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Abstract: Since the discovery that exosomes can exchange genes, their potential use as tools for
tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention.
Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the
printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential
to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting
facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion.
In this review, we discussed a convergence approach between two promising technologies for
bioprinting and exosomes in regenerative medicine. Among the various 3D cell culture methods
used for exosome production, we focused on spheroids, which are suitable for mass production by
bioprinting. We then summarized the research results on cases of bioprinting applications using
the spheroids and exosomes produced. If a large number of spheroids can be supplied through
bioprinting, the spheroid-exosome-based bioprinting technology will provide new possibilities for
application in tissue regeneration, disease diagnosis, and treatment.

Keywords: bioprinting; exosome; spheroid; regenerative medicine; tissue engineering

1. Introduction

Stem cells, which can differentiate into various cell types in the body, can be easily
stored, expanded, and transplanted into other people [1]. Because of these advantages,
stem cell-based therapies have been actively developed. However, the therapeutic effects
of stem cell therapies are not due to the direct replacement of damaged cells or tissues by
stem cells but are primarily the result of paracrine effects from various factors secreted by
stem cells [2]. Moreover, stem cell therapies have limitations in their application owing to
the potential risk of tumor formation [3].

Recent research on stem cell therapies has focused more on utilizing substances
secreted by stem cells than on the direct administration of the stem cells themselves. Stem
cell-secreted extracellular vesicles (EVs) containing nucleic acids, proteins, and lipids, can
mediate tissue regeneration by delivering these components to the local microenvironment
of damaged cells or tissues [4,5]. Initially, EVs secreted by most eukaryotic and prokaryotic
cells were considered to be waste products. However, since the mid-1990s, when EVs
were discovered to play a role in immune responses, they have demonstrated clinical
potential as drug-delivery vehicles, therapeutics, and diagnostic tools [6–8]. Lipid-bound
EVs secreted by cells can be classified into three subtypes: exosomes, micro-vesicles, and
apoptotic bodies, each with unique characteristics based on their biosynthesis, release
pathways, size, content, and function [9]. Among these, exosomes, which are lipid bilayer
vesicles of 30–150 nm in size that originate from the endosomal membrane, are of particular
interest [8,10–13]. Proteins, lipids, and nucleic acids within exosomes vary depending
on the state and environment of the secreting cells. The key proteins include annexins,
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tetraspanins, heat shock proteins, and flotillins, all of which play crucial roles in exosome
function and reflect the physiological state of cells [14]. The lipid components of exosomes
include cholesterol, sphingolipids, phosphoglycerides, and ceramides, and their glycan-
rich structures are key to their signaling and structural functions [15]. Exosomes also
contain microRNAs (miRNAs) involved in secretion, hematopoiesis, and angiogenesis,
making them attractive for use in disease diagnostics, drug delivery, and therapeutic
modulation [16–18]. Exosomes have great potential in regenerative medicine because they
are involved in physiological processes through intercellular communication and reflect
the state of the cells from which they originate. Current research on exosomes focuses
on their efficacy in three main applications: therapeutics, diagnostics, and drug delivery
vehicles [19–21].

Exosomes have uniquely high targeting capabilities, and numerous studies have
demonstrated both autocrine and paracrine effects. For example, cancer cells interact via
exosome-mediated communication to facilitate metastasis. Exosomes can also be engi-
neered to modify their targeting behavior by attaching specific types of antibodies [22].
As exosomes are less immunogenic than their originating cells, they offer a promising
opportunity to improve current therapeutic systems [21]. One example is the use of exo-
somes in the treatment of cardiovascular diseases. Given their ability to carry proteins and
messenger RNAs (mRNAs) between cells, exosomes can promote angiogenesis, enhance
coagulation, exert anti-inflammatory effects, and regulate cardiomyocytes and endothelial
cells, leading to the formation of new blood vessels and restoration of the oxygen supply
to hypoxic regions [11]. Exosomes derived from mesenchymal stem cells (MSCs) have
been studied for the treatment of various diseases, including cancer, neurodegenerative
diseases, and immune disorders [22–24]. For instance, exosomes from adipose-derived
MSCs have been shown to protect against myocardial damage [25], whereas exosomes
from bone marrow-derived MSCs (BMSCs) promote neural regeneration [26]. Clinical trials
using MSC-derived exosomes are currently underway, and various therapeutic strategies
are being developed [27].

Because exosomes reflect the cellular origin and condition, they have potential as
biomarkers for diseases. Exosomes from tumors, stromal cells, and immune cells are in-
volved in tumor growth, signaling, and treatment resistance, making them useful for cancer
diagnosis and monitoring immunotherapy, as they are found in various bodily fluids such
as plasma, saliva, and urine [28]. The up-regulation of miRNA and proteins in cancer cell-
derived exosomes can aid in the early detection and prediction of treatment responses in
various malignancies, including ovarian, breast, cervical, gastric, pancreatic, and lung can-
cers [29,30]. Exosomes are also being explored as biomarkers of neurodegenerative diseases,
diabetes, and cardiovascular diseases [31–36]. They have been identified in amyloid-beta
plaques in Alzheimer’s disease [31], and miRNAs associated with multiple sclerosis [34],
type 1 diabetes, and insulin resistance have been observed in exosomes [35,36].

Compared to synthetic drug carriers, exosomes derived from patients’ cells have
high biocompatibility and low toxicity, making them ideal for drug delivery. Exosomes
can cross the blood-brain barrier and can be modified on their surface to enhance tissue
specificity [37,38]. Studies have shown that using exosomes to deliver anticancer drugs,
such as doxorubicin (Dox) and paclitaxel (PTX) reduces cytotoxicity and increases thera-
peutic efficacy. For instance, Dox-loaded exosomes exhibited lower cytotoxicity and easier
absorption, while PTX-loaded exosomes demonstrated potent anticancer effects in a lung
metastasis model [39,40]. Moreover, exosomes have been shown to suppress tumors and
protect neurons by delivering gemcitabine for pancreatic cancer treatment or dopamine
for Parkinson’s disease [41,42]. These examples highlight the potential of exosomes as
drug-delivery systems.

However, challenges such as the lack of standardization in exosome isolation and
purification techniques, low yield, and variability in the drug delivery potential of different
exosomes remain unaddressed [31,43]. The presence of protein mixtures during the isola-



J. Funct. Biomater. 2024, 15, 345 3 of 20

tion process may affect the recovery yield and biological activity of the exosomes. Further
improvements and standardization of exosome isolation techniques are necessary [44].

2. Production of Exosomes

Traditionally, cells have been cultured in two-dimensional (2D) monolayers on flat
glass or plastic surfaces because of their simplicity and convenience [45]. However, 2D cell
cultures limit cell–cell and cell–extracellular matrix (ECM) interactions, thereby restricting
cellular responsiveness. Consequently, toxicity testing of materials and substances in 2D
cultures cannot fully predict the in vivo effects [46,47]. In addition, when cells are cultured
in 2D flasks, the surface area of the culture vessel is proportional to cell growth and the
number of exosomes produced, making large-scale EV production inefficient [48]. There-
fore, 3D culture methods have been employed to grow cells in a more natural, in vivo-like
state, with the aim of producing exosomes while minimizing changes in cell tissues [49,50].

Three-dimensional cell culture methods can be broadly categorized into scaffold-based,
natural or synthetic polymer-based, and scaffold-free methods (Figure 1). Scaffold-based
methods can be further divided into approaches that use hydrogels and those that use
porous solid scaffolds [51]. Hydrogels are created by crosslinking basic materials such as
collagen, fibrin, hyaluronic acid, or agarose in a loose, swellable form, encapsulating the
cells within the hydrogel for cell growth [52]. Furthermore, hydrogels can be designed to
enhance specific cell growth and functions by adding artificial ECM protein environments
or encouraging cells to migrate inward from the gel surface [53–55]. However, when cells
are seeded on porous solid scaffolds, the scaffold provides a 3D space for cell attachment
and protection from external forces. The interconnected pores allow for natural cell–cell
interactions, forming structures similar to natural 3D tissues as the cells grow. Because
scaffold structure control and reproducibility are achievable, scaffold-based 3D cultures can
create consistent tissue models in vitro [51]. Yu et al. developed a self-assembling collagen
hydrogel and demonstrated that the exosome production yield in their gel was 2.5 times
higher, with the protein content increasing by 2.9 times [56].
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Scaffold-free methods rely on the natural adhesion between cells to form spheroids
without attachment to a scaffold. Several scaffold-free spheroid formation techniques
have been reported [47,49]. The hanging drop method is a 3D culture technique that uses
a mechanism to collect cells at the center of a droplet, allowing them to spontaneously
aggregate [57,58]. The advantage of this method is that spheroids are formed without
requiring a support structure. Additionally, the hanging drop method is relatively simple,
easy to perform, and cost-effective compared with other methods. Kim et al. produced
mesenchymal stem cell (MSC)-derived spheroids and found that exosome production
from the spheroids was twice as high as that from 2D cultures [59]. Giusti et al. used the
hanging drop method to create 3D spheroids of cancer cells that mimicked in vivo tumor
characteristics [60]. However, producing only one spheroid per droplet is time-consuming,
and there is a size limitation for spheroids [61]. The limited production yield of the hanging
drop method is directly related to difficulties in extracting exosomes and the inability to
change the culture medium [62].

A spinner flask is a 3D cell culture system that gently stirs a cell suspension in
a medium, causing the cells to aggregate into spheroids [63]. The spinner flask has two side
caps that uniformly regulate the oxygen concentration. The ability to produce large quanti-
ties of spheroids via mass culture is a key advantage of this system. Exosomes isolated from
MSCs cultured in a spinner flask delivered small interfering RNAs (siRNAs) to neurons
more effectively than those derived from 2D MSC cultures [64]. However, shear stress
caused by rotation can damage cultured cells [65], and the size of the spheroids produced
is often inconsistent, requiring careful control of the stirring speed [66,67]. Furthermore,
a serum is required for cell aggregation in the spinner flask; however, because cells must
be cultured in a serum-free medium for exosome isolation, this can be a drawback for
exosome production.

A hollow-fiber bioreactor is a 3D cell culture system in which multiple hollow, semi-
permeable fiber membranes are placed within flowing media. In 3D cultures, cells are
seeded either inside or outside the fibers, which are approximately 200 µm in diameter.
Gas and nutrient exchanges occur through semi-permeable membranes. The medium
typically flows in one direction to remove waste from the culture [68]. The closed-circuit
configuration of the hollow-fiber bioreactor allows for the automatic infusion of nutrients
and oxygen through sealed tubes, thereby reducing labor. By connecting multiple hollow
fibers to a single bioreactor, large-scale exosome production is possible, making it suitable
for automated exosome mass production. Recent studies have reported that the exosome
yield from 3D MSCs cultured in bioreactors is 7.5 times higher than that from 2D MSC
cultures [69]. Cao et al. also showed that the exosome yield from 3D MSCs cultured in
a hollow-fiber bioreactor was 19.4 times higher than from 2D exosomes [70].

The micro-well array plate method involves seeding cells into small well arrays (typi-
cally 100 to 500 µm in diameter), where they spontaneously aggregate to form spheroids.
A low-adhesion coating is added to the wells to promote cell self-assembly, and the micro-
wells can be square, cylindrical, hexagonal, or other shapes [71]. This method allows
the production of more spheroids than the hanging drop method [72]. Recent studies
have successfully used spheroids to generate multi-potent stem-like cells under serum-free
conditions, and cultured stem cells secreted exosomes that enhanced fibroblast migration
and proliferation [73,74]. However, the size of spheroids is often inconsistent, and many
cells are lost because they do not participate in spheroid formation.

Magnetic cell levitation has also been developed for spheroid generation [75–78]. This
technique involves loading cells with magnetic nanoparticles and applying an external
magnetic field to force cell aggregation to quickly form multicellular spheroids. The
resulting spheroids can be easily manipulated because of the magnetic properties of the
cells, and the presence of nanoparticles offers advantages for the tracking and imaging
of the cells [79]. However, the incorporation of magnetic particles negatively affects cell
viability, phenotypic expression, and function [80–82]. Further analysis is required to
understand the composition of exosomes released from manipulated cells.
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Finally, the use of bioprinting to produce spheroids involves ejecting bioink-containing
cells into spherical shapes and allowing them to aggregate within the bioink to form
spheroids [83]. The automation of bioprinting systems allows for precise control over the
amount of bioink dispensed, resulting in highly uniform spheroid size. Modulation of the
amount of bioink controls the spheroid size. Automated systems eliminate the need for
manual processes, such as the hanging drop method, which leads to the mass production
of spheroids. In addition, as the number of bioprinting nozzles installed increases, the
number of spheroids produced increases proportionally to the number of nozzles. Jeon et al.
successfully produced various cell spheroids using bioink that included gelatin, which
liquefies at 37 ◦C inside hydrogel [83]. Park et al. successfully produced spheroids by using
this method [84]. Kim et al. introduced a multi-array spheroid bioprinting technology that
made the existing technique scalable [85]. However, the further development of bioprinting
technology for practical use is necessary because of its high costs. Exosome secretion from
spheroids produced by bioprinting is expected to be higher than from 2D cultures; however,
this remains to be explored.

3. Isolation and Storage of Exosomes
3.1. Isolation

Exosomes are difficult to isolate because they vary in size, content, function, and source,
and the purity of exosomes is low because they cannot be separated from lipoproteins and
extracellular vesicles derived from the non-endosomal pathway with similar biological
properties [4]. Therefore, an efficient method to isolate exosomes is very important for
the development of therapeutic technologies utilizing exosomes, and ultracentrifugation,
size-based separation technology, polymer precipitation, and immunoaffinity capture
technology are mainly used.

Ultracentrifugation is the gold standard for exosome isolation and is currently the
most widely used separation technology. This is a technology that uses the difference in
sedimentation coefficient according to the size and density of each component mixed in the
original solution to separate the required components [86]. First, a series of continuous low-
medium speed centrifugation is performed to remove cell debris and large extracellular
vesicles; then, exosomes are separated with a centrifugal force of 100,000× g and are
washed with PBS to remove impurities [87]. However, there are disadvantages such as time
consumption, high cost, structural damage, aggregation into blocks, and co-separation of
lipoproteins [88,89].

Size-based isolation technology is a method that uses size-exclusion chromatography
(SEC) to separate exosomes and other components based on size differences. In SEC, large
molecules cannot enter the gel pores and are eluted along the gap between the porous gels,
while small molecules remain in the gel pores and are eluted last by the mobile phase [90].
Exosomes separated using SEC have the advantage of having a complete structure and
uniform size; however, other particles of similar size may be mixed, which may lower the
purity [89].

Polymer precipitation uses polyethylene glycol as a medium to reduce the solubility of
exosomes in a solvent and harvest them by centrifugation [90]. The polymer precipitation
method has a short analysis time, is relatively easy to operate, and is suitable for processing
a large number of samples. However, it has the disadvantage of relatively low purity and
recovery rate, and it is difficult to remove the used polymer, making subsequent functional
tests difficult [90].

Immunoaffinity chromatography (IAC) is a separation and purification technique
based on the specific binding of antibodies and ligands, and the biomarker (antigen)
applied by this method must be high-abundance proteins on the surface of the exosome
membrane [90]. It has strong specificity, high sensitivity, high purity, and high yield.
Compared to ultracentrifugation, IAC can produce similar results with a smaller sample
amount [91]. However, it is not suitable for isolating exosomes in large quantities.



J. Funct. Biomater. 2024, 15, 345 6 of 20

3.2. Storage

Because exosomes cannot be stored for a long time, it is necessary to study exosome
preservation techniques for convenient transportation and clinical application. The preser-
vation techniques currently used mainly include freezing, freeze-drying, and spray-drying.

Cryopreservation is a method to maintain the functional stability of exosomes by
lowering the temperature below the temperature required for biochemical reactions to
maintain the functional stability of exosomes and is generally applied at temperatures of
4 ◦C, −80 ◦C, and −196 ◦C [90]. Since “frostbite” is likely to occur during the cryopreser-
vation process, an appropriate concentration of antifreeze is selectively added to extend
the storage life [92–94]. Permeable antifreezes such as dimethyl sulfoxide (DMSO) and
ethylene glycol that penetrate into cells can prevent the formation of ice crystals, and it
is known that short-term cryopreservation using DMSO for less than 2 months does not
significantly change the function of exosomes [95]. Non-permeable antifreezes include
trehalose, sucrose, and other carbohydrates. Considering safety, trehalose is known as the
most effective disaccharide antifreeze [96].

Freeze-drying is a technique that changes a moisture-contained material to a solid by
freezing then directly sublimates and removes the ice in the material under a vacuum to
complete the dehydration and drying of the product. The material can be easily stored and
can be reconstituted by simply adding water. During the freeze-drying process, the molecu-
lar structure of biomolecules can be destroyed due to changes in temperature and pressure;
therefore, a type of antifreeze is added to improve the preservation performance [97].

Spray-drying is a technique that sprays an extracellular vesicles solution in a drying
room and rapidly evaporates the solvent in contact with hot air to obtain a dried powder.
In this technique, the spray pressure and outlet temperature affect the exosome stability,
and the product particle size can be controlled [94]. To date, the most widely used storage
method is −80 ◦C freezing; however, there have been reports that the biological activity
of exosomes decreases during 28 days of storage at −80 ◦C [98]. Therefore, studies on the
long-term storage stability of exosomes are also thought to be necessary.

4. Utilization of Bioprinting in Exosome-Related Regenerative Medicine
4.1. Bioprinting

Printing technology, which creates 3D structures by sequentially stacking 2D pattern
layers, has shown significant potential in the field of regenerative medicine, particularly
when combined with medical imaging data. One of its notable applications is bioprint-
ing, which integrates cells and growth factors into a bioink, using a precisely controlled
three-axis stage to print 3D structures. This technology has gained attention as a promising
method for the regeneration of soft and complex tissue regeneration [99]. With technological
advances, significant demonstrations have been made in various fields such as bone engi-
neering, artificial blood vessels, nerve injury treatment, and skin regeneration [100–103].
However, to improve tissue reconstruction similar to that of the original human tissues or or-
gans, the supply of more cells and biomolecules for organizing the printed cells is essential.
The use of spheroids and the application of exosomes secreted from spheroids are drawing
attention as technologies that satisfy both cell organization and biomolecule supply. Among
the bioprinting techniques studied, the following are primarily used: (1) extrusion-based
bioprinting, which controls the deposition by moving the x-y-z axis stage while simultane-
ously extruding thermoplastic polymers or hydrogels through a nozzle; (2) inkjet-based
bioprinting, which creates 3D structures by placing low-viscosity bioink containing cells
and exosomes in designated positions; and (3) stereolithography bioprinting, which solidi-
fies specific patterns through light exposure in liquid polymers containing photo-initiators
(Figure 2).
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4.2. Exosome-Loaded Bioprinting

During bioprinting, the cells require assistance from biomolecules or their surrounding
environment to organize more quickly into tissues. To create a favorable environment for
the target tissue, researchers have experimented with using a tissue-derived extracellular
matrix as a printing material or combining various types of cells that constitute the tissue
for bioprinting. Additionally, growth factors such as bone morphogenetic protein (BMP),
transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and
fibroblast growth factor (FGF), which activate tissue reconstruction, have been utilized.
Biomolecules extracted from cultured cells, instead of refined growth factors, have been
reported to reduce adverse reactions and are more cell-friendly [104–106]. This chapter
summarizes the studies that have directly applied exosome-loaded bioinks for tissue
reconstruction (Table 1).

4.2.1. Bone Regeneration

Bone grafting is a common approach for treating bone tissue loss; however, there
is a shortage of supply relative to demand. To address this issue, tissue-engineered
artificial bone construction using techniques such as bioprinting has gained attention.
However, owing to the limited biological activity of many existing studies aimed at bone
restoration [107], loading exosomes into bioinks for bone tissue regeneration has become
a practical option [108]. Yerneni et al. demonstrated that BMP-2 loaded into engineered
BMP2-exosomes (eBMP2-ex) using inkjet printing technology can regulate osteoblasto-
genesis [109]. Additionally, although both eBMP2-ex and free BMP-2 similarly regulate
osteoblast formation, eBMP2-ex can maintain this effect over a longer period, inducing
osteogenesis both in vitro and in vivo. This was attributed to the ability of eBMP2-ex to
bypass cell surface receptors and deliver BMP-2 directly into the cytoplasm. Chen et al.
mixed BMSCs secreted exosomes with a decellularized cartilage ECM/gelatin methacrylate
bioink and used dynamic projection stereolithography in the visible light spectrum to
fabricate 3D scaffolds [110]. After implanting these scaffolds into a rabbit osteochondral
defect model, the exosomes released from the scaffolds enhanced cartilage regeneration by
rescuing mitochondrial dysfunction in chondrocytes and promoting chondrocyte migration
in vivo.
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Zha et al. produced porous scaffolds using extrusion-based 3D printing by attaching
exosomes loaded with vascular endothelial growth factor-encoding genes to the scaffold for
vascularized bone remodeling [104]. Twelve weeks after the implantation of the exosome-
activated scaffold into a rat defect model and micro-CT analysis, it was confirmed that
the newly formed bone had integrated well with the original tissue. Hematoxylin and
eosin staining confirmed the presence of new blood vessels, and immuno-fluorescence
staining showed positive results for the angiogenic marker CD31. Bari et al. evaluated the
potential for bone tissue regeneration by directly adsorbing the lyosecretome, a lyophilized
formulation of the adipose-derived MSC secretome containing exosomes and proteins,
onto the surface of 3D printed biodegradable polymer structures and integrating it into
alginate bioinks for co-printing with polymers [105]. The addition of mannitol to the
control medium before lyophilization preserved the integrity of the exosomes and stabilized
the secreted proteins. A polycaprolactone (PCL) scaffold prepared using the adsorption
approach showed a rapid release of exosomes and proteins, whereas, in a composite scaffold
composed of PCL and alginate hydrogel, the release of exosomes and proteins could be
controlled by adjusting the composition and crosslinking density of the alginate hydrogel.

Zhang et al. developed 3D-printed polylactic acid (PLA) scaffolds with improved
osteogenic and immunomodulatory potential by incorporating exosomes [111]. After iso-
lating exosomes from human bone marrow stem cells (BMSCs), porous 3D-printed PLA
scaffolds were coated with polydopamine to induce exosome adhesion. The exosome-
loaded scaffold exhibited high biocompatibility and immunomodulatory potential by
reducing the expression of inflammatory markers and the production of reactive oxygen
species (ROS). In addition, the scaffold enhanced the osteogenic differentiation. Sun et al.
noted that bioceramics play a crucial role in macrophage immunomodulation, and they
developed a porous scaffold using β-tricalcium phosphate (β-TCP) bioceramic combined
with alginate and hyaluronic acid bioinks after generating exosomes from macrophages
using 3D bioprinting technology [112]. The 3D bioprinted exosome scaffold exhibited sig-
nificant immunomodulatory effects and enhanced osteogenesis and angiogenesis through
sustained exosome release. The scaffold also promoted osteogenic differentiation and
immunosuppression of BMSCs while enhancing angiogenic activity in human umbilical
vein endothelial cells in vitro.

Wu et al. investigated the effects of Schwann cells (SCs) and SC-derived exosomes on
bone tissue regeneration by combining SC exosomes with porous Ti6Al4V scaffolds [113].
They added SC-derived exosomes to BMSC cultures and observed that the group con-
taining the exosomes exhibited increased cell proliferation, migration, and osteogenic
differentiation in vitro. The cellular activity was further enhanced in the group with higher
exosome concentrations (108 particles/mL) than in the group with lower concentrations
(107 particles/mL). Additionally, it was confirmed that exosome incorporation enhanced
the efficacy of titanium alloy scaffolds in bone repair.

4.2.2. Vessel Regeneration

Vessel formation is essential for obtaining clinically relevant tissue volumes and ul-
timately fabricating tissues and organs suitable for transplantation. Three-dimensional
bioprinting can also apply exosomes to enhance the biological activity necessary for vascu-
lar reconstruction. Born et al. demonstrated that MSC-derived exosomes can be integrated
into a methacrylate hydrogel bioink for 3D printing [114]. Increasing the concentration of
lithium phenyl-2,4,6-trimethylbenzoylphosphinate, a UV crosslinker, during the gelation
reduced the initial burst release of exosomes. Additionally, they confirmed through an
endothelial gap closure assay that the exosomes retained their biological activity even
after the 3D printing and photocrosslinking processes. Since this assay has been shown in
their previous research to correlate with in vivo angiogenic promotion, it demonstrated the
therapeutic potential of a gelatin methacrylate (GelMA) bioink containing MSC-derived
exosomes. Maiullari et al. applied exosomes to angiogenesis by collecting exosomes from
human vascular endothelial cells cultured under various stress conditions and using them
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as additives in bioinks [115]. After analyzing the exosomes obtained under different stress
conditions, bioprinted GelMA–alginate structures loaded with exosomes were subcuta-
neously implanted into mice. These results confirm that the exosome-loaded bioprinted
structures supported the formation of new functional blood vessels. They also observed
that exosomes derived from human vascular endothelial cells cultured under hypoxic
conditions in a serum-free medium induced the highest level of vascular maturation.

4.2.3. Nerve Regeneration

Nerve damage, including injuries to the central and peripheral nervous systems, has
a high incidence rate and unclear pathogenesis, with many cases lacking clear treatment
strategies [116]. Recently, many researchers have explored the potential of 3D printing
and exosomes for nerve repair. Liu et al. developed a 3D printed collagen/silk fibroin
scaffold loaded with hypoxia-preconditioned human umbilical cord mesenchymal stem cell
(HUCMSC)-derived exosomes (3D-CSHMExos) to regenerate brain defects after traumatic
brain injury (TBI) [117]. When 3D-CSHMExos were implanted into the damaged brains
of beagle dogs, biocompatibility, neural regeneration, and angiogenesis were improved.
Moreover, the 3D-CSHMExos scaffold suppressed neuronal apoptosis and the expression
of pro-inflammatory factors such as TNF-α and IL-6, while promoting the expression of
the anti-inflammatory factor IL-10, leading to enhanced recovery of motor function after
TBI. Liu et al. investigated the role of scaffold stiffness in hydrogels loaded with MSC-
derived exosomes during nerve regeneration [118]. In experiments using photocrosslinked
hyaluronic acid methacrylate hydrogels, softer hydrogels facilitated the rapid release of
exosomes, which suppressed the expression of IL-1β and TNF-α in damaged nerves and
promoted peripheral nerve repair. This demonstrates that the stiffness of exosome-loaded
hydrogels can control the release rate and pattern of exosomes, thereby offering insights
into the use of scaffold materials for clinical applications.

4.2.4. Muscle Regeneration

As most organs in the body require movement to work properly, certain parts of the
organs contain muscle tissue. Therefore, an understanding of muscle function and the
reconstruction of related tissues is essential for the reconstruction of functional tissues
and organs. Exosomes have been studied to aid muscle tissue regeneration. Yerneni et al.
introduced macrophage-derived exosomes into inkjet-based bioprinting to create scaffolds
and investigated their effects on C2C12 mouse myoblasts [106]. To facilitate bioprinting,
glycerol was added to reduce exosome aggregation and increase the bioink viscosity. The
exosomes involved in printing were absorbed by C2C12 cells within 15 min. Exosomes de-
rived from inflammatory M1 macrophages spatially inhibited muscle generation, whereas
exosomes from regenerative M2 macrophages promoted a microenvironment conducive to
muscle generation, thereby inducing myogenesis.

4.2.5. Others

To date, the use of exosome-based bioprinting technologies in cancer treatment has not
been systematically studied. However, animal experiments have shown promising poten-
tial, and bioprinting can easily supply multiple homogeneous samples, making exosomes
highly promising biomarkers for diagnostic purposes. Yerneni et al. proposed a novel
method using rapidly scalable oligonucleotide tethers that enables surface functionaliza-
tion of human and rat exosomes [119]. This exosome surface modification tool can easily
and efficiently enhance various natural characteristics of exosomes, ranging from reactive
functional groups and small molecules to aptamers and large proteins. Immunomodulatory
protein functionalized exosomes, when bioprinted into a collagen matrix, allow spatial for
the induction of cell death in tumor cells during printing and inhibit the proliferation of
alloreactive T cells when injected into mice. Theodoraki et al. monitored the responses of
18 patients treated for head and neck squamous cell carcinoma (HNSCC) using circulating
tumor-derived exosomes (TEX) and T-cell-derived exosomes instead of immune cells [120].
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In patients with disease recurrence, the total exosome protein, TEX/total exosome ratio,
and total regulatory T cell-derived (CD3+, CD3(-)PD-L1+, and CD3+ CD15s+) exosomes
increased from baseline levels. In disease-free patients, total exosome protein and TEX
levels decreased, while CD3+ and CD3+ CD15s+ exosomes stabilized, and CD3+ CTLA4+
exosomes decreased after treatment with ipilimumab. This demonstrates the potential role
of exosomes as tumor biomarkers.

Table 1. Bioprinting studies using exosomes.

Authors (Year) Utilization Target Printing Method Printing Materials

Yerneni et al.
(2021) [109] Engineered BMP2-exosomes Bone Inkjet-based printing Aellular dermal matrix

Chen et al.
(2019) [110] BMSCs derived exosomes Bone and cartilage Dynamic projection

stereolithography

Decellularized cartilage
ECM/gelatin
methacrylate

Zha et al.
(2021) [104]

Vascular endothelial growth
factor-encoding genes

loaded exosomes
Bone and vessel Extrusion-based

bioprinting Polycaprolactone

Bari et al.
(2021) [105]

Adipose derived
MSC secretomes Bone Extrusion-based

bioprinting Polycaprolactone

Zhang et al.
(2021) [111] BMSCs derived exosomes Bone Extrusion-based

bioprinting Polylactic acid

Sun et al.
(2022) [112]

Macrophages
derived exosomes Bone and vessel Extrusion-based

bioprinting

β-tricalcium phosphate
(β-TCP)/alginate/

hyaluronic acid

Wu et al.
(2020) [113]

Schwann cells (SCs)
derived exosomes Bone Electron beam-melting

3D printing Ti6Al4V

Born et al.
(2022) [114] MSC derived exosomes Vessel Stereolithography Gelatin methacrylate

Maiullari et al.
(2021) [115]

Human vascular endothelial
cells derived exosomes Vessel Extrusion-based

bioprinting
Gelatin

methacrylate/alginate

Liu X. et al.
(2022) [117]

Human umbilical cord
mesenchymal stem

cell-derived exosomes
Nerve and vessel Extrusion-based

bioprinting Collagen/silk fibroin

Liu Z. et al.
(2022) [118]

Human umbilical cord
mesenchymal stem

cell-derived exosomes
Nerve Photocrosslinking hyaluronic acid

methacrylate

Yerneni et al.
(2019) [106]

Macrophage-derived
exosomes (M1 and M2) Muscle Inkjet-based

bioprinting Glycerol

Yerneni et al.
(2019) [119]

Immunomodulatory protein
functionalized exosomes Tumor cells Inkjet-based

bioprinting Glycerol

Theodoraki et al.
(2019) [120]

Tumor-derived exosomes
(TEX) and T-cell

derived exosomes
Cancer diagnosis Inkjet-based

bioprinting Glycerol

4.3. Spheroid-Loaded Bioprinting

Since Mironov’s initial efforts to bioprint spheroids and investigate their potential
for vascularization [121,122], numerous examples of spheroid usage in bioprinting have
emerged. This chapter summarizes studies focusing on spheroid bioprinting combined
with the release of cell-secreted products, such as exosomes (Table 2).
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Table 2. Bioprinting studies using spheroids.

Authors (Year) Utilization Target Printing Method Printing Materials

Jeon et al.
(2020) [83]

Spheroids, including
hepatocytes, pancreatic β-cells,

and breast cancer cells
Various tissue Extrusion-based

bioprinting Collagen/gelatin/alginate

Han et al.
(2022) [123]

Bioprinted spheroids for
exosome secretion Breast cancer Extrusion-based

bioprinting
Collagen/alginate/

Hyaluronic acid

Kim et al.
(2023) [124] Hepatocyte spheroids Liver Extrusion-based

bioprinting

Decellularized extracellular
matrix/hyaluronic

acid/gelatin

Park et al.
(2021) [84]

Spheroidal multicellular
microarchitectures with

endothelial cells
Muscle Extrusion-based

bioprinting
Decellularized extracellular

matrix/alginate

Kim et al.
(2022) [125]

Decellularized
extracellular matrix Vessel Extrusion-based

bioprinting
Decellularized

extracellular matrix

Decarli et al.
(2023) [126]

Mesenchymal stromal
cell spheroids Cartilage Extrusion-based

bioprinting Xanthan gum-alginate

Kim et al.
(2024) [127]

MicroRNA-
transfected spheroids Bone and cartilage Extrusion-based

bioprinting

Gelatin
methacryloyl/fibrinogen/

hyaluronic acid

Jeon et al. developed a new spheroid bioprinting technology called 3D bio-dot print-
ing, which allows the precise creation of 3D patterns with various cell spheroids [83]
(Figure 3a). This technology created non-adhesive micro-pores within 3D structures to
induce the formation of cell spheroids. Their work realized in situ formation of different
cell spheroids, including hepatocytes, pancreatic β-cells, and breast cancer cells, and allows
for the printing of 3D structures with multiple spheroid types. The usefulness of this
technology for improving liver function and drug metabolism has been demonstrated.
Han et al. applied this technique to create in vitro breast cancer models that accurately
mimicked patient-specific cancer morphologies [123]. This method generates cancer cell
spheroids with ductal and solid microstructures, reflecting different stages of breast can-
cer. The bioprinted models exhibited genotypic and phenotypic characteristics, including
hypoxia, invasion, and drug resistance, similar to those of human cancers. Kim et al.
precisely bioprinted decellularized extracellular matrix (dECM)-incorporated hepatocyte
spheroids with diameters of approximately 160–220 µm using primary mouse hepatocytes
(PMH) [124]. Compared with hepatocyte-only spheroids, dECM-incorporated hepatocyte
spheroids exhibited approximately 4.3-fold and 2.5-fold increased albumin and urea se-
cretion levels, respectively, a 2.0-fold increase in CYP enzyme activity, and up to 1.8-fold
enhanced drug reactivity to hepatotoxic drugs. Their spheroid printing technique showed
great potential for the development of a highly functional in vitro liver tissue model for
drug toxicity assessment. Similarly, Park et al. developed a precise and efficient method for
printing spheroidal multicellular microarchitectures (SMMs) that created a tissue-specific
microenvironment, potentially useful for cell therapy [85]. This method uses a bioink
blended with dECM and alginate to enhance the cell function. The experimental results
demonstrated the controllable size, mass production, and high cell viability of the SMMs.
Co-culturing SMMs with endothelial cells improves maturation and functionality, showing
promise for tissue regeneration, particularly in the treatment of myocardial infarction,
compared with single-cell injections. They also proposed a single-step bioprinting method
using a dual-crosslinkable decellularized extracellular matrix with ruthenium/sodium per-
sulfate (dERS) [125]. Using this method, spheroids and tubular structures were fabricated
without multiple post-processing steps.
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culture, the constructs showed good stability, cell activity, and extracellular matrix pro-
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Figure 3. (a) Three-dimensional bio-dot printing process with in situ formation of cell spheroids:
(i) Schematic illustration showing the bio-dot printing procedure from PCL printing to induction
of cell spheroids. (ii) Corresponding still images of the dot-printing process with PCL, matrix
biomaterial ink, and cell-laden bio-ink (scale bars, 1 mm). (iii) Three-dimensional confocal images
of constructs bio-dot-printed with red fluorescent micro-beads-laden sacrificial bio-ink at varying
gelatin concentrations within matrix biomaterial ink: from 22.5 mg mL−1 (G22.5) to 42.5 mg mL−1

(G42.5). (iv) Microscopy images of HepG2 cells cultured for 3 days after bio-dot printing (scale
bars, 200 µm). (v) Three-dimensional confocal images of cells stained with calcein-AM on day 0 and
day 3 after printing (scale bars, 200 µm). (vi) SEM images of HepG2 spheroids produced through
the conventional method and bio-dot printing process (scale bars, 200 µm). (vii) Histochemical
and mmunocytochemical staining of the spheroids on day 5 (scale bars, 100 µm) (“Reprinted with
permission from Ref. [83]. Copyright 2020 Wiley-VCH GmbH”). (b) Extrusion bioprinting process
with the spheroid-loaded bioink. (i) Bioprinting method to form 3D constructs by the deposition of cell
spheroids, suspended in a homogeneous printable hydrogel. (ii) The bioink was composed of mixtures
of xanthan gum and alginate, capable of crosslinking with Ca2+ ions. (iii) HMSC spheroids were
obtained by culturing cells in a 3D microenvironment in non-cell-adhesive agarose hydrogel array
inserts. (iv) By applying controlled pressure, the bioink was extruded through the nozzle in the form
of a filament on pre-designed patterns to manufacture the constructs. (v) Constructs with proliferating
cells were ionically crosslinked using calcium chloride and, subsequently, (vi) differentiated using
a chondrogenic medium over 28 and 56 days to obtain chondral constructs. (vii) Typical visual
aspect of 4-layered bioprinted constructs made of hMSC spheroids and XG3.75:A1.12 hydrogel.
(viii) Spheroids maintained their 3D conformational structure 7 days after bioprinting. (ix) Size
proportion between printed filaments and hMSC spheroid incorporated in the hydrogel 7 days
after bioprinting. (x) Detachment of some cells from the 3D spheroid structure toward the hydrogel.
(xi) In a clear trend, the open-pore structure was gradually reduced as the number of printed
spheroids per construct increased (“Reprinted with permission from Ref. [126]. Copyright 2023
Wiley-VCH GmbH”).

Decarli et al. proposed a reproducible bioprinting process using human mesenchymal
stromal cell spheroids in a xanthan gum alginate hydrogel to create stable multi-layered
constructs [126] (Figure 3b). After 28 d of chondrogenic differentiation and 56 d of culture,
the constructs showed good stability, cell activity, and extracellular matrix production,
indicating their potential as cartilage implants.
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Kim et al. introduced a high-throughput integrated tissue formation system for bio-
printing (HITS-Bio), that enabled scalable tissue fabrication by rapidly deploying multiple
spheroids simultaneously using a digitally controlled nozzle array (DCNA) [127]. This sys-
tem demonstrated the ability to bioprint microRNA-transfected spheroids (approximately
30 mm3) to regenerate cranial bone in a rat model, achieving near-complete defect closure
(approximately 91% after 3 weeks and 96% after 6 weeks). Additionally, HITS-Bio was used
to construct a scalable cartilage structure (1 cm3) consisting of approximately 600 cartilage
spheroids to repair volumetric tissue defects.

5. Prospects for the Development of Bioprinting Technology Utilizing Exosomes

Exosomes, first discovered in reticulocytes in 1983 and initially thought to be cellular
waste products [128–130], have garnered significant public interest as carriers of genetic
information since it was found that cells could exchange genetic material via RNA through
exosomes [131]. Since then, researchers have identified a wide variety of exosomes with
diverse functions and have highlighted their immense potential for tissue regeneration,
disease diagnosis, and treatment. Bioprinting, derived from 3D printing technology, enables
the application of cells, proteins, DNA, and other biological materials into personalized
3D models or functional biological structures. This computer-aided design (CAD)-driven
bioprinting has shown great potential for replicating the complexity of native tissues in
terms of mechanical properties, specific structures, and interactions between cells and the
extracellular matrix (ECM) [132–134]. The convergence of these two promising technologies,
bioprinting, and exosomes, has great potential for advancing medical and regenerative
medicine. The prospects for bioprinting technology utilizing exosomes are as follows:

(1) Precision cell therapy and tissue regeneration: Exosomes are secreted by various
cell types and have distinct regenerative capabilities. Bioprinting technology, which enables
precise control of positioning in 3D space, allows for the accurate distribution and layering
of exosomes to maximize cell therapy and tissue regeneration [135,136]. As most organs in
the human body consist of multi-layered complex tissues, delivering tailored exosomes
suited to the reconstruction of damaged tissues can suppress inflammation and abnormal
reactions; thus, promoting tailored regenerative treatments.

(2) Tissue-specific exosome production: Current exosome research focuses on the
production of exosomes from specific cells or stem cells [57]. The use of spheroids, a type
of 3D cell culture, in bioprinting offers a powerful tool for arranging various cell types in
forms similar to those in the human body, allowing for the cultivation of exosomes tailored
to specific target tissues. In particular, in clinical applications requiring the reconstruction
of volumetric tissues, the proper formation and networking of blood vessels composed of
endothelial cells, muscles, and connective tissue can significantly expand the possibilities
of personalized tissue engineering and organ transplantation [115].

(3) Exosome-loaded scaffold development: By utilizing bioprinting technology with
spheroid aggregates, 3D structures that mimic the extracellular matrix (ECM) can be
created to optimize exosome delivery [137]. Incorporating nanostructures that can capture
exosomes or adjust hydrogel structures to allow for the continuous release of exosomes
at specific sites could enable sustained and effective exosome delivery that surpasses
conventional intravenous or localized injection methods [138–141]. This scaffold technology
is expected to play a crucial role, particularly in tissue regeneration areas where form and
structural integrity are vital, such as bone and cartilage regeneration.

(4) Personalized medicine and customized therapy: Combining exosomes derived
from patient cells with bioprinting technology can pave the way for personalized treatment.
To date, exosomes have been used in cancer treatment to analyze outcomes and track
disease recurrence, with experiments on rodent models demonstrating the induction of
tumor cell death [119,120]. However, with continued research, it may be possible to
extract functionalized exosomes from bioprinted spheroids to perform targeted therapy
that kills only cancer cells, or to perform immunotherapy by obtaining patient-specific T
cell-based exosomes. Even if it does not have those treatment levels, it will be possible
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to suggest improved cancer treatment methods using patient-specific anticancer drug
selection and multiple anticancer drug combinations by analyzing exosomes secreted
from bioprinted patient-derived 3D cancer spheroids in the near future. This represents
a shift from the current standardized treatment to a precision medicine strategy tailored for
individual patients.

(5) Industrial Expansion: The development of exosomes and bioprinting technologies
also presents significant potential for industrial expansion in the medical field. Currently,
the most efficient and easy-to-use method for producing spheroids is to use 96-well mi-
croplates with ultra-low attachment surfaces [142]. However, this has the disadvantages of
high cost and unreliability due to manual labor for mass production. Bioprinting-based
automation systems that eliminate manual work lead to the mass production of spheroids.
As the number of bioprinting nozzles installed increases, the number of spheroids pro-
duced increases proportionally to the number of nozzles. If automated bioprinters could
produce large quantities of high-purity exosomes, it could lead to the commercialization
of exosome-based therapeutics and bioprinted products for regenerative medicine [143].
Exosome-based treatments produced through 3D bioprinting can revolutionize the medical,
pharmaceutical, and medical device industries, transforming treatment paradigms for
various diseases. Moreover, the use of exosomes in the cosmetic industry will open up
a new market [144–146].

However, several challenges remain to be addressed, such as spheroid culture, ex-
osome isolation, purification, long-term storage and packaging, the determination of
appropriate usage concentrations, and the establishment of optimal dosing periods and
frequencies [147].

6. Conclusions

This review discussed recent advances in the utilization of exosomes and spheroids
in bioprinting as a promising approach in regenerative medicine. First, we explored the
definition of exosomes and their potential applications in tissue regeneration, disease
diagnosis, and therapeutics. In addition, we highlighted spheroids among the various cell
culture methods for exosome production, which are suitable for large-scale production and
can be used in bioprinting. Furthermore, we provided an overview of research findings
on the application of spheroids and exosomes in bioprinting and discussed the prospects
of bioprinting technology using exosomes. While there are currently limited results on
the direct use of bioprinted spheroids as exosome-secreting sources for tissue engineering,
we speculate that if a large number of spheroids can be supplied through bioprinting,
the spheroid-exosome-based bioprinting technology will provide new possibilities for
application in tissue regeneration, disease diagnosis, and treatment.
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