Reconstructive Approach in Residual Periodontal Pockets with Biofunctionalized Heterografts—A Retrospective Comparison of 12-Month Data from Three Centers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajishengallis, G. Immunomicrobial pathogenesis of periodontitis: Keystones, pathobionts, and host response. Trends Immunol. 2014, 35, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P. Focus on intrabony defects–conservative therapy. Periodontology 2000, 22, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S.; Participants, E.W.; Consultants, M.; et al. Treatment of stage I–III periodontitis—The EFP S3 level clinical practice guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef] [PubMed]
- Nibali, L.; Koidou, V.P.; Nieri, M.; Barbato, L.; Pagliaro, U.; Cairo, F. Regenerative surgery versus access flap for the treatment of intra-bony periodontal defects: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 320–351. [Google Scholar] [CrossRef] [PubMed]
- Wikesjö, U.M.; Qahash, M.; Thomson, R.C.; Cook, A.D.; Rohrer, M.D.; Wozney, J.M.; Hardwick, W.R. Space-providing expanded polytetrafluoroethylene devices define alveolar augmentation at dental implants induced by recombinant human bone morphogenetic protein 2 in an absorbable collagen sponge carrier. Clin. Implant Dent. Relat. Res. 2003, 5, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Wikesjö, U.M.; Lim, W.H.; Razi, S.S.; Sigurdsson, T.J.; Lee, M.B.; Tatakis, D.N.; Hardwick, W.R. Periodontal repair in dogs: A bioabsorbable calcium carbonate coral implant enhances space provision for alveolar bone regeneration in conjunction with guided tissue regeneration. J. Periodontol. 2003, 74, 957–964. [Google Scholar] [CrossRef]
- Aimetti, M.; Fratini, A.; Manavella, V.; Giraudi, M.; Citterio, F.; Ferrarotti, F.; Mariani, G.M.; Cairo, F.; Baima, G.; Romano, F. Pocket resolution in regenerative treatment of intrabony defects with papilla preservation techniques: A systematic review and meta-analysis of randomized clinical trials. J. Clin. Periodontol. 2021, 48, 843–858. [Google Scholar] [CrossRef]
- Yıldırım, S.; Özener, H.Ö.; Doğan, B.; Kuru, B. Effect of topically applied hyaluronic acid on pain and palatal epithelial wound healing: An examiner-masked, randomized, controlled clinical trial. J. Periodontol. 2018, 89, 36–45. [Google Scholar] [CrossRef]
- Pilloni, A.; Schmidlin, P.R.; Sahrmann, P.; Sculean, A.; Rojas, M.A. Correction to: Effectiveness of adjunctive hyaluronic acid application in coronally advanced flap in Miller class I single gingival recession sites: A randomized controlled clinical trial. Clin. Oral Investig. 2018, 22, 2961–2962. [Google Scholar] [CrossRef]
- Shirakata, Y.; Nakamura, T.; Kawakami, Y.; Imafuji, T.; Shinohara, Y.; Noguchi, K.; Sculean, A. Healing of buccal gingival recessions following treatment with coronally advanced flap alone or combined with a cross-linked hyaluronic acid gel. An experimental study in dogs. J. Clin. Periodontol. 2021, 48, 570–580. [Google Scholar] [CrossRef]
- Shirakata, Y.; Imafuji, T.; Nakamura, T.; Shinohara, Y.; Iwata, M.; Setoguchi, F.; Noguchi, K.; Sculean, A.; Dent, M. Cross-linked hyaluronic acid-gel with or without a collagen matrix in the treatment of class III furcation defects: A histologic and histomorphometric study in dogs. J. Clin. Periodontol. 2022, 49, 1079–1089. [Google Scholar] [CrossRef]
- Pilloni, A.; Zeza, B.; Kuis, D.; Vrazic, D.; Domic, T.; Olszewska-Czyz, I.; Popova, C.; Kotsilkov, K.; Firkova, E.; Dermendzieva, Y. Treatment of Residual Periodontal Pockets Using a Hyaluronic Acid-Based Gel: A 12 Month Multicenter Randomized Triple-Blinded Clinical Trial. Antibiotics 2021, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Božić, D.; Ćatović, I.; Badovinac, A.; Musić, L.; Par, M.; Sculean, A. Treatment of intrabony defects with a combination of hyaluronic acid and deproteinized porcine bone mineral. Materials 2021, 14, 6795. [Google Scholar] [CrossRef] [PubMed]
- Fujioka-Kobayashi, M.; Müller, H.-D.; Mueller, A.; Lussi, A.; Sculean, A.; Schmidlin, P.R.; Miron, R.J. In vitro effects of hyaluronic acid on human periodontal ligament cells. BMC Oral Health 2017, 17, 44. [Google Scholar] [CrossRef]
- Nobis, B.; Ostermann, T.; Weiler, J.; Dittmar, T.; Friedmann, A. Impact of cross-linked hyaluronic acid on osteogenic differentiation of SAOS-2 cells in an air-lift model. Materials 2022, 15, 6528. [Google Scholar] [CrossRef]
- Hakki, S.S.; Bozkurt, S.B.; Sculean, A.; Božić, D. Hyaluronic acid enhances cell migration, viability, and mineralized tissue-specific genes in cementoblasts. J. Periodontal Res. 2023. [Google Scholar] [CrossRef]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions–Introduction and key changes from the 1999 classification. J. Clin. Periodontol 2018. [Google Scholar] [CrossRef]
- Cortellini, P.; Tonetti, M.S. Clinical concepts for regenerative therapy in intrabony defects. Periodontology 2015, 68, 282–307. [Google Scholar] [CrossRef]
- Pilloni, A.; Bernard, G. The effect of hyaluronan on mouse intramembranous osteogenesis in vitro. Cell Tissue Res. 1998, 294, 323–333. [Google Scholar] [CrossRef]
- Xing, F.; Zhou, C.; Hui, D.; Du, C.; Wu, L.; Wang, L.; Wang, W.; Pu, X.; Gu, L.; Liu, L.; et al. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions. Nanotechnol. Rev. 2020, 9, 1059–1079. [Google Scholar] [CrossRef]
- Asparuhova, M.B.; Chappuis, V.; Stähli, A.; Buser, D.; Sculean, A. Role of hyaluronan in regulating self-renewal and osteogenic differentiation of mesenchymal stromal cells and pre-osteoblasts. Clin. Oral Investig. 2020, 24, 3923–3937. [Google Scholar] [CrossRef] [PubMed]
- Frasheri, I.; Tsakiridou, N.D.; Hickel, R.; Folwaczny, M. The molecular weight of hyaluronic acid influences metabolic activity and osteogenic differentiation of periodontal ligament cells. Clin. Oral Investig. 2023, 27, 5905–5911. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cha, J.; Jang, M.; Kim, P. Hyaluronic acid-based extracellular matrix triggers spontaneous M2-like polarity of monocyte/macrophage. Biomater. Sci. 2019, 7, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Mathews, S.; Mathew, S.A.; Gupta, P.K.; Bhonde, R.; Totey, S. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2014, 8, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Shirakata, Y.; Imafuji, T.; Nakamura, T.; Kawakami, Y.; Shinohara, Y.; Noguchi, K.; Pilloni, A.; Sculean, A. Periodontal wound healing/regeneration of two-wall intrabony defects following reconstructive surgery with cross-linked hyaluronic acid-gel with or without a collagen matrix: A preclinical study in dogs. Quintessence Int. 2021, 52, 308–316. [Google Scholar] [PubMed]
- Briguglio, F.; Briguglio, E.; Briguglio, R.; Cafiero, C.; Isola, G. Treatment of infrabony periodontal defects using a resorbable biopolymer of hyaluronic acid: A randomized clinical trial. Quintessence Int. 2013, 44, 231. [Google Scholar] [PubMed]
- Amin, H.D.; Olsen, I.; Knowles, J.; Dard, M.; Donos, N. Interaction of enamel matrix proteins with human periodontal ligament cells. Clin. Oral Investig. 2016, 20, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Li, Y.; Xia, Q.; Meng, M.; Ye, Z.; Tang, Z.; Feng, H.; Chen, X.; Chen, H.; Zeng, X. Enamel matrix derivative (EMD) enhances the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Bioengineered 2021, 12, 7033–7045. [Google Scholar] [CrossRef]
- Sordi, M.B.; Cabral da Cruz, A.C.; Panahipour, L.; Gruber, R. Enamel matrix derivative decreases pyroptosis-related genes in macrophages. Int. J. Mol. Sci. 2022, 23, 5078. [Google Scholar] [CrossRef]
- Stout, B.M.; Alent, B.J.; Pedalino, P.; Holbrook, R.; Gluhak-Heinrich, J.; Cui, Y.; Harris, M.A.; Gemperli, A.C.; Cochran, D.L.; Deas, D.E. Enamel matrix derivative: Protein components and osteoinductive properties. J. Periodontol. 2014, 85, e9–e17. [Google Scholar] [CrossRef]
- Sanz, M.; Tonetti, M.S.; Zabalegui, I.; Sicilia, A.; Blanco, J.; Rebelo, H.; Rasperini, G.; Merli, M.; Cortellini, P.; Suvan, J.E. Treatment of intrabony defects with enamel matrix proteins or barrier membranes: Results from a multicenter practice-based clinical trial. J. Periodontol. 2004, 75, 726–733. [Google Scholar] [CrossRef]
- Sculean, A.; Kiss, A.; Miliauskaite, A.; Schwarz, F.; Arweiler, N.B.; Hannig, M. Ten-year results following treatment of intra-bony defects with enamel matrix proteins and guided tissue regeneration. J. Clin. Periodontol. 2008, 35, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Windisch, P.; Szendröi-Kiss, D.; Horváth, A.; Rosta, P.; Becker, J.; Gera, I.; Schwarz, F. Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J. Periodontol. 2008, 79, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
- Meyle, J.; Hoffmann, T.; Topoll, H.; Heinz, B.; Al-Machot, E.; Jervøe-Storm, P.M.; Meiß, C.; Eickholz, P.; Jepsen, S. A multi-centre randomized controlled clinical trial on the treatment of intra-bony defects with enamel matrix derivatives/synthetic bone graft or enamel matrix derivatives alone: Results after 12 months. J. Clin. Periodontol. 2011, 38, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, S.; Tarnow, D.P. Efficacy of enamel matrix derivative with freeze-dried bone allograft or demineralized freeze-dried bone allograft in intrabony defects: A randomized trial. J. Periodontol. 2014, 85, 1351–1360. [Google Scholar] [CrossRef]
- Matarasso, M.; Iorio-Siciliano, V.; Blasi, A.; Ramaglia, L.; Salvi, G.E.; Sculean, A. Enamel matrix derivative and bone grafts for periodontal regeneration of intrabony defects. A systematic review and meta-analysis. Clin. Oral Investig. 2015, 19, 1581–1593. [Google Scholar] [CrossRef]
- Sculean, A.; Nikolidakis, D.; Schwarz, F. Regeneration of periodontal tissues: Combinations of barrier membranes and grafting materials–biological foundation and preclinical evidence: A systematic review. J. Clin. Periodontol. 2008, 35, 106–116. [Google Scholar] [CrossRef]
- Basha, R.Y.; TS, S.K.; Doble, M. Design of biocomposite materials for bone tissue regeneration. Mater. Sci. Eng. C 2015, 57, 452–463. [Google Scholar] [CrossRef]
- Kurien, T.; Pearson, R.; Scammell, B. Bone graft substitutes currently available in orthopaedic practice: The evidence for their use. Bone Jt. J. 2013, 95, 583–597. [Google Scholar] [CrossRef]
- Friedmann, A.; Fickl, S.; Fischer, K.R.; Dalloul, M.; Goetz, W.; Kauffmann, F. Horizontal augmentation of chronic mandibular defects by the Guided Bone Regeneration approach: A randomized study in dogs. Materials 2021, 15, 238. [Google Scholar] [CrossRef]
- Falk, H.; Laurell, L.; Ravald, N.; Teiwik, A.; Persson, R. Guided tissue regeneration therapy of 203 consecutively treated intrabony defects using a bioabsorbable matrix barrier. Clinical and radiographic findings. J. Periodontol. 1997, 68, 571–581. [Google Scholar] [CrossRef]
- Stavropoulos, A.; Karring, T. Long-term stability of periodontal conditions achieved following guided tissue regeneration with bioresorbable membranes: Case series results after 6–7 years. J. Clin. Periodontol. 2004, 31, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Fok, M.R.; Zhang, Y.; Han, B.; Lin, Y. The role of non-steroidal anti-inflammatory drugs as adjuncts to periodontal treatment and in periodontal regeneration. J. Transl. Med. 2023, 21, 149. [Google Scholar] [CrossRef] [PubMed]
- Weaks-Dybvig, M.; Sanavi, F.; Zander, H.; Rifkin, B.R. The effect of indomethacin on alveolar bone loss in experimental periodontitis. J. Periodontal Res. 1982, 17, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Jeffcoat, M.; Kaplan, M.; Goldhaber, P.; Johnson, H.; Wechter, W. Flurbiprofen: A potent inhibitor of alveolar bone resorption in beagles. Science 1985, 227, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Kurtiş, B.; Tüter, G.; Serdar, M.; Pınar, S.; Demirel, İ.; Toyman, U. Gingival crevicular fluid prostaglandin E2 and thiobarbituric acid reactive substance levels in smokers and non-smokers with chronic periodontitis following phase I periodontal therapy and adjunctive use of flurbiprofen. J. Periodontol. 2007, 78, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Nibali, L.; Buti, J.; Barbato, L.; Cairo, F.; Graziani, F.; Jepsen, S. Adjunctive effect of systemic antibiotics in regenerative/reconstructive periodontal surgery—A systematic review with meta-analysis. Antibiotics 2021, 11, 8. [Google Scholar] [CrossRef]
- Nagano, O.; Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 2004, 95, 930–935. [Google Scholar] [CrossRef]
C1 | xHyA | BDDE-crosslinked hyaluronic acid | HyaDent BG, Regedent, Zürich, Switzerland |
Collapat II | Bovine collagen + dispersed hydroxyapatite granules | Collapat II, Symatese, France | |
C2 | EMD | Enamel matrix derivative, Propylenglycolalginate (PGA), water | Emdogain, Straumann Group, USA |
OraGraft | Cortical/cancellous mineralized particulate 50/50 | LifeNet Health, USA | |
C3 | xHyA | BDDE-crosslinked hyaluronic acid | HyaDent BG, Regedent, Zürich, Switzerland |
Guidor matrix barrier | Polylactic polymer | Sunstar, Germany |
C1 (n = 19) | C2 (n = 21) | C3 (n = 16) | Total (n = 56) | p-Value | |
---|---|---|---|---|---|
Age (years) | 0.004 | ||||
Mean ± SD | 58.5 ± 9.2 | 46.6 ± 9.3 | 53.1 ± 13.9 | 52.5 ± 11.7 | |
Median | 57 | 46 | 54 | 55 | |
Min | 36 | 32 | 20 | 20 | |
Max | 75 | 65 | 75 | 75 | |
Gender | 0.085 | ||||
Male | 10 (52.6%) | 4 (19.0%) | 6 (18.75%) | 17 (30.4%) | |
Female | 9 (47.4%) | 17 (81.0%) | 10 (62.5%) | 36 (64.3%) | |
Smoker | 0.192 | ||||
Yes | 3 (15.8%) | 4 (19.0%) | 0 (0.0%) | 7 (12.5%) | |
No | 16 (84.2%) | 17 (81.0%) | 16 (100.0%) | 49 (87.5%) | |
Localization | 0.480 | ||||
Mandible | 13 (68.4%) | 11 (52.4%) | 11 (68.8%) | 35 (62.5%) | |
Maxilla | 6 (9.47%) | 10 (9.02%) | 5 (9.22%) | 21 (37.5%) | |
Walls (n=) | 0.137 | ||||
1 | 4 (21.1%) | 1 (4.8%) | 6 (37.5%) | 11 (19.6%) | |
2 | 11 (57.8%) | 17 (81.0%) | 8 (50.0%) | 36 (64.3%) | |
3 | 4 (21.1%) | 3 (14.3%) | 2 (12.5%) | 9 (16.1%) | |
Intraosseous depth (mm) | 0.210 | ||||
Mean ± SD | 5.96 ± 1.68 | 5.70 ± 3.50 | 7.23 ± 2.44 | 6.22 ± 2.73 | |
Median | 5.9 | 5.1 | 7.8 | 6.0 | |
Min | 3.3 | 1.9 | 2.4 | 1.9 | |
Max | 10.6 | 15.3 | 11.0 | 15.3 | |
Defect angle (°) | 0.508 | ||||
Mean ± SD | 28.54 ± 9.80 | 31.32 ± 9.66 | 32.88 ± 14.22 | 30.82 ± 11.12 | |
Median | 29.6 | 32.4 | 31.35 | 31.7 | |
Min | 14.0 | 14.6 | 16.5 | 14.0 | |
Max | 50.5 | 44.2 | 64.5 | 64.5 | |
Defect width (mm) | 0.375 | ||||
Mean ± SD | 2.81 ± 099 | 2.55 ± 0.86 | N/A | 2.62 ± 0.92 | |
Median | 2.7 | 2.4 | 2.55 | ||
Min | 1.5 | 1.1 | 1.1 | ||
Max | 4.8 | 4.5 | 4.8 | ||
Antibiotics | |||||
Duration (n) | 7 days (19) | -- | 10 days (16) | ||
Type (mg) | Amoxicillin (2000) | -- | Doxycycline (200) | ||
Analgesics | |||||
Duration (n) | If required | If required | If required | ||
Type (mg) | Prednisone + Paracetamol (80 + 1000) | Ibuprofen (400) | Ibuprofen (600) |
C1 | C2 | C3 | ||||
---|---|---|---|---|---|---|
Baseline | 12-mo | Baseline | 12-mo | Baseline | 12-mo | |
PPD (mm) | ||||||
Mean ± SD | 8.74 ± 1.82 | 3.74 ± 1.05 | 9.29 ± 2.13 | 3.38 ± 0.92 | 9.50 ± 1.86 | 3.19 ± 0.66 |
Median | 8.00 | 4.00 | 9.00 | 3.00 | 9.50 | 3.00 |
Minimum | 7 | 2 | 7 | 2 | 6 | 2 |
Maximum | 13 | 6 | 12 | 6 | 12 | 4 |
p-value | <0.001 | <0.001 | <0.001 | |||
CAL (mm) | ||||||
Mean ± SD | 10.68 ± 2.31 | 7.00 ± 2.29 | 9.62 ± 2.38 | 4.10 ± 1.76 | 11.25 ± 2.46 | 5.69 ± 1.45 |
Median | 10.00 | 7.00 | 9.00 | 4.00 | 11.00 | 6.00 |
Minimum | 7 | 4 | 7 | 2 | 7 | 3 |
Maximum | 16 | 15 | 16 | 9 | 15 | 8 |
p-value | <0.001 | <0.001 | <0.001 | |||
REC (mm) | ||||||
Mean ± SD | 1.95 ± 1.27 | 3.26 ± 2.13 | 0.33 ± 0.58 | 0.71 ± 1.10 | 1.62 ± 1.31 | 2.50 ± 1.41 |
Median | 2.00 | 3.00 | 0.00 | 0.00 | 1.00 | 3.00 |
Minimum | 0 | 0 | 0 | 0 | 0 | 0 |
Maximum | 5 | 10 | 2 | 3 | 4 | 5 |
p-value | 0.003 | 0.008 | 0.029 |
C1 (n = 19) | C2 (n = 21) | C3 (n = 16) | p-Value | Significant Covariates | ||||
---|---|---|---|---|---|---|---|---|
Overall | C1 vs. C2 | C2 vs. C3 | C1 vs. C3 | |||||
ΔPPD | 4.95 ± 1.71 | 5.81 ± 1.78 | 6.25 ± 1.88 | 0.192 | 0.287 | 1.00 | 0.476 | Intraosseous depth (p < 0.001) |
ΔCAL | 3.68 ± 1.67 | 5.86 ± 2.37 | 5.53 ± 1.92 | 0.007 | 0.006 | 0.718 | 0.158 | Intraosseous depth (p < 0.001) |
REC | 1.32 ± 1.67 | 0.04± 0.01 | 1.33 ± 1.11 | 0.015 | 0.031 | 0.038 | 1.00 | - |
Δdefect fill | 3.33 ± 1.76 | 4.95 ± 2.43 | 5.97 ± 2.49 | 0.002 | 0.003 | 1.00 | 0.014 | Intraosseous depth (p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedmann, A.; Liedloff, P.; Eliezer, M.; Brincat, A.; Ostermann, T.; Diehl, D. Reconstructive Approach in Residual Periodontal Pockets with Biofunctionalized Heterografts—A Retrospective Comparison of 12-Month Data from Three Centers. J. Funct. Biomater. 2024, 15, 39. https://doi.org/10.3390/jfb15020039
Friedmann A, Liedloff P, Eliezer M, Brincat A, Ostermann T, Diehl D. Reconstructive Approach in Residual Periodontal Pockets with Biofunctionalized Heterografts—A Retrospective Comparison of 12-Month Data from Three Centers. Journal of Functional Biomaterials. 2024; 15(2):39. https://doi.org/10.3390/jfb15020039
Chicago/Turabian StyleFriedmann, Anton, Pheline Liedloff, Meizi Eliezer, Arthur Brincat, Thomas Ostermann, and Daniel Diehl. 2024. "Reconstructive Approach in Residual Periodontal Pockets with Biofunctionalized Heterografts—A Retrospective Comparison of 12-Month Data from Three Centers" Journal of Functional Biomaterials 15, no. 2: 39. https://doi.org/10.3390/jfb15020039
APA StyleFriedmann, A., Liedloff, P., Eliezer, M., Brincat, A., Ostermann, T., & Diehl, D. (2024). Reconstructive Approach in Residual Periodontal Pockets with Biofunctionalized Heterografts—A Retrospective Comparison of 12-Month Data from Three Centers. Journal of Functional Biomaterials, 15(2), 39. https://doi.org/10.3390/jfb15020039