A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of BisBAL NPs
2.2. Fabrication of Tecoflex™ EMs and Coating with BisBAL NPs
2.3. Physicochemical Characterization of Tecoflex™ EMs-BisBAL NPs (SEM, FTIR, and Raman)
2.4. Water Absorption Capacity of Tecoflex™ EMs-BisBAL NPs
2.5. Tecoflex™ EM-BisBAL NPs Tensile Test
2.6. Biological Properties of Tecoflex™ EMs-BisBAL NPs
2.6.1. Cell Culture
2.6.2. Proliferation Assay
2.6.3. MRSA Isolation and Identification
2.6.4. Antimicrobial Activity against MRSA Clinical Isolate
2.6.5. Bacterial Culture
2.6.6. Bactericidal Activity of Tecoflex™ EMs-BisBAL NPs
2.6.7. Antitumor Activity of Tecoflex™ EMs-BisBAL NPs
2.6.8. Action Mechanism of Tecoflex™ EMs-BisBAL NPs
2.7. Statistical Analysis
3. Results
3.1. Characterization of BisBAL NPs
3.2. Scanning Electron Microscopy of Tecoflex™ EMs-BisBAL NPs
3.3. FTIR, Raman, Swelling and Tensile Strength Characterization of Tecoflex™ EMs-BisBAL NPs
3.4. Proliferation Assay
3.5. Identification and Resistance Analysis of a Bacterial Clinical Isolate
3.6. Bactericidal Activity of Tecoflex™ EMs-BisBAL NPs
3.7. Antitumor Potential of Tecoflex™ EMs-BisBAL NPs
3.8. Action Mechanism of Tecoflex™ EMs-BisBAL NPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- Vara-Salazar, E.d.l.; Suarez-Lopez, L.; Angeles-Llerenas, A.; Torres-Mejia, G.; Lazcano-Ponce, E. Breast cancer mortality trends in Mexico, 1980–2009. Salud Publica Mex. 2011, 53, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilli, Z.; Wilkerson, A. Breast surgery: Management of postoperative complications following operations for breast cancer. Surg. Clin. 2021, 101, 845–863. [Google Scholar]
- Gao, Y.-x.; Ling, X.; Ye, J.-m.; Wang, D.-m.; Zhao, J.-x.; Zhang, L.-b.; Duan, X.-n.; Liu, Y.-h. Analysis of risk factors of surgical site infections in breast cancer. Chin. Med. J. 2010, 123, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Bolton, L. Surgical Site Infection in Cancer Patients. Wounds A Compend. Clin. Res. Pract. 2021, 33, 260–262. [Google Scholar] [CrossRef]
- Pettke, E.; Ilonzo, N.; Ayewah, M.; Tsantes, S.; Estabrook, A.; Ma, A.M.T. Short-term, postoperative breast cancer outcomes in patients with advanced age. Am. J. Surg. 2016, 212, 677–681. [Google Scholar] [CrossRef]
- Tahri, N.B.; Gravdehaug, B.; Bahrami, N.; Reitsma, L. A woman in her fifties with a post-operative infection, generalised rash and organ failure. Tidsskr. Nor. Legeforen. 2024, 144, 1–9. [Google Scholar] [CrossRef]
- Annane, D.; Clair, B.; Salomon, J. Managing toxic shock syndrome with antibiotics. Expert Opin. Pharmacother. 2004, 5, 1701–1710. [Google Scholar] [CrossRef]
- Pedersen, R.N.; Esen, B.Ö.; Mellemkjær, L.; Christiansen, P.; Ejlertsen, B.; Lash, T.L.; Nørgaard, M.; Cronin-Fenton, D. The incidence of breast cancer recurrence 10-32 years after primary diagnosis. JNCI J. Natl. Cancer Inst. 2022, 114, 391–399. [Google Scholar] [CrossRef]
- Cabrera-Galeana, P.; Soto-Perez-de-Celis, E.; Reynoso-Noveron, N.; Villarreal-Garza, C.; Lara-Medina, F.; Alvarado-Miranda, A.; Espinosa-Fernandez, J.R.; Esparza-Arias, N.; Mohar, A.; Bargallo-Rocha, J.E. Real-World Outcomes among Older Mexican Women with Breast Cancer Treated with Neoadjuvant Chemotherapy. Oncologist 2020, 25, 1023–1031. [Google Scholar] [CrossRef]
- Chernonosova, V.S.; Gostev, A.A.; Gao, Y.; Chesalov, Y.A.; Shutov, A.V.; Pokushalov, E.A.; Karpenko, A.A.; Laktionov, P.P. Mechanical properties and biological behavior of 3D matrices produced by electrospinning from protein-enriched polyurethane. BioMed Res. Int. 2018, 2018, 1380606. [Google Scholar] [CrossRef] [PubMed]
- Macossay, J.; Sheikh, F.A.; Cantu, T.; Eubanks, T.M.; Salinas, M.E.; Farhangi, C.S.; Ahmad, H.; Hassan, M.S.; Khil, M.-s.; Maffi, S.K. Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex® EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes. Appl. Surf. Sci. 2014, 321, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Sperling, L.E.; Reis, K.P.; Pranke, P.; Wendorff, J.H. Advantages and challenges offered by biofunctional core–shell fiber systems for tissue engineering and drug delivery. Drug Discov. Today 2016, 21, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Cirillo, V.; Ambrosio, L. Bicomponent electrospun scaffolds to design extracellular matrix tissue analogs. Expert Rev. Med. Devices 2016, 13, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Venegas-Cervera, G.A.; Oliva, A.I.; Avila-Ortega, A.; Cervantes-Uc, J.M.; Carrillo-Cocom, L.M.; Juarez-Moreno, J.A. Biocompatibility studies of polyurethane electrospun membranes based on arginine as chain extender. J. Mater. Sci. Mater. Med. 2021, 32, 104. [Google Scholar] [CrossRef]
- Gogolewski, S. Selected topics in biomedical polyurethanes. A review. Colloid Polym. Sci. 1989, 267, 757–785. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kim, Y.H.; Song, H.Y.; Lee, B.T. Nano Ag loaded PVA nano-fibrous mats for skin applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 96, 225–233. [Google Scholar] [CrossRef]
- Garakani, M.M.; Ahangar, P.; Watson, S.; Nisol, B.; Wertheimer, M.R.; Rosenzweig, D.H.; Ajji, A. A novel 3D co-culture platform for integrating tissue interfaces for tumor growth, migration and therapeutic sensitivity:“PP-3D-S”. Biomater. Adv. 2022, 134, 112566. [Google Scholar] [CrossRef]
- Irani, M.; Sadeghi, G.M.M.; Haririan, I. Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide. Biomed. Pharmacother. 2017, 88, 667–676. [Google Scholar] [CrossRef]
- Badireddy, A.R.; Hernandez-Delgadillo, R.; Sánchez-Nájera, R.I.; Chellam, S.; Cabral-Romero, C. Synthesis and characterization of lipophilic bismuth dimercaptopropanol nanoparticles and their effects on oral microorganisms growth and biofilm formation. J. Nanoparticle Res. 2014, 16, 2456. [Google Scholar] [CrossRef]
- Hernandez-Delgadillo, R.; García-Cuéllar, C.M.; Sánchez-Pérez, Y.; Pineda-Aguilar, N.; Martínez-Martínez, M.A.; Rangel-Padilla, E.E.; Nakagoshi-Cepeda, S.E.; Solís-Soto, J.M.; Sánchez-Nájera, R.I.; Nakagoshi-Cepeda, M.A.A. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int. J. Nanomed. 2018, 13, 6089–6097. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Delgadillo, R.; Espinoza-Villarreal, E.C.; Del Angel-Mosqueda, C.; Rodríguez-Luis, O.E.; Cabral-Romero, C. Antimicrobial and Antibiofilm Activities of a Bismuth Lipophilic Nanoparticles Hydrogel against Methicillin-resistant Staphylococcus aureus biofilm. In Advanced Materials and Their Applications; One Central Press: Manchester, UK, 2017. [Google Scholar]
- Torres-Betancourt, J.A.; Hernandez-Delgadillo, R.; Flores-Treviño, J.J.; Solís-Soto, J.M.; Pineda-Aguilar, N.; Nakagoshi-Cepeda, M.A.A.; Isela Sanchez-Najera, R.; Chellam, S.; Cabral-Romero, C. Antimicrobial potential of AH Plus supplemented with bismuth lipophilic nanoparticles on E. faecalis isolated from clinical isolates. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000211069221. [Google Scholar] [CrossRef] [PubMed]
- Rene, H.-D.; Badireddy, A.R.; Juan José, M.-S.; Juan Francisco, C.-C.; Gustavo Israel, M.-G.; Rosa Isela, S.-N.; Chellam, S.; Claudio, C.-R. Cytotoxic effect of lipophilic bismuth dimercaptopropanol nanoparticles on epithelial cells. J. Nanosci. Nanotechnol. 2016, 16, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Badrigilan, S.; Heydarpanahi, F.; Choupani, J.; Jaymand, M.; Samadian, H.; Hoseini-Ghahfarokhi, M.; Webster, T.J.; Tayebi, L. A review on the biodistribution, pharmacokinetics and toxicity of bismuth-based nanomaterials. Int. J. Nanomed. 2020, 15, 7079–7096. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wang, P.; Zhao, Z.; Ji, J. Antimicrobial activity of electrospun poly (butylenes succinate) fiber mats containing PVP-capped silver nanoparticles. Appl. Biochem. Biotechnol. 2013, 171, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, A.; Davidson, C.E. Estimation method for serial dilution experiments. J. Microbiol. Methods 2014, 107, 214–221. [Google Scholar] [CrossRef]
- Xu, M.; McCanna, D.J.; Sivak, J.G. Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. J. Pharmacol. Toxicol. Methods 2015, 71, 1–7. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Qu, F.-L.; Wu, S.-Y.; Li, J.-J.; Shao, Z.-M. Ipsilateral breast tumor recurrence after breast-conserving surgery: Insights into biology and treatment. Breast Cancer Res. Treat. 2023, 202, 215–220. [Google Scholar] [CrossRef]
- Rajput, S.; Sharma, P.K.; Malviya, R. Biomarkers and Treatment Strategies for Breast Cancer Recurrence. Curr. Drug Targets 2023, 24, 1209–1220. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Wu, C.-Y.; Petrossian, K.; Huang, T.-T.; Tseng, L.-M.; Chen, S. Treatment for the endocrine resistant breast cancer: Current options and future perspectives. J. Steroid Biochem. Mol. Biol. 2017, 172, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Permyakova, E.S.; Manakhov, A.; Kiryukhantsev-Korneev, P.V.; Konopatsky, A.S.; Makarets, Y.A.; Kotyakova, K.Y.; Filippovich, S.Y.; Ignatov, S.G.; Solovieva, A.O.; Shtansky, D.V. Self-sanitizing polycaprolactone electrospun nanofiber membrane with Ag nanoparticles. J. Funct. Biomater. 2023, 14, 336. [Google Scholar] [CrossRef] [PubMed]
- Jadbabaei, S.; Kolahdoozan, M.; Naeimi, F.; Ebadi-Dehaghani, H. Preparation and characterization of sodium alginate–PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Adv. 2021, 11, 30674–30688. [Google Scholar] [CrossRef]
- Detta, N.; Errico, C.; Dinucci, D.; Puppi, D.; Clarke, D.A.; Reilly, G.C.; Chiellini, F. Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J. Mater. Sci. Mater. Med. 2010, 21, 1761–1769. [Google Scholar] [CrossRef]
- Shakiba, M.; Pourmadadi, M.; Hosseini, S.M.; Bigham, A.; Rahmani, E.; Sheikhi, M.; Pahnavar, Z.; Foroozandeh, A.; Tajiki, A.; Jouybar, S. A bi-functional nanofibrous composite membrane for wound healing applications. Arch. Pharm. 2024, 357, e202400001. [Google Scholar] [CrossRef]
- Hughes, L.A.; Gaston, J.; McAlindon, K.; Woodhouse, K.A.; Thibeault, S.L. Electrospun fiber constructs for vocal fold tissue engineering: Effects of alignment and elastomeric polypeptide coating. Acta Biomater. 2015, 13, 111–120. [Google Scholar] [CrossRef]
- Kumar, V.; Abro, M.I.; Bhutto, M.A.; Aftab, U.; Kumar, M.; Ahmed, M. Fabrication and characterization of graphene oxide nanoparticles incorporated in poly (vinyl alcohol) electro-spun nanofibers and its vapor-phase crosslinking. Pak. J. Pharm. Sci. 2020, 33, 2089–2096. [Google Scholar]
- Näf, L.; Miescher, I.; Pfuderer, L.; Schweizer, T.A.; Brunner, D.; Dürig, J.; Gröninger, O.; Rieber, J.; Meier-Buergisser, G.; Spanaus, K. Pro-angiogenic and antibacterial copper containing nanoparticles in PLGA/amorphous calcium phosphate bone nanocomposites. Heliyon 2024, 10, e27267. [Google Scholar] [CrossRef]
- Zhang, G.C.; Liu, J.; Yu, X.N.; Deng, Y.; Sun, Y.; Liu, T.T.; Dong, L.; Zhu, C.F.; Shen, X.Z.; Zhu, J.M.; et al. Bismuth-Based Mesoporous Nanoball Carrying Sorafenib for Computed Tomography Imaging and Synergetic Chemoradiotherapy of Hepatocellular Carcinoma. Adv. Healthc. Mater. 2020, 9, e2000650. [Google Scholar] [CrossRef]
- Li, L.; Li, F.; Zhao, Z.; Xie, R.; Xu, D.; Ding, M.; Zhang, J.; Shen, D.; Fei, J. An exploratory research on antitumor effect of drug-eluting slow-releasing electrospinning membranes. Heliyon 2023, 9, e20295. [Google Scholar] [CrossRef] [PubMed]
- García-Cuellar, C.M.; Cabral-Romero, C.; Hernández-Delgadillo, R.; Solis-Soto, J.M.; Meester, I.; Sánchez-Pérez, Y.; Nakagoshi-Cepeda, S.E.; Pineda-Aguilar, N.; Sánchez-Nájera, R.I.; Nakagoshi-Cepeda, M.A.A.; et al. Bismuth Lipophilic Nanoparticles (BisBAL NP) Inhibit the Growth of Tumor Cells in a Mouse Melanoma Model. Anti-Cancer Agents Med. Chem. 2022, 22, 2548–2557. [Google Scholar] [CrossRef]
- García-Cuellar, C.M.; Hernández-Delgadillo, R.; Torres-Betancourt, J.A.; Solis-Soto, J.M.; Meester, I.; Sánchez-Pérez, Y.; Pineda-Aguilar, N.; Nakagoshi-Cepeda, S.E.; Sánchez-Nájera, R.I.; Nakagoshi-Cepeda, M.A.A. Cumulative antitumor effect of bismuth lipophilic nanoparticles and cetylpyridinium chloride in inhibiting the growth of lung cancer. J. Appl. Biomater. Funct. Mater. 2023, 21, 22808000231161177. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Fageria, L.; Sharma, A.; Mukherjee, S.; Pande, S.; Chowdhury, R.; Chowdhury, S. Silver nanoparticle-induced alteration of mitochondrial and ER homeostasis affects human breast cancer cell fate. Toxicol. Rep. 2022, 9, 1977–1984. [Google Scholar] [CrossRef]
- Meher, K.; Paithankar, H.; Hosur, R.V.; Lopus, M. Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells. Biomed. Mater. 2024, 19, 035039. [Google Scholar] [CrossRef]
Chemical Bond | Absorption Wavelength (cm−1) | |
---|---|---|
Drug-free Tecoflex™ | Tecoflex™ EM-BisBAL NPs | |
Free N-H | 3326 | 3449 and 3334 |
Asymmetric CH2 | 2932 and 2850 | Similar |
Symmetric CH2 | 2798 | Similar |
C=O (Amide I) | 1716 | Similar |
N-H and C-H (amide II) | 1525 | Similar |
CH2 bend | 1446–1366 | 1371 |
C-N bend (amide III) | 1228 | 1247 |
Polytetramethylene glycol C-O-C symmetric bend | 1100 | Similar |
Urethane C-O-C symmetric bend | 980 | Similar |
Tecoflex™ EMs-BisBAL NPs | 997, 956, 864, 836 | |
Cyclohexane symmetric bend | 779 | Similar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Betancourt, J.A.; Hernández-Delgadillo, R.; Cauich-Rodríguez, J.V.; Oliva-Rico, D.A.; Solis-Soto, J.M.; García-Cuellar, C.M.; Sánchez-Pérez, Y.; Pineda-Aguilar, N.; Flores-Treviño, S.; Meester, I.; et al. A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells. J. Funct. Biomater. 2024, 15, 309. https://doi.org/10.3390/jfb15100309
Torres-Betancourt JA, Hernández-Delgadillo R, Cauich-Rodríguez JV, Oliva-Rico DA, Solis-Soto JM, García-Cuellar CM, Sánchez-Pérez Y, Pineda-Aguilar N, Flores-Treviño S, Meester I, et al. A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells. Journal of Functional Biomaterials. 2024; 15(10):309. https://doi.org/10.3390/jfb15100309
Chicago/Turabian StyleTorres-Betancourt, Jesús Alejandro, Rene Hernández-Delgadillo, Juan Valerio Cauich-Rodríguez, Diego Adrián Oliva-Rico, Juan Manuel Solis-Soto, Claudia María García-Cuellar, Yesennia Sánchez-Pérez, Nayely Pineda-Aguilar, Samantha Flores-Treviño, Irene Meester, and et al. 2024. "A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells" Journal of Functional Biomaterials 15, no. 10: 309. https://doi.org/10.3390/jfb15100309
APA StyleTorres-Betancourt, J. A., Hernández-Delgadillo, R., Cauich-Rodríguez, J. V., Oliva-Rico, D. A., Solis-Soto, J. M., García-Cuellar, C. M., Sánchez-Pérez, Y., Pineda-Aguilar, N., Flores-Treviño, S., Meester, I., Nakagoshi-Cepeda, S. E., Arevalo-Niño, K., Nakagoshi-Cepeda, M. A. A., & Cabral-Romero, C. (2024). A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells. Journal of Functional Biomaterials, 15(10), 309. https://doi.org/10.3390/jfb15100309