A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites
Abstract
:1. Introduction
2. Microencapsulation Technology
2.1. Selection of Core and Shell Materials of Microcapsules
2.2. Preparation Methods of Microcapsules
2.3. Characterization of Microcapsules
2.3.1. Surface Topography
2.3.2. Physical Characteristics
Particle Size and Distribution
Encapsulation Efficiency
Mechanical Property
2.3.3. Chemical Characterization
Fourier Transform Infrared (FTIR) Spectroscopy Analysis
X-ray Diffraction (XRD) Analysis
Thermal Stability
2.3.4. Cytotoxicity
3. Applications of Self-Healing Microcapsules in Dental Composites
3.1. Development of Dental Self-Healing System Based on Microcapsules
3.2. SHDCs with Multiple Functions
3.3. Durability and Fatigue Resistance of SHDCs
4. Limitations and Challenges of Microcapsule-Based SHDCs
5. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudeja, P.; Dudeja, K.K.; Grover, S.; Singh, H.; Jabin, Z. Pathway to mercury-free dentistry: An insight into past, present, and future. Eur. Oral Res. 2023, 57, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, A.S.; Mossey, P.A.; Fox, C.H. International Association for Dental Research Policy and Position Statements on the Safety of Dental Amalgam. J. Dent. Res. 2020, 99, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zhang, L.; Yue, L.; Ling, J.; Fan, M.; Yang, D.; Huang, Z.; Niu, Y.; Liu, J.; Zhao, J.; et al. Expert consensus on dental caries management. Int. J. Oral Sci. 2022, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- German, M.J. Developments in resin-based composites. Br. Dent. J. 2022, 232, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Reher, V.; Reher, P.; Peres, K.G.; Peres, M.A. Fall of amalgam restoration: A 10-year analysis of an Australian university dental clinic. Aust. Dent. J. 2021, 66, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.; Varenne, B.; Narvaez, D.; Vickers, C. The Minamata Convention and the phase down of dental amalgam. Bull. World Health Organ. 2018, 96, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Cadenaro, M.; Josic, U.; Maravić, T.; Mazzitelli, C.; Marchesi, G.; Mancuso, E.; Breschi, L.; Mazzoni, A. Progress in Dental Adhesive Materials. J. Dent. Res. 2023, 102, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.A.S.; Garcia, I.M.; Mokeem, L.; Weir, M.D.; Xu, H.H.K.; Montoya, C.; Orrego, S. Developing bioactive dental resins for restorative dentistry. J. Dent. Res. 2023, 102, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Lima, V.P.; Machado, J.B.; Zhang, Y.; Loomans, B.A.C.; Moraes, R.R. Laboratory methods to simulate the mechanical degradation of resin composite restorations. Dent. Mater. 2022, 38, 214–229. [Google Scholar] [CrossRef]
- Naebe, M.; Abolhasani, M.M.; Khayyam, H.; Amini, A.; Fox, B. Crack damage in polymers and composites: A review. Polym. Rev. 2016, 56, 31–69. [Google Scholar] [CrossRef]
- Turkistani, A.; Nasir, A.; Merdad, Y.; Jamleh, A.; Alshouibi, E.; Sadr, A.; Tagami, J.; Bakhsh, T.A. Evaluation of microleakage in class-II bulk-fill composite restorations. J. Dent. Sci. 2020, 15, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Liu, Y.; Leng, J. A Tailorable Series of Elastomeric-To-Rigid, Selfhealable, Shape Memory Bismaleimide. Small 2024, 20, 2307244. [Google Scholar] [CrossRef] [PubMed]
- Siad, H.; Lachemi, M.; Sahmaran, M.; Mesbah, H.A.; Hossain, K.A. Advanced engineered cementitious composites with combined self-sensing and self-healing functionalities. Constr. Build. Mater. 2018, 176, 313–322. [Google Scholar] [CrossRef]
- Wen, N.; Song, T.; Ji, Z.; Jiang, D.; Wu, Z.; Wang, Y.; Guo, Z. Recent advancements in self-healing materials: Mechanicals, performances and features. React. Funct. Polym. 2021, 168, 105041. [Google Scholar] [CrossRef]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 2016, 87, 92–119. [Google Scholar] [CrossRef]
- Li, B.; Cao, P.-F.; Saito, T.; Sokolov, A.P. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem. Rev. 2023, 123, 701–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Q.; Rong, M.Z. Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polym. Chem. 2013, 4, 4878–4884. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, X.; Sun, S.; Yu, C.; Xia, H. Preparation, characterization and properties of intrinsic self-healing elastomers. J. Mater. Chem. B 2019, 7, 4876–4926. [Google Scholar] [CrossRef]
- Lee, M.W.; An, S.; Yoon, S.S.; Yarin, A.L. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics. Adv. Colloid Interface Sci. 2018, 252, 21–37. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Chen, D.; Xing, S.; Liu, X.; Hao, J. Intrinsic and extrinsic self-healing fiber-reinforced polymer composites: A review. Polym. Compos. 2023, 44, 6304–6323. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Rong, M.Z.; Zhang, M.Q. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci. 2015, 49–50, 175–220. [Google Scholar] [CrossRef]
- Althaqafi, K.A.; Satterthwaite, J.; Silikas, N. A review and current state of autonomic self-healing microcapsules-based dental resin composites. Dent. Mater. 2020, 36, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Parihar, S.; Gaur, B. Self healing approaches in polymeric materials-an overview. J. Polym. Res. 2023, 30, 217. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Hia, I.L.; Vahedi, V.; Pasbakhsh, P. Self-Healing Polymer Composites: Prospects, Challenges, and Applications. Polym. Rev. 2016, 56, 225–261. [Google Scholar] [CrossRef]
- Kosarli, M.; Bekas, D.G.; Tsirka, K.; Baltzis, D.; Vaimakis-Tsogkas, D.Τ.; Orfanidis, S.; Papavassiliou, G.; Paipetis, A.S. Microcapsule-based self-healing materials: Healing efficiency and toughness reduction vs. capsule size. Compos. Part B Eng. 2019, 171, 78–86. [Google Scholar] [CrossRef]
- Tzavidi, S.; Zotiadis, C.; Porfyris, A.; Korres, D.M.; Vouyiouka, S. Epoxy loaded poly(urea-formaldehyde) microcapsules via in situ polymerization designated for self-healing coatings. J. Appl. Polym. Sci. 2020, 137, e49323. [Google Scholar] [CrossRef]
- Tong, X.-M.; Zhang, T.; Yang, M.-Z.; Zhang, Q. Preparation and characterization of novel melamine modified poly(urea–formaldehyde) self-repairing microcapsules. Colloids Surf. A Physicochem. Eng. Asp. 2010, 371, 91–97. [Google Scholar] [CrossRef]
- Li, Q.; Mishra, A.K.; Kim, N.H.; Kuila, T.; Lau, K.-t.; Lee, J.H. Effects of processing conditions of poly(methylmethacrylate) encapsulated liquid curing agent on the properties of self-healing composites. Compos. Part B Eng. 2013, 49, 6–15. [Google Scholar] [CrossRef]
- Ahn, J.-Y.; Kim, Y.-J.; Lee, J.-H.; Singh, R.K.; Lee, H.-H. Mechanophysical and anti-adhesive properties of a nanoclay-containing PMMA denture resin. ACS Biomater. Sci. Eng. 2024, 10, 2151–2164. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-C.; Hung, C.-C.; Chen, W.-C.; Tseng, S.-C.; Chen, Y.-C.; Wang, J.-C. Effects of pontic span and fiber reinforcement on fracture strength of multi-unit provisional fixed partial dentures. J. Dent. Sci. 2019, 14, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.; Crespy, D.; Landfester, K. Synthesis of hydrophilic polyurethane particles in non-aqueous inverse miniemulsions. Colloid Polym. Sci. 2011, 289, 1111–1117. [Google Scholar] [CrossRef]
- Kosarli, M.; Bekas, D.; Tsirka, K.; Paipetis, A.S. Capsule-based self-healing polymers and composites. In Self-Healing Polymer-Based Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 259–278. [Google Scholar]
- Duraikkannu, S.L.; Castro-Muñoz, R.; Figoli, A. A review on phase-inversion technique-based polymer microsphere fabrication. Colloid Interface Sci. Commun. 2021, 40, 100329. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Wang, T.Y.; Huang, J. Synthesis and characterization of microencapsulated sodium phosphate dodecahydrate. J. Appl. Polym. Sci. 2013, 130, 1516–1523. [Google Scholar] [CrossRef]
- Liu, D.; Ichikawa, H.; Cui, F.; Fukumori, Y. Short-term delayed-release microcapsules spraycoated with acrylic terpolymers. Int. J. Pharm. 2006, 307, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Cruzetta, L.; de Souza Balbinot, G.; Collares, F.M.; Takimi, A.S.; Leitune, V.C.B. Non-thermal plasma for surface treatment of inorganic fillers added to resin-based cements. Clin Oral Investig. 2022, 26, 2983–2991. [Google Scholar] [CrossRef]
- Yuan, L.; Gu, A.; Liang, G. Preparation and properties of poly(urea–formaldehyde) microcapsules filled with epoxy resins. Mater. Chem. Phys. 2008, 110, 417–425. [Google Scholar] [CrossRef]
- Brochu, A.B.W.; Evans, G.A.; Reichert, W.M. Mechanical and cytotoxicity testing of acrylic bone cement embedded with microencapsulated 2-octyl cyanoacrylate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 102, 181–189. [Google Scholar] [CrossRef]
- Sun, D.; An, J.; Wu, G.; Yang, J. Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. J. Mater. Chem. A 2015, 3, 4435–4444. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.-X.; Wang, X.-C.; Tang, G.-Y.; Shi, H.-F. Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage. Energy 2012, 38, 249–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, W.J.; Yang, R.; Zhang, Y.P.; Zhang, Q.W. Preparation and Thermal Property of Phase Change Material Microcapsules by Phase Separation. Mater. Sci. Forum 2007, 561–565, 2293–2296. [Google Scholar] [CrossRef] [PubMed]
- Mauguet, M.C.; Legrand, J.; Brujes, L.; Carnelle, G.; Larre, C.; Popineau, Y. Gliadin matrices for microencapsulation processes by simple coacervation method. J. Microencapsul. 2008, 19, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Yang, F.; Li, X.; Zhang, X.; Abbas, S. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocoll. 2014, 35, 305–314. [Google Scholar] [CrossRef]
- Ataei, S.; Khorasani, S.N.; Torkaman, R.; Neisiany, R.E.; Koochaki, M.S. Self-healing performance of an epoxy coating containing microencapsulated alkyd resin based on coconut oil. Prog. Org. Coat. 2018, 120, 160–166. [Google Scholar] [CrossRef]
- Brown, E.N.; Kessler, M.R.; Sottos, N.R.; White, S.R. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J. Microencapsul. 2003, 20, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, W.; Wang, J.; Zhang, L.; Yang, Y.; Liu, M.; Wang, H.; Wang, S. Preparation and characterization of Perilla essential oil composite microcapsule based on the complex coacervation and interface polymerization. J. Food Sci. 2022, 87, 5017–5028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Fei, X.; Liang, C.; Xian, Z.; Cao, L.; Yang, T. The evaluation and selection of core materials for microencapsulation: A case study with fragrances. Flavour Fragr. J. 2021, 36, 652–661. [Google Scholar] [CrossRef]
- Hu, J.; Chen, H.-Q.; Zhang, Z. Mechanical properties of melamine formaldehyde microcapsules for self-healing materials. Mater. Chem. Phys. 2009, 118, 63–70. [Google Scholar] [CrossRef]
- Pretzl, M.; Neubauer, M.; Tekaat, M.; Kunert, C.; Kuttner, C.; Leon, G.; Berthier, D.; Erni, P.; Ouali, L.; Fery, A. Formation and Mechanical Characterization of Aminoplast Core/Shell Microcapsules. ACS Appl. Mater. Interfaces 2012, 4, 2940–2948. [Google Scholar] [CrossRef] [PubMed]
- Aminoroaya, A.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Panahi, P.; Das, O.; Ramakrishna, S. A review of dental composites: Methods of characterizations. ACS Biomater. Sci. Eng. 2020, 6, 3713–3744. [Google Scholar] [CrossRef] [PubMed]
- Stansbury, J.W.; Dickens, S.H. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent. Mater. 2001, 17, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.B.; Mohan, M.S.; Shukla, P.G. Improved performance of microcapsules with polymer nanocomposite wall: Preparation and characterization. Polymer 2016, 83, 27–33. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, X.; Miao, X.; Zhang, Y.; Guo, M.; Cheng, F.; Zhang, M. Preparation and characterization of SiO2@n-octadecane capsules with controllable size and structure. Thermochim. Acta 2021, 705, 179037. [Google Scholar] [CrossRef]
- Ouyang, X.; Huang, X.; Pan, Q.; Zuo, C.; Huang, C.; Yang, X.; Zhao, Y. Synthesis and characterization of triethylene glycol dimethacrylate nanocapsules used in a self-healing bonding resin. J. Dent. 2011, 39, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Wertzberger, B.E.; Steere, J.T.; Pfeifer, R.M.; Nensel, M.A.; Latta, M.A.; Gross, S.M. Physical characterization of a self-healing dental restorative material. J. Appl. Polym. Sci. 2010, 118, 428–434. [Google Scholar] [CrossRef]
- Then, S.; Neon, G.S.; Abu Kasim, N.H. Performance of melamine modified urea–formaldehyde microcapsules in a dental host material. J. Appl. Polym. Sci. 2011, 122, 2557–2562. [Google Scholar] [CrossRef]
- Bevan, C.; Snellings, W.M.; Dodd, D.E.; Egan, G.F. Subchronic Toxicity Study of Dicyclopentadiene Vapor in Rats. Toxicol. Ind. Health 1992, 8, 353–367. [Google Scholar] [CrossRef]
- Caruso, M.M.; Delafuente, D.A.; Ho, V.; Sottos, N.R.; Moore, J.S.; White, S.R. Solvent-Promoted Self-Healing Epoxy Materials. Macromolecules 2007, 40, 8830–8832. [Google Scholar] [CrossRef]
- Wu, J.; Weir, M.D.; Zhang, Q.; Zhou, C.; Melo, M.A.S.; Xu, H.H.K. Novel self-healing dental resin with microcapsules of polymerizable triethylene glycol dimethacrylate and N,N-dihydroxyethyl-p-toluidine. Dent. Mater. 2016, 32, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Ning, K.; Loomans, B.; Yeung, C.; Li, J.; Yang, F.; Leeuwenburgh, S. Influence of microcapsule parameters and initiator concentration on the self-healing capacity of resin-based dental composites. Dent. Mater. 2021, 37, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, S.; Lv, S.; Wang, X.; Wei, R.; Ma, Y. Mechanical and Antimicrobial Properties of Boron Nitride/Methacrylic Acid Quaternary Ammonium Composites Reinforced Dental Flowable Resins. ACS Biomater. Sci. Eng. 2024, 10, 1796–1807. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, S. Epoxy resin composites with surface-modified silicon dioxide nanoparticles: A review. J. Appl. Polym. Sci. 2013, 130, 1421–1428. [Google Scholar] [CrossRef]
- Kaptan Usul, S.; Aslan, A.; Lüleci, H.B.; Ergüden, B.; Çöpoğlu, M.T.; Oflaz, H.; Soydan, A.M.; Özçimen, D. Investigation of antimicrobial and mechanical effects of functional nanoparticles in novel dental resin composites. J. Dent. 2022, 123, 104180. [Google Scholar] [CrossRef] [PubMed]
- Abid Althaqafi, K.; Alshabib, A.; Satterthwaite, J.; Silikas, N. Properties of A Model Self-Healing Microcapsule-Based Dental Composite Reinforced with Silica Nanoparticles. J. Funct. Biomater. 2022, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.G.; Cuevas-Suárez, C.E.; Ribeiro, J.S.; Maass, J.B.; Piva, E.; de Moraes, R.R.; Bottino, M.C.; Lima, G.d.S. Development of functional fillers as a self-healing system for dental resin composite. J. Dent. 2022, 127, 104313. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Weir, M.D.; Melo, M.A.S.; Xu, H.H.K. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. J. Dent. 2015, 43, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liao, M.; Liu, F.; Huang, X.; Mai, S.; He, J. Preparation of Bis-GMA free dental resin composites with anti-adhesion effect against Streptococcus mutans using synthesized fluorine-containing methacrylate (DFMA). J. Mech. Behav. Biomed. Mater. 2022, 131, 105263. [Google Scholar] [CrossRef]
- Fugolin, A.P.; Dobson, A.; Mbiya, W.; Navarro, O.; Ferracane, J.L.; Pfeifer, C.S. Use of (meth)acrylamides as alternative monomers in dental adhesive systems. Dent. Mater. 2019, 35, 686–696. [Google Scholar] [CrossRef]
- Fugolin, A.P.P.; Ferracane, J.L.; Pfeifer, C.S. Fatigue-crack propagation behavior in microcapsule-containing self-healing polymeric networks. Mater. Des. 2022, 223, 111142. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hickel, R.; Valceanu, A.S.; Huth, K.C. Fracture toughness of dental restorative materials. Clin. Oral Investig. 2012, 16, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Ahangaran, F.; Hayaty, M.; Navarchian, A.H.; Pei, Y.; Picchioni, F. Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly(methyl methacrylate) shell. Polym. Test. 2019, 73, 395–403. [Google Scholar] [CrossRef]
- Ahangaran, F.; Navarchian, A.H.; Picchioni, F. Material encapsulation in poly(methyl methacrylate) shell: A review. J. Appl. Polym. Sci. 2019, 136, 48039. [Google Scholar] [CrossRef]
- Ahangaran, F.; Navarchian, A.H. Towards the development of self-healing and antibacterial dental nanocomposites via incorporation of novel acrylic microcapsules. Dent. Mater. 2022, 38, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Huyang, G.; Debertin, A.E.; Sun, J. Design and development of self-healing dental composites. Mater. Des. 2016, 94, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, R.; Hu, H.; Liu, W. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent. Appl. Surf. Sci. 2008, 255, 1894–1900. [Google Scholar] [CrossRef]
- Tong, X.M.; Zhang, M.; Wang, M.S.; Fu, Y. Effects of surface modification of self-healing poly(melamine-urea-formaldehyde) microcapsules on the properties of unsaturated polyester composites. J. Appl. Polym. Sci. 2012, 127, 3954–3961. [Google Scholar] [CrossRef]
- Yahyazadehfar, M.; Huyang, G.; Wang, X.; Fan, Y.; Arola, D.; Sun, J. Durability of self-healing dental composites: A comparison of performance under monotonic and cyclic loading. Mater. Sci. Eng. C 2018, 93, 1020–1026. [Google Scholar] [CrossRef]
- Sharma, A.; Alam, S.; Sharma, C.; Patnaik, A.; Kumar, S.R. Static and dynamic mechanical behavior of microcapsule-reinforced dental composite. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2017, 233, 1184–1190. [Google Scholar] [CrossRef]
- Rozza, B.Y.; El-Refai, D.A.; Essawy, H.A.; Alian, G.A. Effect of silanization of poly urea-formaldehyde microcapsules on the flexural strength and self-healing efficiency of an experimental self-healing dental resin composite (An in-vitro study). J. Mech. Behav. Biomed. Mater. 2024, 151, 106372. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J.M. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, T.; Kyomoto, M.; Kakinoki, S.; Yamaoka, T.; Ishihara, K. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. J. Biomed. Mater. Res. Part A 2013, 102, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, J.; Weir, M.; Wang, L.; Zhou, X.; Xu, H.; Melo, M. Dental composite formulation design with bioactivity on protein adsorption combined with crack-healing capability. J. Funct. Biomater. 2017, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Wu, J.; Zhang, Q.; Zhang, K.; Weir, M.D.; Imazato, S.; Bai, Y.; Xu, H.H.K. Novel dental adhesive resin with crack self-healing, antimicrobial and remineralization properties. J. Dent. 2018, 75, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Z.; Wang, T.; Tang, W.; Li, T.; Xu, H.; Sun, H.; Lin, Y.; Tonin, B.S.H.; Ye, Z.; et al. Bioactive dental resin composites with MgO nanoparticles. ACS Biomater. Sci. Eng. 2023, 9, 4632–4645. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Bahrami, R.; Bahador, A. Application of photosensitive dental materials as a novel antimicrobial option in dentistry: A literature review. J. Dent. Sci. 2024, 19, 762–772. [Google Scholar] [CrossRef]
- Jeon, S.; Jo, Y.-H.; Yoon, H.-I.; Han, J.-S. Antifungal effect, surface roughness, and cytotoxicity of three-dimensionally printed denture base with phytoncide-filled microcapsules: An in-vitro study. J. Dent. 2022, 120, 104098. [Google Scholar] [CrossRef]
- Yao, S.; Qin, L.; Wang, Z.; Zhu, L.; Zhou, C.; Wu, J. Novel nanoparticle-modified multifunctional microcapsules with self-healing and antibacterial activities for dental applications. Dent. Mater. 2022, 38, 1301–1315. [Google Scholar] [CrossRef]
- Yao, S.; Qin, L.; Ma, L.; Zhang, X.; Jiang, H.; Zhang, J.; Zhou, C.; Wu, J. Novel antimicrobial and self-healing dental resin to combat secondary caries and restoration fracture. Dent. Mater. 2023, 39, 1040–1050. [Google Scholar] [CrossRef]
- Fu, K.; Yang, J.; Cao, C.; Zhai, Q.; Qiao, W.; Qiao, J.; Gao, H.; Zhou, Z.; Ji, J.; Li, M.; et al. Highly multifunctional and thermoconductive performances of densely filled boron nitride nanosheets/epoxy resin bulk composites. ACS Appl. Mater. Interfaces 2021, 13, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Zhang, T.; Yao, S.; Wang, Z.; Zhou, C.; Wu, J. Novel low-shrinkage dental resin containing microcapsules with antibacterial and self-healing properties. J. Mech. Behav. Biomed. Mater. 2023, 148, 106212. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.S.; Rule, J.D.; Moore, J.S.; Sottos, N.R.; White, S.R. Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R. Soc. Interface 2007, 4, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Weir, M.D.; Melo, M.A.S.; Strassler, H.E.; Xu, H.H.K. Effects of water-aging on self-healing dental composite containing microcapsules. J. Dent. 2016, 47, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Q.; Weir, M.D.; Oates, T.W.; Zhou, C.; Chang, X.; Xu, H.H.K. Novel self-healing dental luting cements with microcapsules for indirect restorations. J. Dent. 2017, 66, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, R.; Zeinali Heris, S.; Hemmati, S.; Davaran, S. Development of a novel self-healing dental nanocomposite containing PUF nanocapsules and nanoclay. Mater. Today Chem. 2023, 27, 101302. [Google Scholar] [CrossRef]
- Kafagy, D.H.; Khajotia, S.S.; Keller, M.W. Fatigue Characterization of In-Situ Self-Healing Dental Composites. In Mechanics of Composite and Multi-functional Materials; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Berlin/Heidelberg, Germany, 2018; Volume 6, pp. 151–155. [Google Scholar]
- Kafagy, D.; Adams, K.; Khajotia, S.; Keller, M. Quasi-Static Characterization of Self-Healing Dental Composites. In Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Indianapolis, IN, USA, 12–15 June 2017; pp. 203–208. [Google Scholar]
- Ning, K.; Yang, F.; Bronkhorst, E.; Ruben, J.; Nogueira, L.; Haugen, H.; Loomans, B.; Leeuwenburgh, S. Fatigue behaviour of a self-healing dental composite. Dent. Mater. 2023, 39, 913–921. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F.; Ogden, A.R. The relationship between porosity, compressive fatigue limit and wear in composite resin restorative materials. Dent. Mater. 1987, 3, 9–12. [Google Scholar] [CrossRef]
- Ruben, J.L.; Roeters, F.J.M.; Montagner, A.F.; Huysmans, M.C.D.N.J.M. A multifunctional device to simulate oral ageing: The “Rub&Roll”. J. Mech. Behav. Biomed. Mater. 2014, 30, 75–82. [Google Scholar] [CrossRef]
- Duong, A.; Steinmaus, C.; McHale, C.M.; Vaughan, C.P.; Zhang, L. Reproductive and developmental toxicity of formaldehyde: A systematic review. Mutat. Res. Rev. Mutat. Res. 2011, 728, 118–138. [Google Scholar] [CrossRef]
Authors | Shell Material | Healing Liquid | Preparation Method | Composite Matrix Material | Self-Healing Efficiency | Significant Results |
---|---|---|---|---|---|---|
Wertzberger et al. (2010) [58] | PUF | DCPD + Grubbs’ catalyst | In situ polymerization | TEGDMA:UDMA:Bis-GMA (1:1:1) + silane 0.7 μ glass | 57% (average) | The self-healing material was able to recover 57% of its original fracture toughness, but the modulus decreased. |
Then et al. (2011) [59] | Melamine modified UF | DCPD | In situ polymerization | Bis-GMA:TEGDMA (7:3) | - | Melamine-modified UF microcapsules showed good adhesion to the dental host material. The small addition of microcapsules did not affect the performance of the matrix material. |
Ouyang et al. (2011) [57] | PU | TEGDMA | Interfacial polycondensation | Commercial dental adhesive | - | These self-healing microcapsules not only exhibited a concentrated size distribution, high encapsulation efficiency, and good biocompatibility, but also improved the bond strength of the dental adhesive. |
Wu et al. (2016) [62] | PUF | TEGDMA + DHEPT (BPO as initiator) | In situ polymerization | Bis-GMA:TEGDMA (1:1) | 65% (15 wt%) | The self-healing resin containing 15 wt% microcapsules appeared to have good self-healing efficiency and cellular cytotoxicity without mechanical properties decreasing. |
Huyang et al. (2016) [77] | Silanized silica | Aqueous solutions of polyacrylic acids | Silica condensation | Bis-GMA:HEMA (1:1) + strontium fluoroaluminasilicate glass powders | 25% (average) | Salinization of the microcapsule surface can confer strong binding with methacrylic resins. SHDC containing 5 wt% microcapsules had the best overall performance. |
Sharma et al. (2017) [81] | Silanized silica | Aqueous solutions of polyacrylic acids | Silica condensation | Bis-GMA:TEGDMA (1:1) + strontium fluoroaluminasilicate glass powders | - | Static mechanical results indicate that adding silane-modified microcapsules can improve hardness and flexural properties, but decreases the compressive strength of dental composite. Dynamic results indicate that the storage modulus decreased at 0–6 wt%, but increased at 9 wt%. |
Yahyazadehfar et al. (2018) [80] | Silanized silica | Aqueous solutions of polyacrylic acids | Silica condensation | Bis-GMA:HEMA (1:1) + strontium fluoroaluminasilicate glass powders | 24.2 ± 3.8% (5 wt%) | Two sets of SHDCs were prepared (separately with MA–silane and OH–silane). SHDCs containing 5 wt% MA–silane microcapsules achieve the best self-healing efficiency and mechanical properties, followed by increased fatigue crack growth resistance. |
Ning et al. (2021) [63] | PUF | TEGDMA + DHEPT (BPO as initiator) | In situ polymerization | Commercially available flowable composite (Clearfil MajestyTM ES Flow) | 76% (98 ± 43 μm) | The self-healing ability of flowable composite materials containing microcapsules increases with an increase in microcapsule size and concentration, as well as initiator concentration. |
Althaqafi et al. (2022) [67] | PUF | TEGDMA + DHEPT (BPO as initiator) | In situ polymerization | Bis-GMA:TEGDMA (1:1) + SiO2 nanoparticles | - | Except that flexural strength decreased drastically with increasing microcapsule concentrations (>10 wt%) in the composites, other mechanical properties were not significantly affected. |
Ahangaran et al. (2022) [76] | PMMA | TEGDMA + DHEPT (BPO as initiator) | Solvent evaporation | Bis-GMA:TEGDMA (7:3) + MPS-grafted SiO2 nanoparticles | 78–121% | The incorporation of PMMA microcapsules into dental composites had excellent healing performance and antibacterial properties, without significant effects on flexural properties. |
Fugolin et al. (2022) [72] | PUF | TEGDMA + DHEPT + DMAM (BPO as initiator) | In situ polymerization | Bis-GMA:Bis-EMA:UDMA:TEGDMA (2:2:2:1) | 77.0–94.4% | The self-healing system incorporating DMAM provided obstacles to crack propagation, which translated into an increase in toughness and reversible bonding ability. |
Moreira et al. (2022) [68] | PUF | TCDHEPT: TEGDMA + DHEPT BTCDHEPT: TEGDMA + Bis-GMA + DHEPT BTCBPO: TEGDMA + Bis-GMA + BPO | In situ polymerization | Bis-GMA:TEGDMA (1:1) + barium boroaluminosilicate glass particles | 52.5% (TCDHEPT), 22.1% (BTCBPO + BTCDHEPT) | The incorporation of microcapsules did not affect DC, flexural strength or elastic modulus. The self-healing efficiency was higher for the TCDHEPT group than the BTCBPO + BTCDHEPT group. |
Rozza et al. (2024) [82] | Silanized PUF | TEGDMA + DHEPT (BPO as initiator) | In situ polymerization | Bis-GMA:TEGDMA (1:1) + presilanized barium boroaluminosilicate glass particles | 49–77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ding, T. A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites. J. Funct. Biomater. 2024, 15, 165. https://doi.org/10.3390/jfb15060165
Wang X, Ding T. A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites. Journal of Functional Biomaterials. 2024; 15(6):165. https://doi.org/10.3390/jfb15060165
Chicago/Turabian StyleWang, Xiaoxi, and Tian Ding. 2024. "A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites" Journal of Functional Biomaterials 15, no. 6: 165. https://doi.org/10.3390/jfb15060165
APA StyleWang, X., & Ding, T. (2024). A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites. Journal of Functional Biomaterials, 15(6), 165. https://doi.org/10.3390/jfb15060165