Novel Resin-Based Antibacterial Root Surface Coating Material to Combat Dental Caries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Resin Containing Different Mass Fractions of DMAHDM
- Seal & Protect (designated as “Commercial Control”);
- UV + 0% DMAHDM + 10% glass (designated as “Experimental control”);
- UV + 3% DMAHDM + 10% glass (designated as “UV + 3% DMAHDM”);
- UV + 5% DMAHDM + 10% glass (designated as “UV + 5% DMAHDM”);
- UV + 7% DMAHDM + 10% glass (designated as “UV + 7% DMAHDM”).
2.2. Mechanical Properties
2.3. Degree of Conversion
2.4. Paste Flowability
2.5. Streptococcus mutans (S. mutans) Biofilm Model
2.5.1. Resin Samples for Biofilm Testing
2.5.2. Bacteria Inoculation and Biofilm Formation
2.5.3. Biofilm Colony-Forming Unit Counts
2.5.4. Biofilm Metabolic Activity
2.5.5. Lactic Acid Production by Biofilms
2.5.6. Scanning Electron Microscopy (SEM)
2.5.7. Human Gingival Fibroblast (HGF) Cytotoxicity
2.6. Statistical Analysis
3. Results
3.1. Mechanical Properties
3.2. Paste Flowability
3.3. Degree of Conversion
3.4. Biofilm Colony-Forming Unit Counts
3.5. MTT Assay of Metabolic Activity of S. mutans Biofilms
3.6. Lactic Acid Production by S. mutans Biofilms
3.7. SEM Examination of Coating and S. mutans Biofilms
3.8. Cytotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Nasser, L.; Lamster, I.B. Prevention and Management of Periodontal Diseases and Dental Caries in the Older Adults. Periodontol. 2000 2020, 84, 69–83. [Google Scholar] [CrossRef]
- Fee, P.A.; Cassie, H.; Clarkson, J.E.; Hall, A.F.; Ricketts, D.; Walsh, T.; Goulão, B. Development of a Root Caries Prediction Model in a Population of Dental Attenders. Caries Res. 2022, 56, 429–446. [Google Scholar] [CrossRef]
- Su, W.S.; Chang, C.Y. Root Caries in Older Adults: A Co-Citation Network Analysis (1980–2023). Gerodontology 2024. [Google Scholar] [CrossRef]
- Zeeshan Bashir, N. Update on the Prevalence of Untreated Caries in the US Adult Population, 2017–2020. J. Am. Dent. Assoc. 2022, 153, 300–308. [Google Scholar] [CrossRef]
- AlQranei, M.S.; Balhaddad, A.A.; Melo, M.A.S. The Burden of Root Caries: Updated Perspectives and Advances on Management Strategies. Gerodontology 2021, 38, 136–153. [Google Scholar] [CrossRef]
- Cai, J.; Palamara, J.E.A.; Manton, D.J.; Burrow, M.F. Status and Progress of Treatment Methods for Root Caries in the Last Decade: A Literature Review. Aust. Dent. J. 2018, 63, 34–54. [Google Scholar] [CrossRef]
- Goldberg, M.; Kulkarni, A.B.; Young, M.; Boskey, A. Dentin: Structure, Composition and Mineralization: The Role of Dentin ECM in Dentin Formation and Mineralization. Front. Biosci. 2011, 3, 711–735. [Google Scholar] [CrossRef]
- Neel, E.A.A.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.M.; Bozec, L.; Mudera, V. Demineralisation-Remineralisation-Dynamics-in-Teeth-and-Bone. Int. J. Nanomed. Dovepress 2016, 11, 4743. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Selvig, K.A. Dental Cementum: The Dynamic Tissue Covering of the Root. Periodontol. 2000 1997, 13, 41–75. [Google Scholar] [CrossRef]
- Sarna-Boś, K.; Boguta, P.; Skic, K.; Wiącek, D.; Maksymiuk, P.; Sobieszczański, J.; Chałas, R. Physicochemical Properties and Surface Characteristics of Ground Human Teeth. Molecules 2022, 27, 5852. [Google Scholar] [CrossRef]
- Hoppenbrouwers, P.M.M.; Drieksens, F.C.M.; Borggreven, J.M.P.M. The Mineral Solubility of Human Tooth Roots. Archs Oral Bid. 1987, 32, 319–322. [Google Scholar] [CrossRef]
- Damé-Teixeira, N.; Parolo, C.C.F.; Maltz, M. Specificities of Caries on Root Surface. Monogr. Oral. Sci. 2017, 26, 15–25. [Google Scholar] [CrossRef]
- Gluzman, R.; Katz, R.V.; Frey, B.J.; Mcgowan, R. Prevention of Root Caries: A Literature Review of Primary and Secondary Preventive Agents. Spec. Care Dent. 2013, 33, 133–140. [Google Scholar] [CrossRef]
- Lu, D.; Li, F.; Zhao, C.; Ye, Y.; Zhang, X.; Yang, P.; Zhang, X. A Remineralizing and Antibacterial Coating for Arresting Caries. J. Dent. Res. 2023, 102, 1315–1325. [Google Scholar] [CrossRef]
- Wang, X.; Huyang, G.; Palagummi, S.V.; Liu, X.; Skrtic, D.; Beauchamp, C.; Bowen, R.; Sun, J. High Performance Dental Resin Composites with Hydrolytically Stable Monomers. Dent. Mater. 2018, 34, 228–237. [Google Scholar] [CrossRef]
- AlSahafi, R.; Wang, X.; Mitwalli, H.; Alhussein, A.; Balhaddad, A.A.; Melo, M.A.S.; Oates, T.W.; Sun, J.; Xu, H.K.; Weir, M.D. Novel Antibacterial Low-Shrinkage-Stress Resin-Based Cement. Dent. Mater. 2022, 38, 1689–1702. [Google Scholar] [CrossRef]
- Mitwalli, H.; Balhaddad, A.A.; AlSahafi, R.; Oates, T.W.; Melo, M.A.S.; Xu, H.H.K.; Weir, M.D. Novel CaF2 nanocomposites with Antibacterial Function and Fluoride and Calcium Ion Release to Inhibit Oral Biofilm and Protect Teeth. J. Funct. Biomater. 2020, 11, 56. [Google Scholar] [CrossRef]
- Sugii, M.M.; Ferreira, F.A.d.S.; Müller, K.C.; Lima, D.A.N.L.; Groppo, F.C.; Imasato, H.; Rodrigues-Filho, U.P.; Aguiar, F.H.B. Physical, Chemical and Antimicrobial Evaluation of a Composite Material Containing Quaternary Ammonium Salt for Braces Cementation. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 73, 340–346. [Google Scholar] [CrossRef]
- Liang, X.; Yu, B.; Ye, L.; Lin, D.; Zhang, W.; Zhong, H.-J.; He, J.; Ortega, V.; Liang, X.; Yu, B.; et al. Recent Advances in Quaternary Ammonium Monomers for Dental Applications. Materials 2024, 17, 345. [Google Scholar] [CrossRef]
- Antonucci, J.M.; Zeiger, D.N.; Tang, K.; Lin-Gibson, S.; Fowler, B.O.; Lin, N.J. Synthesis and Characterization of Dimethacrylates Containing Quaternary Ammonium Functionalities for Dental Applications. Dent. Mater. 2012, 28, 219–228. [Google Scholar] [CrossRef]
- Herrera-González, A.M.; Caldera-Villalobos, M.; Pérez-Mondragón, A.A.; Cuevas-Suárez, C.E.; González-López, J.A. Analysis of Double Bond Conversion of Photopolymerizable Monomers by FTIR-ATR Spectroscopy. J. Chem. Educ. 2019, 96, 1786–1789. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, S.; Lv, S.; Wang, X.; Wei, R.; Ma, Y. Mechanical and Antimicrobial Properties of Boron Nitride/Methacrylic Acid Quaternary Ammonium Composites Reinforced Dental Flowable Resins. ACS Biomater. Sci. Eng. 2024, 10, 1796–1807. [Google Scholar] [CrossRef]
- ISO 6876:2012; Dentistry: Root Canal Sealing Materials. International Organization for Standardization: Geneva, Switzerland, 2012.
- Lyu, W.J.; Bai, W.; Wang, X.Y.; Liang, Y.H. Physicochemical Properties of a Novel Bioceramic Silicone-Based Root Canal Sealer. J. Dent. Sci. 2022, 17, 831–835. [Google Scholar] [CrossRef]
- Bhadila, G.; Menon, D.; Wang, X.; Vila, T.; Melo, M.A.S.; Montaner, S.; Arola, D.D.; Weir, M.D.; Sun, J.; Hockin, H.K.; et al. Long-Term Antibacterial Activity and Cytocompatibility of Novel Low-Shrinkage-Stress, Remineralizing Composites. J. Biomater. Sci. Polym. Ed. 2021, 32, 886–905. [Google Scholar] [CrossRef]
- Imazato, S.; Ehara, A.; Torii, M.; Ebisu, S. Antibacterial Activity of Dentine Primer Containing MDPB after Curing. J. Dent. 1998, 26, 267–271. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Y.; Fan, Y.; Ren, L.; Tang, X.; Meng, X. Application of Silver Nanoparticles in Situ Synthesized in Dental Adhesive Resin. Int. J. Adhes. Adhes. 2021, 108, 102890. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhou, Z.; Ma, Q.; Li, J.; Huang, J.; Lei, L.; Zhou, X.; Cheng, L.; Zou, J.; et al. Candida Albicans CHK1 Gene Regulates Its Cross-Kingdom Interactions with Streptococcus Mutans to Promote Caries. Appl. Microbiol. Biotechnol. 2022, 106, 7251–7263. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Y.; Qiu, L.; Yu, F.; Hu, X.; Wang, M.; Sun, Y.; Pan, Y.; Zhang, K. The Suppression Effect of SCH-79797 on Streptococcus Mutans Biofilm Formation. J. Oral. Microbiol. 2022, 14, 2061113. [Google Scholar] [CrossRef]
- Zhang, K.; Xiang, Y.; Peng, Y.; Tang, F.; Cao, Y.; Xing, Z.; Li, Y.; Liao, X.; Sun, Y.; He, Y.; et al. Influence of Fluoride-Resistant Streptococcus Mutans Within Antagonistic Dual-Species Biofilms Under Fluoride In Vitro. Front. Cell Infect. Microbiol. 2022, 12, 801569. [Google Scholar]
- Hu, X.; Wang, M.; Shen, Y.; Zhang, L.; Pan, Y.; Sun, Y.; Zhang, K. Regulatory Effect of Irresistin-16 on Competitive Dual-Species Biofilms Composed of Streptococcus Mutans and Streptococcus Sanguinis. Pathogens 2022, 11, 70. [Google Scholar]
- Eshmawi, Y.T.; Al-Zain, A.O.; Eckert, G.J.; Platt, J.A. Original Contributions Variation in Composite Degree of Conversion and Microflexural Strength for Different Curing Lights and Surface Locations. J. Am. Dent. Assoc. 2018, 149, 893–902. [Google Scholar] [CrossRef]
- Lawson, N.C.; Burgess, J.O. Wear of Nanofilled Dental Composites at Varying Filler Concentrations. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 424–429. [Google Scholar] [CrossRef]
- Takahashi, N.; Nyvad, B. The Role of Bacteria in the Caries Process: Ecological Perspectives. J. Dent. Res. 2011, 90, 294–303. [Google Scholar] [CrossRef]
- Cieplik, F.; Scholz, K.J.; Tabenski, I.; May, S.; Hiller, K.-A.; Schmalz, G.; Buchalla, W.; Federlin, M. ScienceDirect Flowable Composites for Restoration of Non-Carious Cervical Lesions: Results after Five Years. Dent. Mater. 2017, 33, e428–e437. [Google Scholar] [CrossRef]
- Canali, G.D.; Ignácio, S.A.; Rached, R.N.; Souza, E.M. One-Year Clinical Evaluation of Bulk-Fill Flowable vs. Regular Nanofilled Composite in Non-Carious Cervical Lesions. Clin. Oral. Investig. 2019, 23, 889–897. [Google Scholar]
- Battancs, E.; Fráter, M.; Sáry, T.; Gál, E.; Braunitzer, G.; Balázs, S.P.; Garoushi, S. Fracture Behavior and Integrity of Different Direct Restorative Materials to Restore Noncarious Cervical Lesions. Polymers 2021, 13, 4170. [Google Scholar] [CrossRef]
- Bhadila, G.; Filemban, H.; Wang, X.; Melo, M.A.S.; Arola, D.D.; Tay, F.R.; Oates, T.W.; Weir, M.D.; Sun, J.; Xu, H.H.K. Bioactive Low-Shrinkage-Stress Nanocomposite Suppresses S. Mutans Biofilm and Preserves Tooth Dentin Hardness. Acta Biomater. 2020, 114, 146–157. [Google Scholar] [CrossRef]
- Alhussein, A.; Alsahafi, R.; Wang, X.; Mitwalli, H.; Filemban, H.; Hack, G.D.; Oates, T.W.; Sun, J.; Weir, M.D.; Xu, H.H.K. Novel Dental Low-Shrinkage-Stress Composite with Antibacterial Dimethylaminododecyl Methacrylate Monomer. J. Funct. Biomater. 2023, 14, 335. [Google Scholar] [CrossRef]
- Fei, X.; Li, Y.; Weir, M.D.; Baras, B.H.; Wang, H.; Wang, S.; Sun, J.; Melo, M.A.S.; Ruan, J.; Xu, H.H.K. Novel Pit and Fissure Sealant Containing Nano-CaF2 and Dimethylaminohexadecyl Methacrylate with Double Benefits of Fluoride Release and Antibacterial Function. Dent. Mater. 2020, 36, 1241–1253. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Dickens, S.H. Determination of Double Bond Conversion in Dental Resins by near Infrared Spectroscopy. Dent. Mater. 2001, 17, 71–79. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, H.; Liang, K.; Tay, F.; Weir, M.D.; Melo, M.A.S.; Wang, L.; Wu, Y.; Oates, T.W.; Ding, Y.; et al. Novel Multifunctional Nanocomposite for Root Caries Restorations to Inhibit Periodontitis-Related Pathogens. J. Dent. 2019, 81, 17–26. [Google Scholar] [CrossRef]
- Baras, B.H.; Sun, J.; Melo, M.A.S.; Tay, F.R.; Oates, T.W.; Zhang, K.; Weir, M.D.; Xu, H.H.K. Novel Root Canal Sealer with Dimethylaminohexadecyl Methacrylate, Nano-Silver and Nano-Calcium Phosphate to Kill Bacteria inside Root Dentin and Increase Dentin Hardness. Dent. Mater. 2019, 35, 1479–1489. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Ren, B.; Li, X.; Wang, L.; Zhou, H.; Weir, M.D.; Zhou, X.; Masri, R.M.; Oates, T.W.; et al. Drug Resistance of Oral Bacteria to New Antibacterial Dental Monomer Dimethylaminohexadecyl Methacrylate. Sci. Rep. 2018, 8, 5509. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Yang, Y.; Li, M.; Xu, H.H.K.; Weir, M.D.; Zhou, X.; Liang, K.; Li, J. Evaluation of the Ability of Adhesives with Antibacterial and Remineralization Functions to Prevent Secondary Caries in Vivo. Clin. Oral. Investig. 2022, 26, 3637–3650. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Ibrahim, A.S.; Balhaddad, A.A.; Weir, M.D.; Lin, N.J.; Tay, F.R.; Oates, T.W.; Xu, H.H.K.; Melo, M.A.S. A Novel Dental Sealant Containing Dimethylaminohexadecyl Methacrylate Suppresses the Cariogenic Pathogenicity of Streptococcus Mutans Biofilms. Int. J. Mol. Sci. 2019, 20, 3491. [Google Scholar] [CrossRef]
- Alsahafi, R.; Balhaddad, A.A.; Mitwalli, H.; Ibrahim, M.S.; Melo, M.A.S.; Oates, T.W.; Xu, H.H.K.; Weir, M.D. Novel Crown Cement Containing Antibacterial Monomer and Calcium Phosphate Nanoparticles. Nanomaterials 2020, 10, 2001. [Google Scholar] [CrossRef]
- Humphrey, S.P.; Williamson, R.T. A Review of Saliva: Normal Composition, Flow, and Function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Fischer, J.; Pröfrock, D.; Hort, N.; Willumeit, R.; Feyerabend, F. Improved Cytotoxicity Testing of Magnesium Materials. Mater. Sci. Eng. B 2011, 176, 830–834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, N.; Alhussein, A.; Alenizy, M.; Ba-Armah, I.; Sun, J.; Weir, M.D.; Xu, H.H.K. Novel Resin-Based Antibacterial Root Surface Coating Material to Combat Dental Caries. J. Funct. Biomater. 2024, 15, 168. https://doi.org/10.3390/jfb15060168
Almutairi N, Alhussein A, Alenizy M, Ba-Armah I, Sun J, Weir MD, Xu HHK. Novel Resin-Based Antibacterial Root Surface Coating Material to Combat Dental Caries. Journal of Functional Biomaterials. 2024; 15(6):168. https://doi.org/10.3390/jfb15060168
Chicago/Turabian StyleAlmutairi, Nader, Abdullah Alhussein, Mohammad Alenizy, Ibrahim Ba-Armah, Jirun Sun, Michael D. Weir, and Hockin H. K. Xu. 2024. "Novel Resin-Based Antibacterial Root Surface Coating Material to Combat Dental Caries" Journal of Functional Biomaterials 15, no. 6: 168. https://doi.org/10.3390/jfb15060168
APA StyleAlmutairi, N., Alhussein, A., Alenizy, M., Ba-Armah, I., Sun, J., Weir, M. D., & Xu, H. H. K. (2024). Novel Resin-Based Antibacterial Root Surface Coating Material to Combat Dental Caries. Journal of Functional Biomaterials, 15(6), 168. https://doi.org/10.3390/jfb15060168