Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models
Abstract
:1. Introduction
2. Anatomy of the Human Gingiva/Mucosa
3. Origin of Cells Used in 3D Culture Gingiva Models
4. Biomaterials and ECM Derivatives Employed in 3D Culture Models
5. Reconstruction and Characterisation of the JE in In Vitro 3D Oral Mucosa Models
6. Three-Dimensional Culture Models Employing Implant Abutment Units
7. Methods of Qualitative and Quantitative Evaluation of the Soft-Tissue Attachment
8. Organ-on-a-Chip Technology for Oral Mucosa 3D Models
9. Similarities and Differences Between the 3D Models and the Native Tissue
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schroeder, H.E.; Listgarten, M.A. The Junctional Epithelium: From Strength to Defense. J. Dent. Res. 2003, 82, 158–161. [Google Scholar] [CrossRef]
- Schneider, H.-G. Die Entwicklung des Epithelansatzes am Zahn (untersucht an den Molaren von Albinoratten). Z. Anat. Entwickl. Gesch. 1970, 131, 249–262. [Google Scholar] [CrossRef]
- Waerhaug, J. The Gingival Pocket; Anatomy, Pathology, Deepening and Elimination. Odontol. Tidskr. 1952, 60, 1–186. [Google Scholar]
- Löe, H.; Anerud, A.; Boysen, H.; Morrison, E. Natural History of Periodontal Disease in Man. Rapid, Moderate and No Loss of Attachment in Sri Lankan Laborers 14 to 46 Years of Age. J. Clin. Periodontol. 1986, 13, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Loos, B.G.; Van Dyke, T.E. The Role of Inflammation and Genetics in Periodontal Disease. Periodontology 2000 2020, 83, 26–39. [Google Scholar] [CrossRef]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus Report of Workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89 (Suppl. 1), S173–S182. [Google Scholar] [CrossRef] [PubMed]
- Page, R.C.; Schroeder, H.E. Pathogenesis of Inflammatory Periodontal Disease. A Summary of Current Work. Lab. Investig. 1976, 34, 235–249. [Google Scholar]
- Genco, R.J.; Sanz, M. Clinical and Public Health Implications of Periodontal and Systemic Diseases: An Overview. Periodontology 2000 2020, 83, 7–13. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [CrossRef]
- Time to Take Gum Disease Seriously: The Societal and Economic Impact of Periodontitis. Available online: https://oralhealthsupport.ucsf.edu/news/time-take-gum-disease-seriously-societal-and-economic-impact-periodontitis (accessed on 10 September 2024).
- Koller, A.; Sapra, A. Anatomy, Head and Neck, Oral Gingiva. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hajishengallis, G.; Lamont, R.J.; Graves, D.T. The Enduring Importance of Animal Models in Understanding Periodontal Disease. Virulence 2015, 6, 229–235. [Google Scholar] [CrossRef]
- Fabre, K.; Berridge, B.; Proctor, W.R.; Ralston, S.; Will, Y.; Baran, S.W.; Yoder, G.; Van Vleet, T.R. Introduction to a Manuscript Series on the Characterization and Use of Microphysiological Systems (MPS) in Pharmaceutical Safety and ADME Applications. Lab. Chip 2020, 20, 1049–1057. [Google Scholar] [CrossRef]
- Ingber, D.E. Is It Time for Reviewer 3 to Request Human Organ Chip Experiments Instead of Animal Validation Studies? Adv. Sci. 2020, 7, 2002030. [Google Scholar] [CrossRef] [PubMed]
- van Meer, P.J.K.; Kooijman, M.; Gispen-de Wied, C.C.; Moors, E.H.M.; Schellekens, H. The Ability of Animal Studies to Detect Serious Post Marketing Adverse Events Is Limited. Regul. Toxicol. Pharmacol. 2012, 64, 345–349. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, A.; Gu, P.; Zhou, H.; Fan, X. A Review of the Three-Dimensional Cell Culture Technique: Approaches, Advantages and Applications. Curr. Stem Cell Res. Ther. 2016, 11, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Pampaloni, F.; Reynaud, E.G.; Stelzer, E.H.K. The Third Dimension Bridges the Gap between Cell Culture and Live Tissue. Nat. Rev. Mol. Cell Biol. 2007, 8, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Huh, D.; Hamilton, G.A.; Ingber, D.E. From 3D Cell Culture to Organs-on-Chips. Trends Cell Biol. 2011, 21, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.E.; Listgarten, M.A. The Gingival Tissues: The Architecture of Periodontal Protection. Periodontology 2000 1997, 13, 91–120. [Google Scholar] [CrossRef]
- Schroeder, H.E.; Listgarten, M.A. Fine Structure of the Developing Epithelial Attachment of Human Teeth. Monogr. Dev. Biol. 1971, 2, 1–134. [Google Scholar]
- Bosshardt, D.D.; Lang, N.P. The Junctional Epithelium: From Health to Disease. J. Dent. Res. 2005, 84, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Salonen, J.I.; Kautsky, M.B.; Dale, B.A. Changes in Cell Phenotype during Regeneration of Junctional Epithelium of Human Gingiva in vitro. J. Periodontal Res. 1989, 24, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Berglundh, T.; Giannobile, W.V.; Sanz, M. Anatomy and Histology of Periodontal Tissues. In Lindhe’s Clinical Periodontology and Implant Dentistry, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 1, p. 17. [Google Scholar]
- Listgarten, M.A. Normal Development, Structure, Physiology and Repair of Gingival Epithelium. Oral Sci. Rev. 1972, 1, 3–67. [Google Scholar] [PubMed]
- Listgarten, M.A. Electron Microscopic Features of the Newly Formed Epithelial Attachment after Gingival Surgery. A Preliminary Report. J. Periodontal Res. 1967, 2, 46–52. [Google Scholar] [CrossRef]
- Caton, J.; Nyman, S. Histometric Evaluation of Periodontal Surgery. I. The Modified Widman Flap Procedure. J. Clin. Periodontol. 1980, 7, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Caton, J.G.; Zander, H.A. The Attachment between Tooth and Gingival Tissues after Periodic Root Planing and Soft Tissue Curettage. J. Periodontol. 1979, 50, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Masaoka, T.; Hashimoto, S.; Kinumatsu, T.; Muramatsu, T.; Jung, H.-S.; Yamada, S.; Shimono, M. Immunolocalization of Laminin and Integrin in Regenerating Junctional Epithelium of Mice after Gingivectomy. J. Periodontal Res. 2009, 44, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Uno, T.; Hashimoto, S.; Shimono, M. A Study of the Proliferative Activity of the Long Junctional Epithelium Using Argyrophilic Nucleolar Organizer Region (AgNORs) Staining. J. Periodontal Res. 1998, 33, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, S.; Ukai, T.; Kuramoto, A.; Yoshinaga, Y.; Nakamura, H.; Takamori, Y.; Yamashita, Y.; Hara, Y. The Histopathological Comparison on the Destruction of the Periodontal Tissue between Normal Junctional Epithelium and Long Junctional Epithelium. J. Periodontal Res. 2017, 52, 74–82. [Google Scholar] [CrossRef]
- Magnusson, I.; Runstad, L.; Nyman, S.; Lindhe, J. A Long Junctional Epithelium—A Locus Minoris Resistentiae in Plaque Infection? J. Clin. Periodontol. 1983, 10, 333–340. [Google Scholar] [CrossRef]
- Schroeder, H.E. Ultrastructure of the Junctional Epithelium of the Human Gingiva. Helv. Odontol. Acta 1969, 13, 65–83. [Google Scholar]
- Saito, I.; Watanabe, O.; Kawahara, H.; Igarashi, Y.; Yamamura, T.; Shimono, M. Intercellular Junctions and the Permeability Barrier in the Junctional Epithelium. A Study with Freeze-Fracture and Thin Sectioning. J. Periodontal Res. 1981, 16, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.E. Transmigration and Infiltration of Leucocytes in Human Junctional Epithelium. Helv. Odontol. Acta 1973, 17, 6–18. [Google Scholar] [PubMed]
- Löe, H.; Karring, T. The Three-Dimensional Morphology of the Epithelium-Connective Tissue Interface of the Gingiva as Related to Age and Sex. Scand. J. Dent. Res. 1971, 79, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.A. Periodontal Epithelium: A Newly Recognized Role in Health and Disease. Periodontology 2000 2002, 30, 70–78. [Google Scholar] [CrossRef]
- Kogaya, Y.; Haruna, S.; Vojinovic, J.; Iwayama, Y.; Akisaka, T. Histochemical Localization at the Electron Microscopic Level of Sulfated Glycosaminoglycans in the Rat Gingiva. J. Periodontal Res. 1989, 24, 199–206. [Google Scholar] [CrossRef]
- Salonen, J.; Santti, R. Ultrastructural and Immunohistochemical Similarities in the Attachment of Human Oral Epithelium to the Tooth in Vivo and to an Inert Substrate in an Explant Culture. J. Periodontal Res. 1985, 20, 176–184. [Google Scholar] [CrossRef]
- Sawada, T.; Yamamoto, T.; Yanagisawa, T.; Takuma, S.; Hasegawa, H.; Watanabe, K. Electron-Immunocytochemistry of Laminin and Type-IV Collagen in the Junctional Epithelium of Rat Molar Gingiva. J. Periodontal Res. 1990, 25, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, I.; Berglundh, T.; Moon, I.S.; Lindhe, J. Peri-Implant Tissues at Submerged and Non-Submerged Titanium Implants. J. Clin. Periodontol. 1999, 26, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Atsuta, I.; Yamaza, T.; Yoshinari, M.; Mino, S.; Goto, T.; Kido, M.A.; Terada, Y.; Tanaka, T. Changes in the Distribution of Laminin-5 during Peri-Implant Epithelium Formation after Immediate Titanium Implantation in Rats. Biomaterials 2005, 26, 1751–1760. [Google Scholar] [CrossRef]
- Araujo, M.G.; Lindhe, J. Peri-Implant Health. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S230–S236. [Google Scholar] [CrossRef]
- Lang, N.P.; Berglundh, T.; Giannobile, W.V.; Sanz, M. The Mucosa at Teeth and Implants. In Lindhe’s Clinical Periodontology and Implant Dentistry, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 1, p. 93. [Google Scholar]
- Ikeda, H.; Yamaza, T.; Yoshinari, M.; Ohsaki, Y.; Ayukawa, Y.; Kido, M.A.; Inoue, T.; Shimono, M.; Koyano, K.; Tanaka, T. Ultrastructural and Immunoelectron Microscopic Studies of the Peri-Implant Epithelium-Implant (Ti–6Al–4V) Interface of Rat Maxilla. J. Periodontol. 2000, 71, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Gould, T.R.; Westbury, L.; Brunette, D.M. Ultrastructural Study of the Attachment of Human Gingiva to Titanium in Vivo. J. Prosthet. Dent. 1984, 52, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Pei, X.; Chen, J.; Zhao, Y.; Brunski, J.B.; Helms, J.A. Comparative Analyses of the Soft Tissue Interfaces around Teeth and Implants: Insights from a Preclinical Implant Model. J. Clin. Periodontol. 2021, 48, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Lindhe, J.; Ecrisson, I. The Soft Tissue Barrier at Implants and Teeth. Clin. Oral Implants Res. 1991, 2, 81–90. [Google Scholar] [CrossRef]
- Berglundh, T.; Lindhe, J.; Jonsson, K.; Ericsson, I. The Topography of the Vascular Systems in the Periodontal and Peri-Implant Tissues in the Dog. J. Clin. Periodontol. 1994, 21, 189–193. [Google Scholar] [CrossRef]
- Ericsson, I.; Berglundh, T.; Marinello, C.; Liljenberg, B.; Lindhe, J. Long-Standing Plaque and Gingivitis at Implants and Teeth in the Dog. Clin. Oral Implants Res. 1992, 3, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Klausner, M.; Handa, Y.; Aizawa, S. In Vitro Three-Dimensional Organotypic Culture Models of the Oral Mucosa. In Vitro Cell Dev. Biol. Anim. 2021, 57, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Sakulpaptong, W.; Clairmonte, I.A.; Blackstone, B.N.; Leblebicioglu, B.; Powell, H.M. 3D Engineered Human Gingiva Fabricated with Electrospun Collagen Scaffolds Provides a Platform for in Vitro Analysis of Gingival Seal to Abutment Materials. PLoS ONE 2022, 17, e0263083. [Google Scholar] [CrossRef]
- Morse, D.J.; Wilson, M.J.; Wei, X.; Lewis, M.A.O.; Bradshaw, D.J.; Murdoch, C.; Williams, D.W. Denture-Associated Biofilm Infection in Three-Dimensional Oral Mucosal Tissue Models. J. Med. Microbiol. 2018, 67, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Rupniak, H.T.; Rowlatt, C.; Lane, E.B.; Steele, J.G.; Trejdosiewicz, L.K.; Laskiewicz, B.; Povey, S.; Hill, B.T. Characteristics of Four New Human Cell Lines Derived from Squamous Cell Carcinomas of the Head and Neck. J. Natl. Cancer Inst. 1985, 75, 621–635. [Google Scholar] [PubMed]
- Yang, J.; Deol, G.; Myangar, N. Retention of O-Cymen–5-Ol and Zinc on Reconstructed Human Gingival Tissue from a Toothpaste Formulation. Int. Dent. J. 2011, 61 (Suppl. 3), 41–45. [Google Scholar] [CrossRef]
- Dongari-Bagtzoglou, A.; Kashleva, H. Development of a Highly Reproducible Three-Dimensional Organotypic Model of the Oral Mucosa. Nat. Protoc. 2006, 1, 2012–2018. [Google Scholar] [CrossRef] [PubMed]
- Seubert, A.C.; Krafft, M.; Kretzschmar, K. Generation and Characterization of Murine Oral Mucosal Organoid Cultures. J. Vis. Exp. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sacks, P.G. Cell, Tissue and Organ Culture as in Vitro Models to Study the Biology of Squamous Cell Carcinomas of the Head and Neck. Cancer Metastasis Rev. 1996, 15, 27–51. [Google Scholar] [CrossRef]
- Pi, S.-H.; Lee, S.-K.; Hwang, Y.-S.; Choi, M.-G.; Lee, S.-K.; Kim, E.-C. Differential Expression of Periodontal Ligament-Specific Markers and Osteogenic Differentiation in Human Papilloma Virus 16-Immortalized Human Gingival Fibroblasts and Periodontal Ligament Cells. J. Periodontal Res. 2007, 42, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Dickson, M.A.; Hahn, W.C.; Ino, Y.; Ronfard, V.; Wu, J.Y.; Weinberg, R.A.; Louis, D.N.; Li, F.P.; Rheinwald, J.G. Human Keratinocytes That Express hTERT and Also Bypass a P16(INK4a)-Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics. Mol. Cell Biol. 2000, 20, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.; Akgül, B.; Bostanci, N. Establishment and Characterization of Immortalized Gingival Epithelial and Fibroblastic Cell Lines for the Development of Organotypic Cultures. Cells Tissues Organs 2014, 199, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Zaehres, H.; Wu, G.; Gentile, L.; Ko, K.; Sebastiano, V.; Araúzo-Bravo, M.J.; Ruau, D.; Han, D.W.; Zenke, M.; et al. Pluripotent Stem Cells Induced from Adult Neural Stem Cells by Reprogramming with Two Factors. Nature 2008, 454, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Loh, Y.-H.; Agarwal, S.; Park, I.-H.; Urbach, A.; Huo, H.; Heffner, G.C.; Kim, K.; Miller, J.D.; Ng, K.; Daley, G.Q. Generation of Induced Pluripotent Stem Cells from Human Blood. Blood 2009, 113, 5476–5479. [Google Scholar] [CrossRef]
- Frenz-Wiessner, S.; Fairley, S.D.; Buser, M.; Goek, I.; Salewskij, K.; Jonsson, G.; Illig, D.; Zu Putlitz, B.; Petersheim, D.; Li, Y.; et al. Generation of Complex Bone Marrow Organoids from Human Induced Pluripotent Stem Cells. Nat. Methods 2024, 21, 868–881. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Wang, B.; Lin, N.-H.; Laslett, A.L.; Gronthos, S.; Bartold, P.M. Induced Pluripotent Stem Cell Lines Derived from Human Gingival Fibroblasts and Periodontal Ligament Fibroblasts. J. Periodontal Res. 2011, 46, 438–447. [Google Scholar] [CrossRef]
- Gao, P.; Liu, S.; Wang, X.; Ikeya, M. Dental Applications of Induced Pluripotent Stem Cells and Their Derivatives. Jpn. Dent. Sci. Rev. 2022, 58, 162–171. [Google Scholar] [CrossRef]
- Ohnuki, M.; Takahashi, K. Present and Future Challenges of Induced Pluripotent Stem Cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140367. [Google Scholar] [CrossRef] [PubMed]
- Ravi, M.; Paramesh, V.; Kaviya, S.R.; Anuradha, E.; Solomon, F.D.P. 3D Cell Culture Systems: Advantages and Applications. J. Cell Physiol. 2015, 230, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kinikoglu, B.; Damour, O.; Hasirci, V. Tissue Engineering of Oral Mucosa: A Shared Concept with Skin. J. Artif. Organs 2015, 18, 8–19. [Google Scholar] [CrossRef]
- AlFatlawi, Z.; Huang, M.; Chau, D.Y.S.; D’Aiuto, F. Three Dimensional (3D) Gingival Models in Periodontal Research: A Systematic Review. J. Mater. Sci. Mater. Med. 2023, 34, 58. [Google Scholar] [CrossRef]
- Basso, F.G.; Pansani, T.N.; Marcelo, C.L.; de Souza Costa, C.A.; Hebling, J.; Feinberg, S.E. Phenotypic Markers of Oral Keratinocytes Seeded on Two Distinct 3D Oral Mucosa Models. Toxicol In Vitro 2018, 51, 34–39. [Google Scholar] [CrossRef]
- Chai, W.L.; Brook, I.M.; Palmquist, A.; van Noort, R.; Moharamzadeh, K. The Biological Seal of the Implant–Soft Tissue Interface Evaluated in a Tissue-Engineered Oral Mucosal Model. J. R. Soc. Interface 2012, 9, 3528–3538. [Google Scholar] [CrossRef] [PubMed]
- Razali, M.; Ngeow, W.C.; Omar, R.A.; Chai, W.L. An In-Vitro Analysis of Peri-Implant Mucosal Seal Following Photofunctionalization of Zirconia Abutment Materials. Biomedicines 2021, 9, 78. [Google Scholar] [CrossRef]
- de Carvalho Dias, K.; de Sousa, D.L.; Barbugli, P.A.; Cerri, P.S.; Salih, V.M.; Vergani, C.E. Development and Characterization of a 3D Oral Mucosa Model as a Tool for Host-Pathogen Interactions. J. Microbiol. Methods 2018, 152, 52–60. [Google Scholar] [CrossRef]
- Koskinen Holm, C.; Qu, C. Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D. Int. J. Mol. Sci. 2022, 23, 7401. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.-Z.; South, A.P. Tissue Engineering of Tumor Stromal Microenvironment with Application to Cancer Cell Invasion. J. Vis. Exp. 2014, 51321. [Google Scholar] [CrossRef]
- Mauch, C.; Hatamochi, A.; Scharffetter, K.; Krieg, T. Regulation of Collagen Synthesis in Fibroblasts within a Three-Dimensional Collagen Gel. Exp. Cell Res. 1988, 178, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Chevallay, B.; Herbage, D. Collagen-Based Biomaterials as 3D Scaffold for Cell Cultures: Applications for Tissue Engineering and Gene Therapy. Med. Biol. Eng. Comput. 2000, 38, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Yannas, I.V.; Burke, J.F.; Orgill, D.P.; Skrabut, E.M. Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin. Science 1982, 215, 174–176. [Google Scholar] [CrossRef]
- Mathes, S.H.; Wohlwend, L.; Uebersax, L.; von Mentlen, R.; Thoma, D.S.; Jung, R.E.; Görlach, C.; Graf-Hausner, U. A Bioreactor Test System to Mimic the Biological and Mechanical Environment of Oral Soft Tissues and to Evaluate Substitutes for Connective Tissue Grafts. Biotechnol. Bioeng. 2010, 107, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Maia, L.P.; Novaes, A.B.; Souza, S.L.S.; Grisi, M.F.M.; Taba, M.; Palioto, D.B. In Vitro Evaluation of Acellular Dermal Matrix as a Three-Dimensional Scaffold for Gingival Fibroblasts Seeding. J. Periodontol. 2011, 82, 293–301. [Google Scholar] [CrossRef]
- Basso, F.G.; Pansani, T.N.; Soares, D.G.; Hebling, J.; de Souza Costa, C.A. LLLT Effects on Oral Keratinocytes in an Organotypic 3D Model. Photochem. Photobiol. 2018, 94, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Kodama, Y.; Miwa, K.; Kishimoto, K.; Hoshikawa, E.; Haga, K.; Sato, T.; Mizuno, J.; Izumi, K. Manufacturing Micropatterned Collagen Scaffolds with Chemical-Crosslinking for Development of Biomimetic Tissue-Engineered Oral Mucosa. Sci. Rep. 2020, 10, 22192. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Kato, H.; Kawakami, T.; Kodama, Y.; Shiozawa, M.; Kuwae, H.; Miwa, K.; Hoshikawa, E.; Haga, K.; Shiomi, A.; et al. Development of Microstructured Fish Scale Collagen Scaffolds to Manufacture a Tissue-Engineered Oral Mucosa Equivalent. J. Biomater. Sci. Polym. Ed. 2020, 31, 578–600. [Google Scholar] [CrossRef] [PubMed]
- Adelfio, M.; Martin-Moldes, Z.; Erndt-Marino, J.; Tozzi, L.; Duncan, M.J.; Hasturk, H.; Kaplan, D.L.; Ghezzi, C.E. Three-Dimensional Humanized Model of the Periodontal Gingival Pocket to Study Oral Microbiome. Adv. Sci. 2023, 10, e2205473. [Google Scholar] [CrossRef] [PubMed]
- Man, K.; Joukhdar, H.; Manz, X.D.; Brunet, M.Y.; Jiang, L.-H.; Rnjak-Kovacina, J.; Yang, X.B. Bone Tissue Engineering Using 3D Silk Scaffolds and Human Dental Pulp Stromal Cells Epigenetic Reprogrammed with the Selective Histone Deacetylase Inhibitor MI192. Cell Tissue Res. 2022, 388, 565–581. [Google Scholar] [CrossRef]
- Kriegebaum, U.; Mildenberger, M.; Mueller-Richter, U.D.A.; Klammert, U.; Kuebler, A.C.; Reuther, T. Tissue Engineering of Human Oral Mucosa on Different Scaffolds: In Vitro Experiments as a Basis for Clinical Applications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, S190–S198. [Google Scholar] [CrossRef]
- Moscato, S.; Mattii, L.; D’Alessandro, D.; Cascone, M.G.; Lazzeri, L.; Serino, L.P.; Dolfi, A.; Bernardini, N. Interaction of Human Gingival Fibroblasts with PVA/Gelatine Sponges. Micron 2008, 39, 569–579. [Google Scholar] [CrossRef]
- Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [Google Scholar] [CrossRef]
- Sala, F.; Castriotta, M.; Paiè, P.; Farina, A.; D’Annunzio, S.; Zippo, A.; Osellame, R.; Bragheri, F.; Bassi, A. High-Throughput 3D Imaging of Single Cells with Light-Sheet Fluorescence Microscopy on Chip. Biomed. Opt. Express 2020, 11, 4397. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, D.; Zhou, R.; Zhang, Y. 3D X-Ray Micro-Computed Tomography Imaging for the Microarchitecture Evaluation of Porous Metallic Implants and Scaffolds. Micron 2021, 142, 102994. [Google Scholar] [CrossRef]
- Morin, M.-P.; Grenier, D. Regulation of Matrix Metalloproteinase Secretion by Green Tea Catechins in a Three-Dimensional Co-Culture Model of Macrophages and Gingival Fibroblasts. Arch. Oral Biol. 2017, 75, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Dabija-Wolter, G.; Bakken, V.; Cimpan, M.R.; Johannessen, A.C.; Costea, D.E. In Vitro Reconstruction of Human Junctional and Sulcular Epithelium. J. Oral Pathol. Med. 2013, 42, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Nishio, C.; Wazen, R.; Kuroda, S.; Moffatt, P.; Nanci, A. Expression Pattern of Odontogenic Ameloblast-Associated and Amelotin during Formation and Regeneration of the Junctional Epithelium. Eur. Cell Mater. 2010, 20, 393–402. [Google Scholar] [CrossRef]
- Oshiro, A.; Iseki, S.; Miyauchi, M.; Terashima, T.; Kawaguchi, Y.; Ikeda, Y.; Shinomura, T. Lipopolysaccharide Induces Rapid Loss of Follicular Dendritic Cell-Secreted Protein in the Junctional Epithelium. J. Periodontal Res. 2012, 47, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Shimono, M.; Ishikawa, T.; Enokiya, Y.; Muramatsu, T.; Matsuzaka, K.; Inoue, T.; Abiko, Y.; Yamaza, T.; Kido, M.A.; Tanaka, T.; et al. Biological Characteristics of the Junctional Epithelium. J. Electron. Microsc. 2003, 52, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Locke, M.; Hyland, P.L.; Irwin, C.R.; Mackenzie, I.C. Modulation of Gingival Epithelial Phenotypes by Interactions with Regionally Defined Populations of Fibroblasts. J. Periodontal Res. 2008, 43, 279–289. [Google Scholar] [CrossRef]
- Prime, S.S.; Nixon, S.V.; Crane, I.J.; Stone, A.; Matthews, J.B.; Maitland, N.J.; Remnant, L.; Powell, S.K.; Game, S.M.; Scully, C. The Behaviour of Human Oral Squamous Cell Carcinoma in Cell Culture. J. Pathol. 1990, 160, 259–269. [Google Scholar] [CrossRef]
- Lu, E.M.-C.; Hobbs, C.; Ghuman, M.; Hughes, F.J. Development of an in Vitro Model of the Dentogingival Junction Using 3D Organotypic Constructs. J. Periodontal Res. 2021, 56, 147–153. [Google Scholar] [CrossRef]
- Lu, E.M.-C.; Hobbs, C.; Dyer, C.; Ghuman, M.; Hughes, F.J. Differential Regulation of Epithelial Growth by Gingival and Periodontal Fibroblasts in vitro. J. Periodontal Res. 2020, 55, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Kypta, R. Secreted Antagonists of the Wnt Signalling Pathway. J. Cell Sci. 2003, 116, 2627–2634. [Google Scholar] [CrossRef]
- Yeasmin, S.; Ceccarelli, J.; Vigen, M.; Carrion, B.; Putnam, A.J.; Tarle, S.A.; Kaigler, D. Stem Cells Derived from Tooth Periodontal Ligament Enhance Functional Angiogenesis by Endothelial Cells. Tissue Eng. Part A 2014, 20, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Smirani, R.; Rémy, M.; Devillard, R.; Naveau, A. Use of Human Gingival Fibroblasts for Pre-Vascularization Strategies in Oral Tissue Engineering. Tissue Eng. Regen. Med. 2022, 19, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Roffel, S.; Wu, G.; Nedeljkovic, I.; Meyer, M.; Razafiarison, T.; Gibbs, S. Evaluation of a Novel Oral Mucosa in Vitro Implantation Model for Analysis of Molecular Interactions with Dental Abutment Surfaces. Clin. Implant. Dent. Relat. Res. 2019, 21, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Barker, E.; AlQobaly, L.; Shaikh, Z.; Franklin, K.; Moharamzadeh, K. Implant Soft-Tissue Attachment Using 3D Oral Mucosal Models—A Pilot Study. Dent. J. 2020, 8, 72. [Google Scholar] [CrossRef]
- Ingendoh-Tsakmakidis, A.; Mikolai, C.; Winkel, A.; Szafrański, S.P.; Falk, C.S.; Rossi, A.; Walles, H.; Stiesch, M. Commensal and Pathogenic Biofilms Differently Modulate Peri-Implant Oral Mucosa in an Organotypic Model. Cell Microbiol. 2019, 21, e13078. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.L.; Moharamzadeh, K.; van Noort, R.; Emanuelsson, L.; Palmquist, A.; Brook, I.M. Contour Analysis of an Implant--Soft Tissue Interface. J. Periodontal Res. 2013, 48, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Brook, I.; Emanuelsson, L.; Palmquist, A.; Noort, R.; Moharamzadeh, K. Ultrastructural Analysis of Implant-Soft Tissue Interface on a Three Dimensional Tissue-Engineered Oral Mucosal Model. J. Biomed. Mater. Res. Part A 2012, 100, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, C.; Rahimi, B.; Padova, D.; Rooholghodos, S.A.; Bienek, D.R.; Luo, X.; Kaufman, G.; Raub, C.B. Oral Mucosa-on-a-Chip to Assess Layer-Specific Responses to Bacteria and Dental Materials. Biomicrofluidics 2018, 12, 054106. [Google Scholar] [CrossRef]
- Chai, W.L.; Moharamzadeh, K.; Brook, I.M.; Van Noort, R. A Review of Histomorphometric Analysis Techniques for Assessing Implant-Soft Tissue Interface. Biotech. Histochem. 2011, 86, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Hermann, J.S.; Buser, D.; Schenk, R.K.; Schoolfield, J.D.; Cochran, D.L. Biologic Width around One- and Two-Piece Titanium Implants. Clin. Oral Implants Res. 2001, 12, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Siar, C.H.; Toh, C.G.; Romanos, G.; Swaminathan, D.; Ong, A.H.; Yaacob, H.; Nentwig, G.-H. Peri-Implant Soft Tissue Integration of Immediately Loaded Implants in the Posterior Macaque Mandible: A Histomorphometric Study. J. Periodontol. 2003, 74, 571–578. [Google Scholar] [CrossRef] [PubMed]
- McKinney, R.V., Jr.; Steflik, D.E.; Koth, D.L. Evidence for a Junctional Epithelial Attachment to Ceramic Dental Implants. A Transmission Electron Microscopic Study. J. Periodontol. 1985, 56, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Bjursten, L.M.; Emanuelsson, L.; Ericson, L.E.; Thomsen, P.; Lausmaa, J.; Mattsson, L.; Rolander, U.; Kasemo, B. Method for Ultrastructural Studies of the Intact Tissue-Metal Interface. Biomaterials 1990, 11, 596. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.L.; Moharamzadeh, K.; Brook, I.M.; Emanuelsson, L.; Palmquist, A.; van Noort, R. Development of a Novel Model for the Investigation of Implant-Soft Tissue Interface. J. Periodontol. 2010, 81, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Gidvall, S.; Prgomet, Z.; Hernandez, A.R.; Ruzgas, T.; Nilsson, E.J.; Davies, J.; Valetti, S. Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies. Pharmaceutics 2023, 15, 1513. [Google Scholar] [CrossRef] [PubMed]
- Engqvist, H.; Botton, G.A.; Couillard, M.; Mohammadi, S.; Malmström, J.; Emanuelsson, L.; Hermansson, L.; Phaneuf, M.W.; Thomsen, P. A Novel Tool for High-Resolution Transmission Electron Microscopy of Intact Interfaces between Bone and Metallic Implants. J. Biomed. Mater. Res. A 2006, 78, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Rath, H.; Stumpp, S.N.; Stiesch, M. Development of a Flow Chamber System for the Reproducible in Vitro Analysis of Biofilm Formation on Implant Materials. PLoS ONE 2017, 12, e0172095. [Google Scholar] [CrossRef]
- Ly, K.; Rooholghodos, S.A.; Rahimi, C.; Rahimi, B.; Bienek, D.R.; Kaufman, G.; Raub, C.B.; Luo, X. An Oral-Mucosa-on-a-Chip Sensitively Evaluates Cell Responses to Dental Monomers. Biomed. Microdevices 2021, 23, 7. [Google Scholar] [CrossRef]
- Tiozzo-Lyon, P.; Andrade, M.; Leiva-Sabadini, C.; Morales, J.; Olivares, A.; Ravasio, A.; Aguayo, S. Microfabrication Approaches for Oral Research and Clinical Dentistry. Front. Dent. Med. 2023, 4, 1120394. [Google Scholar] [CrossRef]
- Huang, C.; Sanaei, F.; Verdurmen, W.P.R.; Yang, F.; Ji, W.; Walboomers, X.F. The Application of Organs-on-a-Chip in Dental, Oral, and Craniofacial Research. J. Dent. Res. 2023, 102, 364. [Google Scholar] [CrossRef]
- Martín-de-Llano, J.J.; Mata, M.; Peydró, S.; Peydró, A.; Carda, C. Dentin Tubule Orientation Determines Odontoblastic Differentiation in vitro: A Morphological Study. PLoS ONE 2019, 14, e0215780. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.M.P.; Moura, G.E.; Machado, M.F.M.; Viana, G.M.; de Souza Costa, C.A.; Tjäderhane, L.; Nader, H.B.; Tersariol, I.L.S.; Nascimento, F.D. PAR–1 and PAR–2 Expression Is Enhanced in Inflamed Odontoblast Cells. J. Dent. Res. 2017, 96, 1518–1525. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, H.; Liu, Y.; Wang, Y.; Li, A.; Liu, R.; Zou, R.; Yang, Q. Microfluidic Chip for Odontoblasts in Vitro. ACS Biomater. Sci. Eng. 2019, 5, 4844–4851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, L.; Wang, S.; Sun, X.; Luo, C.; Hou, B. Construction of Dentin-on-a-Chip Based on Microfluidic Technology and Tissue Engineering. J. Dent. 2024, 146, 105028. [Google Scholar] [CrossRef] [PubMed]
- França, C.M.; Tahayeri, A.; Rodrigues, N.S.; Ferdosian, S.; Rontani, R.M.P.; Sereda, G.; Ferracane, J.L.; Bertassoni, L.E. The Tooth On-a-Chip: A Microphysiologic Model System Mimicking the Biologic Interface of the Tooth with Biomaterials. Lab. Chip 2019, 20, 405. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.S.; França, C.M.; Tahayeri, A.; Ren, Z.; Saboia, V.P.A.; Smith, A.J.; Ferracane, J.L.; Koo, H.; Bertassoni, L.E. Biomaterial and Biofilm Interactions with the Pulp-Dentin Complex-on-a-Chip. J. Dent. Res. 2021, 100, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Kou, N.; An, F.; Gao, Z.; Tian, T.; Hui, J.; Chen, C.; Ma, G.; Mao, H.; Liu, H. Analyzing Human Periodontal Soft Tissue Inflammation and Drug Responses In Vitro Using Epithelium-Capillary Interface On-a-Chip. Biosensors 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.; Zhou, Y.; Tan, K.S.; Lim, C.T.; Sriram, G. Modeling Crevicular Fluid Flow and Host-Oral Microbiome Interactions in a Gingival Crevice-on-Chip. Adv. Healthc. Mater. 2023, 12, e2202376. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xie, Z.; Zhang, W.; Fang, S.; Kong, J.; Jin, D.; Li, J.; Li, X.; Yang, X.; Luo, Y.; et al. Biomimetic Tumor-Induced Angiogenesis and Anti-Angiogenic Therapy in a Microfluidic Model. RSC Adv. 2016, 6, 35248–35256. [Google Scholar] [CrossRef]
Characteristics | Oral Epithelium | Junctional Epithelium | Peri-Implant Epithelium | In Vitro 3D Models |
---|---|---|---|---|
Type of epithelium | stratified, squamous, keratinized | stratified, squamous, non-keratinized | stratified, squamous, non-keratinized | |
Cell layers | 10–20 cells basal, granulosum, corneum | 15–20 cells coronally, 1–3 cells apically (close to the tooth) | 3–6 cell layers, thin | 3–6 cell layers, thin |
Length of epithelium | n.a. | 0.25–1.35 mm | 2 mm | n.d. |
Keratinocyte cell shape | cuboidal (basal layer), irregular (prickle), flattened, and keratinized | cuboidal (basal layer), flattened (supra-basal) | n.d. | flattened cells in 3D |
Intercellular connections | desmosomes, tight and gap junctions | desmosones | ||
Soft-tissue tooth/implant attachment | n.a. | numerous hemi-desmosomes | few hemi-desmosomes | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavriiloglou, M.; Hammad, M.; Iliopoulos, J.M.; Layrolle, P.; Apazidou, D.A. Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. J. Funct. Biomater. 2024, 15, 330. https://doi.org/10.3390/jfb15110330
Gavriiloglou M, Hammad M, Iliopoulos JM, Layrolle P, Apazidou DA. Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. Journal of Functional Biomaterials. 2024; 15(11):330. https://doi.org/10.3390/jfb15110330
Chicago/Turabian StyleGavriiloglou, Marianna, Mira Hammad, Jordan M. Iliopoulos, Pierre Layrolle, and Danae A. Apazidou. 2024. "Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models" Journal of Functional Biomaterials 15, no. 11: 330. https://doi.org/10.3390/jfb15110330
APA StyleGavriiloglou, M., Hammad, M., Iliopoulos, J. M., Layrolle, P., & Apazidou, D. A. (2024). Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. Journal of Functional Biomaterials, 15(11), 330. https://doi.org/10.3390/jfb15110330