. Pathogens 2024, 13, 533. [Google Scholar] [CrossRef]
- Ma, L.; Liu, A.Q.; Guo, H.; Xuan, K. Dental pulp stem cells in tooth regeneration: Advancement and emerging directions. Zhonghua Kouqiang Yixue Zazhi Chin. J. Stomatol. 2024, 59, 496–501. [Google Scholar] [CrossRef]
- Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate?—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312198/ (accessed on 15 July 2024).
- Inchingolo, F.; Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Trilli, I.; Di Noia, A.; Piras, F.; Mancini, A.; Palermo, A.; Inchingolo, A.D.; et al. The Interaction of Cytokines in Orthodontics: A Systematic Review. Appl. Sci. 2024, 14, 5133. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.; Latini, G.; Trilli, I.; Ferrante, L.; Nardelli, P.; Malcangi, G.; Inchingolo, A.; Mancini, A.; Palermo, A.; et al. The Role of Curcumin in Oral Health and Diseases: A Systematic Review. Antioxidants 2024, 13, 660. [Google Scholar] [CrossRef] [PubMed]
- Cerkezi, S.; Nakova, M.; Gjorgoski, I.; Ferati, K.; Bexheti-Ferati, A.; Palermo, A.; Inchingolo, F.; Ferrante, L.; Inchingolo, A.; Inchingolo, F.; et al. The Role of Sulfhydryl (Thiols) Groups in Oral and Periodontal Diseases. Biomedicines 2024, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Di Blasio, M.; Ronsivalle, V.; Cicciù, M. Children Oral Health and Parents Education Status: A Cross Sectional Study. BMC Oral Health 2023, 23, 787. [Google Scholar] [CrossRef]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Fiorillo, L.; Cervino, G.; Cicciù, M. Post-Traumatic Stress, Prevalence of Temporomandibular Disorders in War Veterans: Systematic Review with Meta-Analysis. J. Oral Rehabil. 2023, 50, 1101–1109. [Google Scholar] [CrossRef]
- Uzunçıbuk, H.; Marrapodi, M.M.; Meto, A.; Ronsivalle, V.; Cicciù, M.; Minervini, G. Prevalence of Temporomandibular Disorders in Clear Aligner Patients Using Orthodontic Intermaxillary Elastics Assessed with Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) Axis II Evaluation: A Cross-Sectional Study. J. Oral Rehabil. 2024, 51, 500–509. [Google Scholar] [CrossRef]
- Muntean, A.; Mzoughi, S.M.; Pacurar, M.; Candrea, S.; Inchingolo, F.; Inchingolo, A.; Ferrante, L.; Dipalma, G.; Inchingolo, F.; Palermo, A.; et al. Silver Diamine Fluoride in Pediatric Dentistry: Effectiveness in Preventing and Arresting Dental Caries—A Systematic Review. Children 2024, 11, 499. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.; Piras, F.; Ferrante, L.; Mancini, A.; Palermo, A.; Inchingolo, F.; Dipalma, G. The Interaction between Gut Microbiome and Bone Health. Curr. Opin. Endocrinol. Diabetes Obes. 2024, 31, 122–130. [Google Scholar] [CrossRef]
- Lo Russo, L.; Guida, L.; Mariani, P.; Ronsivalle, V.; Gallo, C.; Cicciù, M.; Laino, L. Effect of Fabrication Technology on the Accuracy of Surgical Guides for Dental-Implant Surgery. Bioengineering 2023, 10, 875. [Google Scholar] [CrossRef]
- Blasi, A.; Nucera, R.; Ronsivalle, V.; Candida, E.; Grippaudo, C. Asymmetry Index for the Photogrammetric Assessment of Facial Asymmetry. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 394–402. [Google Scholar] [CrossRef]
- Inchingolo, F.; Hazballa, D.; Inchingolo, A.D.; Malcangi, G.; Marinelli, G.; Mancini, A.; Maggiore, M.E.; Bordea, I.R.; Scarano, A.; Farronato, M.; et al. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. Materials 2022, 15, 1120. [Google Scholar] [CrossRef]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Inchingolo, A.M.; Dipalma, G. Non-Hodgkin Lymphoma Affecting the Tongue: Unusual Intra-Oral Location. Head Neck Oncol. 2011, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Mollentze, J.; Durandt, C.; Pepper, M.S. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int. 2021, 2021, 9919361. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Malcangi, G.; Xhajanka, E.; Scarano, A.; Lorusso, F.; Farronato, M.; Tartaglia, G.M.; Isacco, C.G.; et al. SARS-CoV-2 Disease Adjuvant Therapies and Supplements Breakthrough for the Infection Prevention. Microorganisms 2021, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Martelli, F.S.; Gargiulo Isacco, C.; Borsani, E.; Cantore, S.; Corcioli, F.; Boddi, A.; Nguyễn, K.C.D.; De Vito, D.; Aityan, S.K.; et al. Chronic Periodontitis and Immunity, Towards the Implementation of a Personalized Medicine: A Translational Research on Gene Single Nucleotide Polymorphisms (SNPs) Linked to Chronic Oral Dysbiosis in 96 Caucasian Patients. Biomedicines 2020, 8, 115. [Google Scholar] [CrossRef]
- Choudhery, M.S. Strategies to improve regenerative potential of mesenchymal stem cells. World J. Stem Cells 2021, 13, 1845–1862. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal Human Dental Pulp Stem Cells (DPSCs) in Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef]
- Govindasamy, V.; Abdullah, A.N.; Sainik Ronald, V.; Musa, S.; Ab Aziz, Z.A.; Zain, R.B.; Totey, S.; Bhonde, R.R.; Abu Kasim, N.H. Inherent Differential Propensity of Dental Pulp Stem Cells Derived from Human Deciduous and Permanent Teeth. J. Endod. 2010, 36, 1504–1515. [Google Scholar] [CrossRef]
- Chouaib, B.; Haack-Sørensen, M.; Chaubron, F.; Cuisinier, F.; Collart-Dutilleul, P.-Y. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int. J. Mol. Sci. 2023, 24, 12594. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Del Vecchio, G.; Viapiano, F.; Inchingolo, A.D.; Mancini, A.; Annicchiarico, C.; Inchingolo, F.; Dipalma, G.; et al. Surface Coatings of Dental Implants: A Review. J. Funct. Biomater. 2023, 14, 287. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Inchingolo, A.M.; Piras, F.; Settanni, V.; Garofoli, G.; Palmieri, G.; Ceci, S.; Patano, A.; De Leonardis, N.; et al. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 4027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jiang, F.; Zhang, X.; Wang, S.; Jin, Y.; Zhang, W.; Jiang, X. The Effects of Platelet-Derived Growth Factor-BB on Human Dental Pulp Stem Cells Mediated Dentin-Pulp Complex Regeneration. Stem Cells Transl. Med. 2017, 6, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.C.; Kuzynski, M.; Bottini, M.; Beniash, E.; Dokland, T.; Mobley, C.G.; Yadav, M.C.; Poliard, A.; Kellermann, O.; Millán, J.L.; et al. Phosphate Induces Formation of Matrix Vesicles during Odontoblast-Initiated Mineralization in Vitro. Matrix Biol. J. Int. Soc. Matrix Biol. 2016, 52–54, 284–300. [Google Scholar] [CrossRef]
- Kuang, R.; Zhang, Z.; Jin, X.; Hu, J.; Shi, S.; Ni, L.; Ma, P.X. Nanofibrous Spongy Microspheres for the Delivery of Hypoxia-Primed Human Dental Pulp Stem Cells to Regenerate Vascularized Dental Pulp. Acta Biomater. 2016, 33, 225–234. [Google Scholar] [CrossRef]
- Galler, K.M.; D’Souza, R.N.; Hartgerink, J.D.; Schmalz, G. Scaffolds for Dental Pulp Tissue Engineering. Adv. Dent. Res. 2011, 23, 333–339. [Google Scholar] [CrossRef]
- Ronsivalle, V.; Venezia, P.; Bennici, O.; D’Antò, V.; Leonardi, R.; Giudice, A.L. Accuracy of Digital Workflow for Placing Orthodontic Miniscrews Using Generic and Licensed Open Systems. A 3d Imaging Analysis of Non-Native. Stl Files for Guided Protocols. BMC Oral Health 2023, 23, 494. [Google Scholar] [CrossRef]
- Palazzo, G.; Ronsivalle, V.; Oteri, G.; Lo Giudice, A.; Toro, C.; Campagna, P.; Patini, R.; Bocchieri, S.; Bianchi, A.; Isola, G. Comparison between Additive and Subtractive CAD-CAM Technique to Produce Orthognathic Surgical Splints: A Personalized Approach. J. Pers. Med. 2020, 10, 273. [Google Scholar] [CrossRef]
- Woloszyk, A.; Holsten Dircksen, S.; Bostanci, N.; Müller, R.; Hofmann, S.; Mitsiadis, T.A. Influence of the Mechanical Environment on the Engineering of Mineralised Tissues Using Human Dental Pulp Stem Cells and Silk Fibroin Scaffolds. PLoS ONE 2014, 9, e111010. [Google Scholar] [CrossRef]
- Heng, B.C.; Jiang, S.; Yi, B.; Gong, T.; Lim, L.W.; Zhang, C. Small Molecules Enhance Neurogenic Differentiation of Dental-Derived Adult Stem Cells. Arch. Oral Biol. 2019, 102, 26–38. [Google Scholar] [CrossRef]
- Naujok, O.; Lentes, J.; Diekmann, U.; Davenport, C.; Lenzen, S. Cytotoxicity and Activation of the Wnt/Beta-Catenin Pathway in Mouse Embryonic Stem Cells Treated with Four GSK3 Inhibitors. BMC Res. Notes 2014, 7, 273. [Google Scholar] [CrossRef]
- Park, S.-R.; Kim, J.-W.; Jun, H.-S.; Roh, J.Y.; Lee, H.-Y.; Hong, I.-S. Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing. Mol. Ther. 2018, 26, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Pinho, A.G.; Cibrão, J.R.; Silva, N.A.; Monteiro, S.; Salgado, A.J. Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals 2020, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Patano, A.; De Santis, M.; Del Vecchio, G.; Ferrante, L.; Morolla, R.; Pezzolla, C.; Sardano, R.; Dongiovanni, L.; Inchingolo, F.; et al. Comparison of Different Types of Palatal Expanders: Scoping Review. Children 2023, 10, 1258. [Google Scholar] [CrossRef]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Palladino, A.; Inchingolo, A.M.; Dipalma, G. Oral Piercing and Oral Diseases: A Short Time Retrospective Study. Int. J. Med. Sci. 2011, 8, 649–652. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Semjonova, A.; Inchingolo, A.M.; Patano, A.; Coloccia, G.; Ceci, S.; Marinelli, G.; Di Pede, C.; Ciocia, A.M.; et al. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. Children 2022, 9, 1014. [Google Scholar] [CrossRef]
- Du, Z.H.; Li, S.L.; Ge, X.Y.; Yu, G.Y.; Ding, C. [Comparison of the secretory related molecules expression in stem cells from the pulp of human exfoliated deciduous teeth and dental pulp stem cells]. Zhonghua Kou Qiang Yi Xue Za Zhi Zhonghua Kouqiang Yixue Zazhi Chin. J. Stomatol. 2018, 53, 741–747. [Google Scholar] [CrossRef]
- Sultan, N.; Amin, L.E.; Zaher, A.R.; Grawish, M.E.; Scheven, B.A. Neurotrophic Effects of Dental Pulp Stem Cells on Trigeminal Neuronal Cells. Sci. Rep. 2020, 10, 19694. [Google Scholar] [CrossRef]
- Kim, J.H.; Green, D.S.; Ju, Y.M.; Harrison, M.; Vaughan, J.W.; Atala, A.; Lee, S.J.; Jackson, J.D.; Nykiforuk, C.; Yoo, J.J. Identification and Characterization of Stem Cell Secretome-Based Recombinant Proteins for Wound Healing Applications. Front. Bioeng. Biotechnol. 2022, 10, 954682. [Google Scholar] [CrossRef]
- Lombaert, I.; Movahednia, M.M.; Adine, C.; Ferreira, J.N. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells Dayt. Ohio 2017, 35, 97–105. [Google Scholar] [CrossRef]
- Kim, J.-Y.; An, C.-H.; Kim, J.-Y.; Jung, J.-K. Experimental Animal Model Systems for Understanding Salivary Secretory Disorders. Int. J. Mol. Sci. 2020, 21, 8423. [Google Scholar] [CrossRef]
- Shadjou, N.; Hasanzadeh, M.; Khalilzadeh, B. Graphene Based Scaffolds on Bone Tissue Engineering. Bioengineered 2017, 9, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Liang, Q.; Du, L.; Shang, L.; Wang, T.; Ge, S. Sequential Application of bFGF and BMP-2 Facilitates Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. J. Periodontal Res. 2019, 54, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Aurrekoetxea, M.; Garcia-Gallastegui, P.; Irastorza, I.; Luzuriaga, J.; Uribe-Etxebarria, V.; Unda, F.; Ibarretxe, G. Dental Pulp Stem Cells as a Multifaceted Tool for Bioengineering and the Regeneration of Craniomaxillofacial Tissues. Front. Physiol. 2015, 6, 289. [Google Scholar] [CrossRef] [PubMed]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Fiorillo, L.; Cervino, G.; Cicciù, M. The Association between Parent Education Level, Oral Health, and Oral-Related Sleep Disturbance. An Observational Crosssectional Study. Eur. J. Paediatr. Dent. 2023, 24, 218–223. [Google Scholar] [CrossRef]
- Tallarico, M.; Cuccu, M.; Meloni, S.M.; Lumbau, A.I.; Baldoni, E.; Pisano, M.; Fiorillo, L.; Cervino, G. Digital Analysis of a Novel Impression Method Named the Biological-Oriented Digital Impression Technique: A Clinical Audit. Prosthesis 2023, 5, 992–1001. [Google Scholar] [CrossRef]
- Pera, F.; Carossa, M.; Bagnasco, F.; Crupi, A.; Ambrogio, G.; Isola, G.; Menini, M.; Pesce, P. Comparison between Bone-Level and Tissue-Level Implants in Immediate-Loading Full-Arch Rehabilitations: A Retrospective Multi-Center 1-Year Follow-Up Study. Prosthesis 2023, 5, 1301–1311. [Google Scholar] [CrossRef]
- Karakas-Stupar, I.; Zaugg, L.K.; Zitzmann, N.U.; Joda, T.; Wolfart, S.; Tuna, T. Clinical Protocol for Implant-Assisted Partial Removable Dental Prostheses in Kennedy Class I: A Case Report. Prosthesis 2023, 5, 1002–1010. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, M.; Zhang, Q.; Yong, L.; Zhang, T.; Tian, T.; Ma, Q.; Lin, S.; Zhu, B.; Cai, X. Effect of Substrate Stiffness on Proliferation and Differentiation of Periodontal Ligament Stem Cells. Cell Prolif. 2018, 51, e12478. [Google Scholar] [CrossRef]
- Park, S.; Huang, N.W.Y.; Wong, C.X.Y.; Pan, J.; Albakr, L.; Gu, J.; Kang, L. Microstructured Hyaluronic Acid Hydrogel for Tooth Germ Bioengineering. Gels 2021, 7, 123. [Google Scholar] [CrossRef]
- Noda, S.; Kawashima, N.; Yamamoto, M.; Hashimoto, K.; Nara, K.; Sekiya, I.; Okiji, T. Effect of Cell Culture Density on Dental Pulp-Derived Mesenchymal Stem Cells with Reference to Osteogenic Differentiation. Sci. Rep. 2019, 9, 5430. [Google Scholar] [CrossRef]
- Erisken, C.; Kalyon, D.M.; Zhou, J.; Kim, S.G.; Mao, J.J. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration. J. Endod. 2015, 41, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Monjaraz, B.; Santiago-Osorio, E.; Ledesma-Martínez, E.; Aguiñiga-Sánchez, I.; Sosa-Hernández, N.A.; Mendoza-Núñez, V.M. Dental Pulp Mesenchymal Stem Cells as a Treatment for Periodontal Disease in Older Adults. Stem Cells Int. 2020, 2020, 8890873. [Google Scholar] [CrossRef] [PubMed]
- Lucchese, A.; Dolci, A.; Minervini, G.; Salerno, C.; Di Stasio, D.; Minervini, G.; Laino, L.; Silvestre, F.; Serpico, R. Vulvovaginal Gingival Lichen Planus: Report of Two Cases and Review of Literature. ORAL Implantol. 2016, 9, 54–60. [Google Scholar] [CrossRef]
- Di Stasio, D.; Lauritano, D.; Minervini, G.; Paparella, R.S.; Petruzzi, M.; Romano, A.; Candotto, V.; Lucchese, A. Management of Denture Stomatitis: A Narrative Review. J. Biol. Regul. Homeost. Agents 2018, 32, 113–116. [Google Scholar]
- Hardy, R.; Cooper, M.S. Bone Loss in Inflammatory Disorders. J. Endocrinol. 2009, 201, 309–320. [Google Scholar] [CrossRef]
- Cianci, E.; Recchiuti, A.; Trubiani, O.; Diomede, F.; Marchisio, M.; Miscia, S.; Colas, R.A.; Dalli, J.; Serhan, C.N.; Romano, M. Human Periodontal Stem Cells Release Specialized Proresolving Mediators and Carry Immunomodulatory and Prohealing Properties Regulated by Lipoxins. Stem Cells Transl. Med. 2016, 5, 20–32. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, L.; Zhang, R.; Yang, K.; Wei, Q.; Jia, Q.; Guo, J.; Ma, C. Rat bone marrow mesenchymal stem cells induced by rrPDGF-BB promotes bone regeneration during distraction osteogenesis. Front. Bioeng. Biotechnol. 2023, 11, 1110703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Almeida, L.E.; Ronsivalle, V.; Cicciù, M. Prevalence of Temporomandibular Disorders (TMD) in Obesity Patients: A Systematic Review and Meta-Analysis. J. Oral Rehabil. 2023, 50, 1544–1553. [Google Scholar] [CrossRef]
- Lombardo, G.; Signoriello, A.; Marincola, M.; Bonfante, E.A.; Díaz-Caballero, A.; Tomizioli, N.; Pardo, A.; Zangani, A. Five-Year Follow-Up of 8 and 6 Mm Locking-Taper Implants Treated with a Reconstructive Surgical Protocol for Peri-Implantitis: A Retrospective Evaluation. Prosthesis 2023, 5, 1322–1342. [Google Scholar] [CrossRef]
- Alkahtany, M.; Beatty, M.W.; Alsalleeh, F.; Petro, T.M.; Simetich, B.; Zhou, Y.; Feely, D.; Polyzois, G. Color Stability, Physical Properties and Antifungal Effects of ZrO2 Additions to Experimental Maxillofacial Silicones: Comparisons with TiO2. Prosthesis 2023, 5, 916–938. [Google Scholar] [CrossRef]
- Stamnitz, S.; Klimczak, A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021, 10, 1925. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Park, K.-H.; Lee, A.-R.; Mun, C.H.; Shin, Y.D.; Park, Y.-B.; Park, Y.-B. Control of Dental-Derived Induced Pluripotent Stem Cells through Modified Surfaces for Dental Application. Acta Odontol. Scand. 2017, 75, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, C.E.; Otto, W.R.; Eastwood, M. In Vitro Mesenchymal Stem Cell Differentiation after Mechanical Stimulation. Cell Prolif. 2011, 44, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Liu, Y.; Cui, D.; Pan, Y.; Zheng, L.; Wan, M. Dental Tissue-Derived Human Mesenchymal Stem Cells and Their Potential in Therapeutic Application. Stem Cells Int. 2020, 2020, 8864572. [Google Scholar] [CrossRef]
- Bhawal, U.K.; Li, X.; Suzuki, M.; Taguchi, C.; Oka, S.; Arikawa, K.; Tewari, N.; Liu, Y. Treatment with Low-Level Sodium Fluoride on Wound Healing and the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Dent. Traumatol. Off. Publ. Int. Assoc. Dent. Traumatol. 2020, 36, 278–284. [Google Scholar] [CrossRef]
- Lee, J.; Abdeen, A.A.; Tang, X.; Saif, T.A.; Kilian, K.A. Geometric Guidance of Integrin Mediated Traction Stress during Stem Cell Differentiation. Biomaterials 2015, 69, 174–183. [Google Scholar] [CrossRef]
- Pan, G.; Thomson, J.A. Nanog and Transcriptional Networks in Embryonic Stem Cell Pluripotency. Cell Res. 2007, 17, 42–49. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Jia, L.; Xing, Y.; Zhao, B.; Sui, L.; Liu, D.; Xu, X. Downregulation of Prolactin-Induced Protein Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e930610. [Google Scholar] [CrossRef]
- Yu, M.; Sun, L.; Ba, P.; Li, L.; Chen, J.; Sun, Q. Progranulin Promotes Osteogenic Differentiation of Periodontal Membrane Stem Cells in Both Inflammatory and Non-Inflammatory Conditions. J. Int. Med. Res. 2021, 49, 03000605211032508. [Google Scholar] [CrossRef]
- Liu, J.; Du, J.; Chen, X.; Yang, L.; Zhao, W.; Song, M.; Wang, Z.; Wang, Y. The Effects of Mitogen-Activated Protein Kinase Signaling Pathways on Lipopolysaccharide-Mediated Osteo/Odontogenic Differentiation of Stem Cells from the Apical Papilla. J. Endod. 2019, 45, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-M.; Gao, L.-N.; Tian, B.-M.; Zhang, X.-Y.; Zhang, Y.-J.; Dong, G.-Y.; Lu, H.; Chu, Q.; Xu, J.; Yu, Y.; et al. Treatment of Periodontal Intrabony Defects Using Autologous Periodontal Ligament Stem Cells: A Randomized Clinical Trial. Stem Cell Res. Ther. 2016, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.; Liu, H.; Liang, Q.; Shang, L.; Wang, T.; Ge, S. Oxytocin Facilitates the Proliferation, Migration and Osteogenic Differentiation of Human Periodontal Stem Cells in Vitro. Arch. Oral Biol. 2019, 99, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Zhang, Y.; Ji, Y.; Li, X.; Xing, Y.; Wen, Y.; Huang, H.; Xu, X. Comparative Analysis of lncRNA and mRNA Expression Profiles between Periodontal Ligament Stem Cells and Gingival Mesenchymal Stem Cells. Gene 2019, 699, 155–164. [Google Scholar] [CrossRef]
- Wang, H.; Feng, C.; Jin, Y.; Tan, W.; Wei, F. Identification and Characterization of Circular RNAs Involved in Mechanical Force-Induced Periodontal Ligament Stem Cells. J. Cell. Physiol. 2019, 234, 10166–10177. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chin, Y.-T.; Kuo, P.-J.; Lee, H.-W.; Huang, H.-M.; Lin, H.-Y.; Weng, I.-T.; Hsiung, C.-N.; Chan, Y.-H.; Lee, S.-Y. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-Glucoside Potentiates Self-Renewal of Human Dental Pulp Stem Cells via the AMPK/ERK/SIRT1 Axis. Int. Endod. J. 2018, 51, 1159–1170. [Google Scholar] [CrossRef]
- Li, S.; Lin, C.; Zhang, J.; Tao, H.; Liu, H.; Yuan, G.; Chen, Z. Quaking Promotes the Odontoblastic Differentiation of Human Dental Pulp Stem Cells. J. Cell. Physiol. 2018, 233, 7292–7304. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Yang, F.; Yuan, J.; Cui, Q.; Nie, F.; Zhang, J. Matrine Enhances Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells and Promotes Bone Regeneration in Rapid Maxillary Expansion. Arch. Oral Biol. 2020, 118, 104862. [Google Scholar] [CrossRef]
- Gross, T.; Dieterle, M.P.; Vach, K.; Altenburger, M.J.; Hellwig, E.; Proksch, S. Biomechanical Modulation of Dental Pulp Stem Cell (DPSC) Properties for Soft Tissue Engineering. Bioengineering 2023, 10, 323. [Google Scholar] [CrossRef]
- Hanna, S.; Aly, R.; Eldeen, G.N.; Adanero Velasco, A.; Pérez Alfayate, R. Small Molecule GSK-3 Inhibitors Safely Promote the Proliferation and Viability of Human Dental Pulp Stem Cells-In Vitro. Biomedicines 2023, 11, 542. [Google Scholar] [CrossRef]
- Moreno-Hidalgo, M.C.; Caleza-Jimenez, C.; Mendoza-Mendoza, A.; Iglesias-Linares, A. Revascularization of Immature Permanent Teeth with Apical Periodontitis. Int. Endod. J. 2014, 47, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Tirez, E.; Pedano, M.S. Regeneration of the Pulp Tissue: Cell Homing versus Cell Transplantation Approach: A Systematic Review. Materials 2022, 15, 8603. [Google Scholar] [CrossRef] [PubMed]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.A.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-Analyses of Health Care Interventions: Checklist and Explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Hilkens, P.; Gervois, P.; Fanton, Y.; Vanormelingen, J.; Martens, W.; Struys, T.; Politis, C.; Lambrichts, I.; Bronckaers, A. Effect of Isolation Methodology on Stem Cell Properties and Multilineage Differentiation Potential of Human Dental Pulp Stem Cells. Cell Tissue Res. 2013, 353, 65–78. [Google Scholar] [CrossRef]
- Sui, B.; Chen, C.; Kou, X.; Li, B.; Xuan, K.; Shi, S.; Jin, Y. Pulp Stem Cell–Mediated Functional Pulp Regeneration. J. Dent. Res. 2019, 98, 27–35. [Google Scholar] [CrossRef]
- Mattei, V.; Martellucci, S.; Pulcini, F.; Santilli, F.; Sorice, M.; Delle Monache, S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev. Rep. 2021, 17, 1635–1646. [Google Scholar] [CrossRef]
- Kaufman, G.; Kiburi, N.M.; Skrtic, D. The Self-Renewal Dental Pulp Stem Cell Microtissues Challenged by a Toxic Dental Monomer. Biosci. Rep. 2020, 40, BSR20200210. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef]
- Di Stasio, D.; Lauritano, D.; Gritti, P.; Migliozzi, R.; Maio, C.; Minervini, G.; Petruzzi, M.; Serpico, R.; Candotto, V.; Lucchese, A. Psychiatric Disorders in Oral Lichen Planus: A Preliminary Case Control Study. J. Biol. Regul. Homeost. Agents 2018, 32, 97–100. [Google Scholar]
- Cochrane, A.; Kelaini, S.; Tsifaki, M.; Bojdo, J.; Vilà-González, M.; Drehmer, D.; Caines, R.; Magee, C.; Eleftheriadou, M.; Hu, Y.; et al. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells Dayt. Ohio 2017, 35, 952–966. [Google Scholar] [CrossRef]
- Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell 2015, 160, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Darbelli, L.; Richard, S. Emerging Functions of the Quaking RNA-Binding Proteins and Link to Human Diseases. Wiley Interdiscip. Rev. RNA 2016, 7, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Kabir, R.; Gupta, M.; Aggarwal, A.; Sharma, D.; Sarin, A.; Kola, M.Z. Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies: A Systematic Review. Niger. J. Surg. Off. Publ. Niger. Surg. Res. Soc. 2014, 20, 1–8. [Google Scholar] [CrossRef]
- Dang, J.; Yang, J.; Yu, Z.; Chen, L.; Zhang, Z.; Wang, K.; Tang, J.; Yi, C. Bone Marrow Mesenchymal Stem Cells Enhance Angiogenesis and Promote Fat Retention in Fat Grafting via Polarized Macrophages. Stem Cell Res. Ther. 2022, 13, 52. [Google Scholar] [CrossRef]
- Graziano, A.; d’Aquino, R.; Cusella-De Angelis, M.G.; De Francesco, F.; Giordano, A.; Laino, G.; Piattelli, A.; Traini, T.; De Rosa, A.; Papaccio, G. Scaffold’s Surface Geometry Significantly Affects Human Stem Cell Bone Tissue Engineering. J. Cell. Physiol. 2008, 214, 166–172. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Z.; Xie, Y.; Hu, J.; Wang, H.; Fan, Z.; Zhang, C.; Wang, J.; Wu, C.-T.; Wang, S. Adenovirus-Mediated Transfer of Hepatocyte Growth Factor Gene to Human Dental Pulp Stem Cells under Good Manufacturing Practice Improves Their Potential for Periodontal Regeneration in Swine. Stem Cell Res. Ther. 2015, 6, 249. [Google Scholar] [CrossRef]
- Ferro, F.; Spelat, R.; D’Aurizio, F.; Puppato, E.; Pandolfi, M.; Beltrami, A.P.; Cesselli, D.; Falini, G.; Beltrami, C.A.; Curcio, F. Dental Pulp Stem Cells Differentiation Reveals New Insights in Oct4A Dynamics. PLoS ONE 2012, 7, e41774. [Google Scholar] [CrossRef]
- St Paul, A.; Phillips, C.; Lee, J.Y.; Khan, A.A. Provider Perceptions of Treatment Options for Immature Permanent Teeth. J. Endod. 2017, 43, 910–915. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, Y.; Chen, Y.; Chen, S.; Lyu, H.; Cai, Z.; Huang, X. Radiographic, Histologic, and Biomechanical Evaluation of Combined Application of Platelet-Rich Fibrin with Blood Clot in Regenerative Endodontics. J. Endod. 2017, 43, 2034–2040. [Google Scholar] [CrossRef]
- d’Aquino, R.; Graziano, A.; Sampaolesi, M.; Laino, G.; Pirozzi, G.; De Rosa, A.; Papaccio, G. Human Postnatal Dental Pulp Cells Co-Differentiate into Osteoblasts and Endotheliocytes: A Pivotal Synergy Leading to Adult Bone Tissue Formation. Cell Death Differ. 2007, 14, 1162–1171. [Google Scholar] [CrossRef]
- Ding, G.; Liu, Y.; Wang, W.; Wei, F.; Liu, D.; Fan, Z.; An, Y.; Zhang, C.; Wang, S. Allogeneic Periodontal Ligament Stem Cell Therapy for Periodontitis in Swine. Stem Cells Dayt. Ohio 2010, 28, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Wang, W.; Liu, Y.; An, Y.; Zhang, C.; Shi, S.; Wang, S. Effect of Cryopreservation on Biological and Immunological Properties of Stem Cells from Apical Papilla. J. Cell. Physiol. 2010, 223, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Bassir, S.H.; Wisitrasameewong, W.; Raanan, J.; Ghaffarigarakani, S.; Chung, J.; Freire, M.; Andrada, L.C.; Intini, G. Potential for Stem Cell-Based Periodontal Therapy. J. Cell. Physiol. 2016, 231, 50–61. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Malcangi, G.; Inchingolo, A.D.; Mancini, A.; Palmieri, G.; Di Pede, C.; Piras, F.; Inchingolo, F.; Dipalma, G.; Patano, A. Potential of Graphene-Functionalized Titanium Surfaces for Dental Implantology: Systematic Review. Coatings 2023, 13, 725. [Google Scholar] [CrossRef]
- Queiroz, A.; Albuquerque-Souza, E.; Gasparoni, L.M.; de França, B.N.; Pelissari, C.; Trierveiler, M.; Holzhausen, M. Therapeutic Potential of Periodontal Ligament Stem Cells. World J. Stem Cells 2021, 13, 605–618. [Google Scholar] [CrossRef]
- Safina, I.; Embree, M.C. Biomaterials for Recruiting and Activating Endogenous Stem Cells in Situ Tissue Regeneration. Acta Biomater. 2022, 143, 26–38. [Google Scholar] [CrossRef]
- Rehman, A.; Nigam, A.; Laino, L.; Russo, D.; Todisco, C.; Esposito, G.; Svolacchia, F.; Giuzio, F.; Desiderio, V.; Ferraro, G. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. Medicina 2023, 59, 1449. [Google Scholar] [CrossRef]
- Chen, F.M. Periodontal tissue regeneration: Current therapeutic strategies and future directions in further research. Zhonghua Kouqiang Yixue Zazhi Chin. J. Stomatol. 2024, 59, 312–317. [Google Scholar] [CrossRef]
- Grau-Vorster, M.; Rodríguez, L.; del Mazo-Barbara, A.; Mirabel, C.; Blanco, M.; Codinach, M.; Gómez, S.G.; Querol, S.; García-López, J.; Vives, J. Compliance with Good Manufacturing Practice in the Assessment of Immunomodulation Potential of Clinical Grade Multipotent Mesenchymal Stromal Cells Derived from Wharton’s Jelly. Cells 2019, 8, 484. [Google Scholar] [CrossRef]
- Tait, A.; Proctor, T.; Hamilton, N.J.I.; Birchall, M.A.; Lowdell, M.W. GMP Compliant Isolation of Mucosal Epithelial Cells and Fibroblasts from Biopsy Samples for Clinical Tissue Engineering. Sci. Rep. 2021, 11, 12392. [Google Scholar] [CrossRef] [PubMed]
- Consensus Report Periodontal Regeneration around Natural Teeth. Ann. Periodontol. 1996, 1, 667–670. [CrossRef] [PubMed]
- Akita, D.; Morokuma, M.; Saito, Y.; Yamanaka, K.; Akiyama, Y.; Sato, M.; Mashimo, T.; Toriumi, T.; Arai, Y.; Kaneko, T.; et al. Periodontal Tissue Regeneration by Transplantation of Rat Adipose-Derived Stromal Cells in Combination with PLGA-Based Solid Scaffolds. Biomed. Res. Tokyo Jpn. 2014, 35, 91–103. [Google Scholar] [CrossRef]
- Ascheim, D.D.; Gelijns, A.C.; Goldstein, D.; Moye, L.A.; Smedira, N.; Lee, S.; Klodell, C.T.; Szady, A.; Parides, M.K.; Jeffries, N.O.; et al. Mesenchymal Precursor Cells as Adjunctive Therapy in Recipients of Contemporary Left Ventricular Assist Devices. Circulation 2014, 129, 2287–2296. [Google Scholar] [CrossRef] [PubMed]
- Barker, N. Adult Intestinal Stem Cells: Critical Drivers of Epithelial Homeostasis and Regeneration. Nat. Rev. Mol. Cell Biol. 2014, 15, 19–33. [Google Scholar] [CrossRef]
- Alqahtani, A.M. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers 2023, 15, 3355. [Google Scholar] [CrossRef]
- Spolski, R.; Li, P.; Leonard, W.J. Biology and Regulation of IL-2: From Molecular Mechanisms to Human Therapy. Nat. Rev. Immunol. 2018, 18, 648–659. [Google Scholar] [CrossRef]
- Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of Mesenchymal Stem/Stromal Cell Function. Stem Cell Res. Ther. 2016, 7, 125. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Atyabi, F.; Dinarvand, R. Tissue Engineering: Still Facing a Long Way Ahead. J. Control. Release 2018, 279, 181–197. [Google Scholar] [CrossRef]
- Hsu, S.; Huang, G.-S.; Feng, F. Isolation of the Multipotent MSC Subpopulation from Human Gingival Fibroblasts by Culturing on Chitosan Membranes. Biomaterials 2012, 33, 2642–2655. [Google Scholar] [CrossRef]
- Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0092867413000044 (accessed on 16 July 2024).
- Lee, K.-M.; Kang, J.H.; Yun, M.; Lee, S.-B. Quercetin Inhibits the Poly(dA:dT)-Induced Secretion of IL-18 via down-Regulation of the Expressions of AIM2 and pro-Caspase-1 by Inhibiting the JAK2/STAT1 Pathway in IFN-γ-Primed Human Keratinocytes. Biochem. Biophys. Res. Commun. 2018, 503, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Barlattani, A., Jr.; Perrone, M.A.; Basili, M.; Miranda, M.; Costacurta, M.; Gualtieri, P.; Pujia, A.; Merra, G.; Bollero, P. Obesity, Bariatric Surgery and Periodontal Disease: A Literature Update. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5036–5045. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Gianfreda, F.; Miranda, M.; Barlattani, A.; Bollero, P. The Hemostatic Properties of Chitosan in Oral Surgery. Biomed. Biotechnol. Res. J. 2020, 4, 186. [Google Scholar] [CrossRef]
- Wan, W.; Cheng, B.; Zhang, C.; Ma, Y.; Li, A.; Xu, F.; Lin, M. Synergistic Effect of Matrix Stiffness and Inflammatory Factors on Osteogenic Differentiation of MSC. Biophys. J. 2019, 117, 129–142. [Google Scholar] [CrossRef]
- Duan, X.; Tu, Q.; Zhang, J.; Ye, J.; Sommer, C.; Mostoslavsky, G.; Kaplan, D.; Yang, P.; Chen, J. Application of Induced Pluripotent Stem (iPS) Cells in Periodontal Tissue Regeneration. J. Cell. Physiol. 2011, 226, 150–157. [Google Scholar] [CrossRef]
- Du, J.; Shan, Z.; Ma, P.; Wang, S.; Fan, Z. Allogeneic Bone Marrow Mesenchymal Stem Cell Transplantation for Periodontal Regeneration. J. Dent. Res. 2014, 93, 183–188. [Google Scholar] [CrossRef]
- Evian, C.I.; Rosenberg, E.S.; Coslet, J.G.; Corn, H. The Osteogenic Activity of Bone Removed from Healing Extraction Sockets in Humans. J. Periodontol. 1982, 53, 81–85. [Google Scholar] [CrossRef]
- Feng, F.; Akiyama, K.; Liu, Y.; Yamaza, T.; Wang, T.-M.; Chen, J.-H.; Wang, B.B.; Huang, G.T.-J.; Wang, S.; Shi, S. Utility of PDL Progenitors for in Vivo Tissue Regeneration: A Report of 3 Cases. Oral Dis. 2010, 16, 20–28. [Google Scholar] [CrossRef]
- Du, J.; Lu, Y.; Song, M.; Yang, L.; Liu, J.; Chen, X.; Ma, Y.; Wang, Y. Effects of ERK/P38 MAPKs Signaling Pathways on MTA-Mediated Osteo/Odontogenic Differentiation of Stem Cells from Apical Papilla: A Vitro Study. BMC Oral Health 2020, 20, 50. [Google Scholar] [CrossRef]
- Wu, D.; Pan, W. GSK3: A Multifaceted Kinase in Wnt Signaling. Trends Biochem. Sci. 2010, 35, 161–168. [Google Scholar] [CrossRef]
- Zhou, Q.; Dong, Y.; Wang, K.; Wang, Z.; Ma, B.; Yang, B. A Comprehensive Analysis of the Hub Genes for Oxidative Stress in Ischemic Stroke. Front. Neurosci. 2023, 17, 1166010. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Roca, M.S.; Ciardiello, C.; Costantini, S.; Budillon, A. Oxidative Stress Gene Expression Profile Correlates with Cancer Patient Poor Prognosis: Identification of Crucial Pathways Might Select Novel Therapeutic Approaches. Oxid. Med. Cell. Longev. 2017, 2017, 2597581. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Inchingolo, A.M.; Latini, G.; Ferrante, L.; Trilli, I.; Del Vecchio, G.; Palmieri, G.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G. Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review. Nutrients 2023, 16, 113. [Google Scholar] [CrossRef]
- Subba, T.A.; Varma, S.; Thomas, B.; Rao, S.; Kumar, M.; Talwar, A.; Shashidhar, K. Comparison of Cellular and Differentiation Characteristics of Mesenchymal Stem Cells Derived from Human Gingiva and Periodontal Ligament. J. Int. Soc. Prev. Community Dent. 2022, 12, 235–244. [Google Scholar] [CrossRef]
- Inchingolo, A.; Inchingolo, A.; Viapiano, F.; Ciocia, A.; Ferrara, I.; Netti, A.; Dipalma, G.; Palermo, A.; Inchingolo, F. Treatment Approaches to Molar Incisor Hypomineralization: A Systematic Review. J. Clin. Med. 2023, 12, 7194. [Google Scholar] [CrossRef]
- Halicioğlu, K.; Kiliç, N.; Yavuz, İ.; Aktan, B. Effects of Rapid Maxillary Expansion with a Memory Palatal Split Screw on the Morphology of the Maxillary Dental Arch and Nasal Airway Resistance. Eur. J. Orthod. 2010, 32, 716–720. [Google Scholar] [CrossRef]
- Lee, J.; Abdeen, A.A.; Huang, T.H.; Kilian, K.A. Controlling Cell Geometry on Substrates of Variable Stiffness Can Tune the Degree of Osteogenesis in Human Mesenchymal Stem Cells. J. Mech. Behav. Biomed. Mater. 2014, 38, 209–218. [Google Scholar] [CrossRef]
- Amghar-Maach, S.; Gay-Escoda, C.; Sánchez-Garcés, M.Á. Regeneration of Periodontal Bone Defects with Dental Pulp Stem Cells Grafting: Systematic Review. J. Clin. Exp. Dent. 2019, 11, e373–e381. [Google Scholar] [CrossRef]
- Song, Y.; Wang, N.; Shi, H.; Zhang, D.; Wang, Q.; Guo, S.; Yang, S.; Ma, J. Biomaterials combined with ADSCs for bone tissue engineering: Current advances and applications. Regen Biomater. 2023, 10, rbad083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laino, G.; d’Aquino, R.; Graziano, A.; Lanza, V.; Carinci, F.; Naro, F.; Pirozzi, G.; Papaccio, G. A New Population of Human Adult Dental Pulp Stem Cells: A Useful Source of Living Autologous Fibrous Bone Tissue (LAB). J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2005, 20, 1394–1402. [Google Scholar] [CrossRef]
- Halazonetis, D.J.; Katsavrias, E.; Spyropoulos, M.N. Changes in Cheek Pressure Following Rapid Maxillary Expansion. Eur. J. Orthod. 1994, 16, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Claes, L.; Recknagel, S.; Ignatius, A. Fracture Healing under Healthy and Inflammatory Conditions. Nat. Rev. Rheumatol. 2012, 8, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Hürzeler, M.B.; Quiñones, C.R.; Hutmacher, D.; Schüpbach, P. Guided Bone Regeneration around Dental Implants in the Atrophic Alveolar Ridge Using a Bioresorbable Barrier: An Experimental Study in the Monkey. Clin. Oral Implant. Res. 1997, 8, 323–331. [Google Scholar] [CrossRef]
- Garib, D.; Lauris, R.D.C.M.C.; Calil, L.R.; Alves, A.C.D.M.; Janson, G.; De Almeida, A.M.; Cevidanes, L.H.S.; Lauris, J.R.P. Dentoskeletal Outcomes of a Rapid Maxillary Expander with Differential Opening in Patients with Bilateral Cleft Lip and Palate: A Prospective Clinical Trial. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 564–574. [Google Scholar] [CrossRef]
- Haas, A.J. The treatment of maxillary deficiency by opening the midpalatal suture. Angle Orthod. 1965, 35, 200–217. [Google Scholar]
- Chen, Y.; Zhang, C. Role of Noncoding RNAs in Orthodontic Tooth Movement: New Insights into Periodontium Remodeling. J. Transl. Med. 2023, 21, 101. [Google Scholar] [CrossRef]
- Lu, H.-J.; Li, J.; Yang, G.; Yi, C.-J.; Zhang, D.; Yu, F.; Ma, Z. Circular RNAs in Stem Cells: From Basic Research to Clinical Implications. Biosci. Rep. 2022, 42, BSR20212510. [Google Scholar] [CrossRef]
- Suciu, T.-S.; Feștilă, D.; Berindan-Neagoe, I.; Nutu, A.; Armencea, G.; Aghiorghiesei, A.I.; Vulcan, T.; Băciuț, M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev. Rep. 2024, 20, 656–671. [Google Scholar] [CrossRef]
- Jiao, K.; Walsh, L.J.; Ivanovski, S.; Han, P. The Emerging Regulatory Role of Circular RNAs in Periodontal Tissues and Cells. Int. J. Mol. Sci. 2021, 22, 4636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Aponte-Santamaría, C.; Sturm, S.; Bullerjahn, J.T.; Bronowska, A.; Gräter, F. Mechanism of Focal Adhesion Kinase Mechanosensing. PLoS Comput. Biol. 2015, 11, e1004593. [Google Scholar] [CrossRef]
- Isaka, J.; Ohazama, A.; Kobayashi, M.; Nagashima, C.; Takiguchi, T.; Kawasaki, H.; Tachikawa, T.; Hasegawa, K. Participation of Periodontal Ligament Cells with Regeneration of Alveolar Bone. J. Periodontol. 2001, 72, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Kazancioglu, H.O.; Aksakalli, S.; Ezirganli, S.; Birlik, M.; Esrefoglu, M.; Acar, A.H. Effect of Caffeic Acid Phenethyl Ester on Bone Formation in the Expanded Inter-Premaxillary Suture. Drug Des. Devel. Ther. 2015, 9, 6483–6488. [Google Scholar] [CrossRef]
Authors (Year) | Type of the Study | Aim of the Study | Materials | Results |
---|---|---|---|---|
Xiaomeng Li et al., 2021 [81] | Experimental study | Investigate mechanisms of osteogenic differentiation in periodontal ligament stem cells (PDLSCs), focusing on prolactin-induced protein (PIP) expression. | Used PDLSCs, employed short-airpin Ribo Nucleic Acid (shRNA) to reduce PIP expression, and analyzed effects on proliferation, apoptosis, and osteogenic differentiation. | Reduced PIP enhanced osteogenic differentiation of PDLSCs without affecting proliferation or apoptosis, suggesting a regulatory role of PIP in extracellular matrix (ECM) management during differentiation. |
Miao Yu et al., 2021 [82] | Clinical trial | Evaluate the impact of progranulin (PGRN) on osteogenic differentiation of PDLSCs and its interaction with TNF-α. | Treated PDLSCs with varying concentrations of PGRN assessed alkaline phosphatase (ALP) activity, gene expression (ALP, Runx2), and ECM mineralization. | Optimal PGRN concentration (25 ng/mL) promoted osteogenic differentiation and counteracted TNF-α inhibition, enhancing ALP activity and ECM mineralization. |
Eleonora Cianci et al., 2015 [68] | Experimental study | Investigate human PDLSCs’ role in inflammation resolution in periodontitis, focusing on specialized pro-resolving lipid mediators (SPMs) like lipoxin A4 (LXA4). | Explored interactions between PDLSCs and polymorphonuclear neutrophils (PMNs), evaluated SPM synthesis, and effects of LXA4 on cell functions. | Human PDLSCs enhance PMN functions and produce SPMs (LXA4, RvDs, maresins), with LXA4 enhancing PDLSC proliferation, migration, and wound healing. |
Wenyan Kang et al., 2019 [54] | Experimental study | Discuss challenges and strategies in periodontal therapy using PDLSCs, focusing on in situ tissue engineering and growth factors (bFGF, transplant-2). | Reviewed literature on PDLSC-based therapies discussed in situ tissue engineering and growth factor applications. | Sequential application of bFGF and BMP-2 enhanced PDLSC proliferation, migration, and osteogenic differentiation, promoting new bone and cementum tissue formation. |
Junqing Liu et al., 2019 [83] | Experimental study | Investigate lipopolysaccharide (LPS) influence on cells from the apical papilla (SCAPs) differentiation into bone and dental tissues. | Exposed SCAPs to varying LPS concentrations assessed osteo/odontogenic differentiation and mitogen-activated protein kinase (MAPK) signaling pathways. | LPS at 0.1 μg/mL enhanced SCAPs’ osteo/odontogenic differentiation via MAPK ERK and p38 pathways, suggesting potential for enhancing dental regenerative therapies. |
Fa-Ming Chen et al., 2016 [84] | Clinical trial | Evaluate the efficacy of PDLSCs combined with Bio-Oss® for periodontitis treatment. | Conducted a randomized clinical trial that assessed bone height and clinical parameters post-treatment. | PDLSCs with Bio-Oss® showed significant bone fill, confirming safety and potential efficacy, though there were no significant differences compared to controls in clinical parameters. |
Bin Ge et al., 2019 [85] | Experimental study | Examine oxytocin (OT) role in PDL regeneration and PDLSC osteogenic differentiation. | Tested OT effects on PDLSC proliferation, migration, and osteogenic differentiation and analyzed signaling pathways (MAPK/ERK, AKT). | OT enhanced PDLSCs’ proliferation, migration, and osteogenic differentiation, mediated through MAPK/ERK and AKT pathways, suggesting potential for periodontal regeneration. |
Linglu Jia et al., 2019 [86] | Experimental study | Compare the biological characteristics and gene expression profiles of PDLSCs and gingival-derived mesenchymal stem cells (GMSCs). | Analyzed mRNA and lncRNA expression and compared differentiation capabilities and proliferation rates between PDLSCs and GMSCs. | PDLSCs showed superior osteogenic, adipogenic, and chondrogenic differentiation; GMSCs exhibited higher proliferation rates and unique gene expression profiles, highlighting potential applications in regenerative medicine. |
Hong Wang et al., 2019 [87] | Experimental study | Investigate circular RNAs (circRNAs) role in PDLSCs during mechanically induced osteogenic differentiation. | Examined circRNA expression in PDLSCs under mechanical forces and analyzed pathways (protein kinase R, ER stress-mediated transcription factor-4). | Identified over 2900 differentially expressed circRNAs in mechanically stimulated PDLSCs, suggesting circRNAs’ potential role in bone regeneration and orthodontic therapies. |
C-Y Lin et al., 2018 [88] | Experimental study in vitro. | To investigate the effect of 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside (THSG) on human dental pulp stem cells (hDPSCs) and the mechanisms enhancing its proliferative potential. | Cell viability assays, mRNA expression analysis, flow cytometry, Western blotting. | THSG increases cell viability, colony formation, and telomerase activity in hDPSCs, suggesting potential applications in dental regeneration. |
Shuchen Li et al., 2018 [89] | In vitro, in vivo | To investigate how hDPSCs differentiate into odontoblasts and the function of the RNA-binding protein Quaking (QKI) in this process. | Cultures of hDPSCs | QKI acts as a competing endogenous RNA (ceRNA), promoting odontoblastic differentiation. |
Jing Li et al., 2020 [90] | In vitro and in vivo | Evaluate matrine’s effect on bone formation during RME. | In vitro: Used rat bone marrow mesenchymal stem cells (BMSCs) to test matrine’s osteogenic effect through ALP activity, mineralization, and osteogenic markers. In vivo: Rats underwent RME with and without matrine, followed by micro-CT and histological analysis. | Matrine enhanced BMSCs osteogenic differentiation in vitro and improved bone density, trabecular number, and thickness in vivo during RME. Suggests matrine as a potential therapy for enhancing bone formation and stability in orthodontics and maxillofacial surgery. |
Hynmin Choi et al., 2017 [74] | Experimental | Investigating the behavior of induced pluripotent stem cells (iPSCs) on titanium surfaces with different textures. | To investigate the behavior of iPSC pluripotent stem cells derived from human gingival fibroblasts, they were cultured on sandblasted with large grit and acid-etched titanium surfaces. | iPSCs show improved initial adhesion, diffusion, osteogenic gene expression, and mineralization on sandblasted and acid-etched (SLA-treated) surfaces compared to processed surfaces. |
Tara Gross et al., 2023 [91] | Empirical Study | To investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. | Enriched STRO-1-positive DPSCs cultured on substrates with 1.5, 15, and 28 kPa elasticities. Gene transcription via qPCR. | 1.5 kPa led to soft tissue phenotype. 28 kPa showed hard tissue differentiation. 15 kPa had the highest cytokine expression. Biophysical cues significantly impact DPSC fate. |
Samer Hanna et al., 2023 [92] | In vitro Study | Investigate CHIR99021 and tideglusib’s effects on hDPSCs’ proliferation, viability, and stemness. |
| Both compounds safely promoted hDPSC proliferation, minimized apoptosis (low ANNEXIN V), and boosted stemness marker expression, suggesting their potential for regenerative dentistry. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inchingolo, A.M.; Inchingolo, A.D.; Nardelli, P.; Latini, G.; Trilli, I.; Ferrante, L.; Malcangi, G.; Palermo, A.; Inchingolo, F.; Dipalma, G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J. Funct. Biomater. 2024, 15, 308. https://doi.org/10.3390/jfb15100308
Inchingolo AM, Inchingolo AD, Nardelli P, Latini G, Trilli I, Ferrante L, Malcangi G, Palermo A, Inchingolo F, Dipalma G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. Journal of Functional Biomaterials. 2024; 15(10):308. https://doi.org/10.3390/jfb15100308
Chicago/Turabian StyleInchingolo, Angelo Michele, Alessio Danilo Inchingolo, Paola Nardelli, Giulia Latini, Irma Trilli, Laura Ferrante, Giuseppina Malcangi, Andrea Palermo, Francesco Inchingolo, and Gianna Dipalma. 2024. "Stem Cells: Present Understanding and Prospects for Regenerative Dentistry" Journal of Functional Biomaterials 15, no. 10: 308. https://doi.org/10.3390/jfb15100308
APA StyleInchingolo, A. M., Inchingolo, A. D., Nardelli, P., Latini, G., Trilli, I., Ferrante, L., Malcangi, G., Palermo, A., Inchingolo, F., & Dipalma, G. (2024). Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. Journal of Functional Biomaterials, 15(10), 308. https://doi.org/10.3390/jfb15100308