Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets
Abstract
:1. Introduction
2. Influence of NPs on Platelets
2.1. Impact of NPs on Platelet Membrane Proteins
2.2. Influence of NPs on Morphology of Platelets
2.3. NPs Influence Platelet Activation and Aggregation
2.4. Mechanisms of Activation and Aggregation Promoted by NPs
2.5. NPs Influence Platelet Release and Apoptosis
3. NPs in Anticoagulation and Anti-Thrombosis Applications
4. Summary and Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, D.; Ma, Y.; Han, X.; Chen, Y. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J. Hazard. Mater. 2021, 417, 126092. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Chang, Q.; Sun, Z.X.; Liu, J.; Deng, X.; Liu, Y.; Cao, A.; Wang, H. Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids Surf. B Biointerfaces 2021, 208, 112140. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Tian, Z.; Dong, Y.; Wang, X.; Zhan, L. Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes. RSC Adv. 2021, 11, 6958–6971. [Google Scholar] [CrossRef] [PubMed]
- Tynngard, N.; Boknas, N.; Trinks, M.; Dreimane, A.; Berlin, G. Storage-induced change in platelet transfusion response evaluated by serial transfusions from one donor to one patient. Transfusion 2019, 59, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Mehrizi, T.Z.; Ardestani, M.S.; Kafiabad, S.A. A Review of the Use of Metallic Nanoparticles as a Novel Approach for Overcoming the Stability Challenges of Blood Products: A Narrative Review from 2011–2021. Curr. Drug. Deliv. 2023, 20, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Bera, T.; Singh, S.K.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of Antiplatelet Properties of Silver Nanoparticles. ACS Nano 2009, 3, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Finkenstaedt-Quinn, S.; Hurley, K.R.; Buchman, J.T.; Haynes, C.L. On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst 2014, 139, 906–913. [Google Scholar] [CrossRef]
- Corbalan, J.J.; Medina, C.; Jacoby, A.; Malinski, T.; Radomski, M.W. Amorphous silica nanoparticles aggregate human platelets: Potential implications for vascular homeostasis. Int. J. Nanomed. 2012, 7, 631–639. [Google Scholar] [CrossRef]
- Nabeshi, H.; Yoshikawa, T.; Matsuyama, K.; Nakazato, Y.; Arimori, A.; Isobe, M.; Tochigi, S.; Kondoh, S.; Hirai, T.; Akase, T.; et al. Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure. Nanotechnology 2012, 23, 045101. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.W.; Lin, P.Y.; Wang, S.S.; Chen, Y.F. Adenosine diphosphate-decorated chitosan nanoparticles shorten blood clotting times, influencing the structures and varying the mechanical properties of the clots. Int. J. Nanomed. 2014, 9, 1655–1664. [Google Scholar] [CrossRef]
- Zia, F.; Kendall, M.; Watson, S.P.; Mendes, P.M. Platelet aggregation induced by polystyrene and platinum nanoparticles is dependent on surface area. RSC Adv. 2018, 8, 37789–37794. [Google Scholar] [CrossRef]
- Smyth, E.; Solomon, A.; Vydyanath, A.; Luther, P.K.; Pitchford, S.; Tetley, T.D.; Emerson, M. Induction and enhancement of platelet aggregation in vitro and in vivo by model polystyrene nanoparticles. Nanotoxicology 2015, 9, 356–364. [Google Scholar] [CrossRef]
- Fröhlich, E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr. Med. Chem. 2016, 23, 408–430. [Google Scholar] [CrossRef]
- Ragaseema, V.M.; Unnikrishnan, S.; Kalliyana Krishnan, V.; Krishnan, L.K. The antithrombotic and antimicrobial properties of PEG-protected silver nanoparticle coated surfaces. Biomaterials 2012, 33, 3083–3092. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, B.; Zai, W.; Kang, L.; Yuan, A.; Hu, Y.; Wu, J. Perfluorocarbon nanoparticle-mediated platelet inhibition promotes intratumoral infiltration of T cells and boosts immunotherapy. Proc. Natl. Acad. Sci. USA 2019, 116, 11972–11977. [Google Scholar] [CrossRef] [PubMed]
- Kottana, R.K.; Maurizi, L.; Schnoor, B.; Morris, K.; Webb, J.A.; Massiah, M.A.; Millot, N.; Papa, A.L. Anti-Platelet Effect Induced by Iron Oxide Nanoparticles: Correlation with Conformational Change in Fibrinogen. Small 2021, 17, e2004945. [Google Scholar] [CrossRef]
- Crook, M. Sialic Acid: Its importance to platelet function in health and disease. Platelets 1991, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Packham, M.A.; Guccione, M.A.; Kinlough-Rathbone, R.L.; Mustard, J.F. Platelet sialic acid and platelet survival after aggregation by ADP. Blood 1980, 56, 876–880. [Google Scholar] [CrossRef]
- Montague, S.J.; Patel, P.; Martin, E.M.; Slater, A.; Quintanilla, L.G.; Perrella, G.; Kardeby, C.; Nagy, M.; Mezzano, D.; Mendes, P.M.; et al. Platelet activation by charged ligands and nanoparticles: Platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021, 32, 1018–1030. [Google Scholar] [CrossRef]
- Apte, G.; Lindenbauer, A.; Schemberg, J.; Rothe, H.; Nguyen, T.H. Controlling Surface-Induced Platelet Activation by Agarose and Gelatin-Based Hydrogel Films. ACS Omega 2021, 6, 10963–10974. [Google Scholar] [CrossRef]
- Samuel, S.P.; Santos-Martinez, M.J.; Medina, C.; Jain, N.; Radomski, M.W.; Prina-Mello, A.; Volkov, Y. CdTe quantum dots induce activation of human platelets: Implications for nanoparticle hemocompatibility. Int. J. Nanomed. 2015, 10, 2723–2734. [Google Scholar] [CrossRef]
- Jones, C.F.; Campbell, R.A.; Franks, Z.; Gibson, C.C.; Thiagarajan, G.; Vieira-de-Abreu, A.; Sukavaneshvar, S.; Mohammad, S.F.; Li, D.Y.; Ghandehari, H.; et al. Cationic PAMAM dendrimers disrupt key platelet functions. Mol. Pharm. 2012, 9, 1599–1611. [Google Scholar] [CrossRef]
- Bertram, J.P.; Williams, C.A.; Robinson, R.; Segal, S.S.; Flynn, N.T.; Lavik, E.B. Intravenous hemostat: Nanotechnology to halt bleeding. Sci. Transl. Med. 2009, 1, 11ra22. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, P.; Wang, P.; Xu, S.; Cheng, Y.; Qian, K.; Xu, M.; Sheng, D.; Li, Y.; Wei, Y.; et al. ‘Adhesion and release’ nanoparticle-mediated efficient inhibition of platelet activation disrupts endothelial barriers for enhanced drug delivery in tumors. Biomaterials 2021, 269, 120620. [Google Scholar] [CrossRef]
- Markiewicz, M.; Richard, E.; Marks, N.; Ludwicka-Bradley, A. Impact of endothelial microparticles on coagulation, inflammation, and angiogenesis in age-related vascular diseases. J. Aging Res. 2013, 2013, 734509. [Google Scholar] [CrossRef]
- Puhm, F.; Boilard, E.; Machlus, K.R. Platelet Extracellular Vesicles: Beyond the Blood. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Gupalo, E.; Kuk, C.; Qadura, M.; Buriachkovskaia, L.; Othman, M. Platelet-adenovirus vs. inert particles interaction: Effect on aggregation and the role of platelet membrane receptors. Platelets 2013, 24, 383–391. [Google Scholar] [CrossRef]
- Galdino, F.E.; Picco, A.S.; Sforca, M.L.; Cardoso, M.B.; Loh, W. Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles. Colloids Surf. B Biointerfaces 2020, 186, 110677. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.; Wang, L.; Xu, F.; Li, Y.; He, X. The effects of serum albumin pre-adsorption of nanoparticles on protein corona and membrane interaction: A molecular simulation study. J. Mol. Biol. 2023, 435, 167771. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Yao, P. Gold nanoparticles with different amino acid surfaces: Serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids Surf. B Biointerfaces 2014, 123, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Aurich, K.; Wesche, J.; Palankar, R.; Schluter, R.; Bakchoul, T.; Greinacher, A. Magnetic Nanoparticle Labeling of Human Platelets from Platelet Concentrates for Recovery and Survival Studies. ACS Appl. Mater. Interfaces 2017, 9, 34666–34673. [Google Scholar] [CrossRef] [PubMed]
- Saikia, J.; Mohammadpour, R.; Yazdimamaghani, M.; Northrup, H.; Hlady, V.; Ghandehari, H. Silica Nanoparticle-Endothelial Interaction: Uptake and Effect on Platelet Adhesion under Flow Conditions. ACS Appl. Bio. Mater. 2018, 1, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, Z.M. The role of von Willebrand factor in thrombus formation. Thromb. Res. 2007, 120 (Suppl. S1), S5–S9. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Shimizu, H.; Doi, Y.; Ishida, T.; Fujimura, M.; Inoue, T.; Kiwada, H.; Tominaga, T. Immunoliposomal drug-delivery system targeting lectin-like oxidized low-density lipoprotein receptor-1 for carotid plaque lesions in rats. J. Neurosurg. 2011, 115, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Tafelmeier, M.; Fischer, A.; Orso, E.; Konovalova, T.; Bottcher, A.; Liebisch, G.; Matysik, S.; Schmitz, G. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles. J. Steroid Biochem. Mol. Biol. 2017, 169, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Urtz, N.; Gaertner, F.; von Bruehl, M.L.; Chandraratne, S.; Rahimi, F.; Zhang, L.; Orban, M.; Barocke, V.; Beil, J.; Schubert, I.; et al. Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo. Circ. Res. 2015, 117, 376–387. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Baruah, H.; Gupta, B.; Sharma, S. Silver nano particles prevent platelet adhesion on immobilized fibrinogen. Indian J. Clin. Biochem. 2012, 27, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Santos-Martinez, M.J.; Inkielewicz-Stepniak, I.; Medina, C.; Rahme, K.; D’Arcy, D.M.; Fox, D.; Holmes, J.D.; Zhang, H.; Radomski, M.W. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation. Int. J. Nanomed. 2012, 7, 243–255. [Google Scholar] [CrossRef]
- Rolling, C.C.; Sowa, M.A.; Wang, T.T.; Cornwell, M.; Myndzar, K.; Schwartz, T.; El Bannoudi, H.; Buyon, J.; Barrett, T.J.; Berger, J.S. P2Y12 Inhibition Suppresses Proinflammatory Platelet-Monocyte Interactions. Thromb. Haemost. 2023, 123, 231–244. [Google Scholar] [CrossRef]
- Blair, T.A.; Frelinger, A.L., 3rd. Platelet surface marker analysis by mass cytometry. Platelets 2020, 31, 633–640. [Google Scholar] [CrossRef]
- Polanowska-Grabowska, R.; Simon, C.G.; Gear, A.R. Platelet adhesion to collagen type I, collagen type IV, von Willebrand factor, fibronectin, laminin and fibrinogen: Rapid kinetics under shear. Thromb. Haemost. 1999, 81, 118–123. [Google Scholar]
- Kamata, T.; Takada, Y. Platelet Integrin αIIbβ3-Ligand Interactions: What Can We Learn From the Structure? Int. J. Hematol. 2001, 74, 382–389. [Google Scholar] [CrossRef]
- Wagner, C.L.; Mascelli, M.A.; Neblock, D.S.; Weisman, H.F.; Coller, B.S.; Jordan, R.E. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996, 88, 907–914. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet integrin alphaIIbbeta3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol. 2019, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.N.; Crespo-Biel, O.; van den Bosch, E.E.; Dias, A.A.; Knetsch, M.L.; Aldenhoff, Y.B.; van der Veen, F.H.; Maessen, J.G.; Stobberingh, E.E.; Koole, L.H. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 2009, 30, 3682–3690. [Google Scholar] [CrossRef] [PubMed]
- Lord, M.S.; Cheng, B.; McCarthy, S.J.; Jung, M.; Whitelock, J.M. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials 2011, 32, 6655–6662. [Google Scholar] [CrossRef]
- Chan, L.W.; Kim, C.H.; Wang, X.; Pun, S.H.; White, N.J.; Kim, T.H. PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage. Acta Biomater. 2016, 31, 178–185. [Google Scholar] [CrossRef]
- Pourshahrestani, S.; Zeimaran, E.; Adib Kadri, N.; Gargiulo, N.; Samuel, S.; Naveen, S.V.; Kamarul, T.; Towler, M.R. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J. Mater. Chem. B 2016, 4, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fang, Q.; Ding, M.; Wu, J.; Ye, F.; Lv, Z.; Jin, J. Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J. Biomater. Appl. 2016, 30, 1092–1102. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018, 8, 7533–7549. [Google Scholar] [CrossRef]
- Nadesh, R.; Narayanan, D.; Sreerekha, P.R.; Vadakumpully, S.; Mony, U.; Koyakkutty, M.; Nair, S.V.; Menon, D. Hematotoxicological analysis of surface-modified and -unmodified chitosan nanoparticles. J. Biomed. Mater. Res. A 2013, 101, 2957–2966. [Google Scholar] [CrossRef] [PubMed]
- Radomski, A.; Jurasz, P.; Alonso-Escolano, D.; Drews, M.; Morandi, M.; Malinski, T.; Radomski, M.W. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 2005, 146, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Ho-Tin-Noe, B.; Goerge, T.; Cifuni, S.M.; Duerschmied, D.; Wagner, D.D. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 2008, 68, 6851–6858. [Google Scholar] [CrossRef]
- Demers, M.; Wagner, D.D. Targeting platelet function to improve drug delivery. Oncoimmunology 2012, 1, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Mehrizi, T.Z.; Kafiabad, S.A.; Eshghi, P. Effects and treatment applications of polymeric nanoparticles on improving platelets’ storage time: A review of the literature from 2010 to 2020. Blood Res. 2021, 56, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskaia, M.A.; Patri, A.K.; Simak, J.; Hall, J.B.; Semberova, J.; De Paoli Lacerda, S.H.; McNeil, S.E. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm. 2012, 9, 382–393. [Google Scholar] [CrossRef]
- Jones, C.F.; Campbell, R.A.; Brooks, A.E.; Assemi, S.; Tadjiki, S.; Thiagarajan, G.; Mulcock, C.; Weyrich, A.S.; Brooks, B.D.; Ghandehari, H.; et al. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 2012, 6, 9900–9910. [Google Scholar] [CrossRef] [PubMed]
- Alavidjeh, M.S.; Haririan, I.; Khorramizadeh, M.R.; Ghane, Z.Z.; Ardestani, M.S.; Namazi, H. Anionic linear-globular dendrimers: Biocompatible hybrid materials with potential uses in nanomedicine. J. Mater. Sci. Mater. Med. 2010, 21, 1121–1133. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Tang, W.; Zheng, J. Comprehensive investigation of in vitro hemocompatibility of surface modified polyamidoamine nanocarrier. Clin. Hemorheol. Microcirc. 2020, 74, 267–279. [Google Scholar] [CrossRef]
- Barraza, L.F.; Jimenez, V.A.; Alderete, J.B. Association of Methotrexate with Native and PEGylated PAMAM-G4 Dendrimers: Effect of the PEGylation Degree on the Drug-Loading Capacity and Preferential Binding Sites. J. Phys. Chem. B 2017, 121, 4–12. [Google Scholar] [CrossRef]
- Diaz, C.; Guzman, J.; Jimenez, V.A.; Alderete, J.B. Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharm. Dev. Technol. 2018, 23, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Luong, D.; Kesharwani, P.; Deshmukh, R.; Mohd Amin, M.C.I.; Gupta, U.; Greish, K.; Iyer, A.K. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016, 43, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Yameen, B.; Bong, S.J.; Salvador-Morales, C.; Palomo, I.; Vilos, C. Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles. Nanomedicine 2017, 13, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Bakhaidar, R.; O’Neill, S.; Ramtoola, Z. PLGA-PEG Nanoparticles Show Minimal Risks of Interference with Platelet Function of Human Platelet-Rich Plasma. Int. J. Mol. Sci. 2020, 21, 9716. [Google Scholar] [CrossRef] [PubMed]
- Bakhaidar, R.; Green, J.; Alfahad, K.; Samanani, S.; Moollan, N.; O’Neill, S.; Ramtoola, Z. Effect of Size and Concentration of PLGA-PEG Nanoparticles on Activation and Aggregation of Washed Human Platelets. Pharmaceutics 2019, 11, 514. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pang, Y.; Toh, M.R.; Chiu, G.N. Dual-functionalized poly(amidoamine) dendrimers with poly(ethylene glycol) conjugation and thiolation improved blood compatibility. J. Pharm. Pharmacol. 2015, 67, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Kurungottu, P.A.-O.; Swetha, K.A.-O.; Atla, S.A.-O.; Ashok, N.A.-O.X.; Nagamalleswari, E.A.-O.; Bonam, S.A.-O.; Sahu, B.A.-O.; Kurapati, R.A.-O. Role of NLRP3 inflammasome in nanoparticle adjuvant-mediated immune response. Biomater. Sci. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Dong, S.; Cai, X.; Simaiti, A.; Yang, X.; Zhu, X.; Luo, J.; Jiang, L.H.; Du, B.; et al. Silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction. Part. Fibre Toxicol. 2020, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Albayati, S.; Li, N.; Unsworth, A.J.; Liverani, E.A.-O. Platelet-lymphocyte co-culture serves as an ex vivo platform of dynamic heterotypic cross-talk. Cell Commun. Signal. 2022, 16, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Lages, B.; Malmsten, C.; Weiss, H.J.; Samuelsson, B. Impaired Platelet Response to Thromboxane-A2 and Defective Calcium Mobilization in a Patient With a Bleeding Disorder. Blood 1981, 57, 545–552. [Google Scholar] [CrossRef]
- Potter, T.M.; Rodriguez, J.C.; Neun, B.W.; Ilinskaya, A.N.; Cedrone, E.; Dobrovolskaia, M.A. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation. In Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: Totowa, NJ, USA, 2018; pp. 103–124. [Google Scholar] [CrossRef]
- Kushida, T.; Saha, K.; Subramani, C.; Nandwana, V.; Rotello, V.M. Effect of nano-scale curvature on the intrinsic blood coagulation system. Nanoscale 2014, 6, 14484–14487. [Google Scholar] [CrossRef]
- Smith, C.W. Release of α-granule contents during platelet activation. Platelets 2022, 33, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Montecino-Garrido, H.; Mendez, D.; Araya-Maturana, R.; Millas-Vargas, J.P.; Wehinger, S.; Fuentes, E. In Vitro Effect of Mitochondria-Targeted Triphenylphosphonium-Based Compounds (Honokiol, Lonidamine, and Atovaquone) on the Platelet Function and Cytotoxic Activity. Front. Pharmacol. 2022, 13, 893873. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, E.C. Platelet intrinsic apoptosis. Thromb. Res. 2022, 231, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Schoenwaelder, S.M.; Jarman, K.E.; Gardiner, E.E.; Hua, M.; Qiao, J.; White, M.J.; Josefsson, E.C.; Alwis, I.; Ono, A.; Willcox, A.; et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 2011, 118, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Andelman, T.; Gordonov, S.; Busto, G.; Moghe, P.V.; Riman, R.E. Synthesis and Cytotoxicity of Y(2)O(3) Nanoparticles of Various Morphologies. Nanoscale Res. Lett. 2009, 5, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Das, M.K.; Gautam, R.; Ramteke, A.; Rajamani, P. Assessment of intermittent exposure of zinc oxide nanoparticle (ZNP)-mediated toxicity and biochemical alterations in the splenocytes of male Wistar rat. Environ. Sci. Pollut. Res. Int. 2019, 26, 33642–33653. [Google Scholar] [CrossRef] [PubMed]
- Wendelboe, A.M.; Raskob, G.E. Global Burden of Thrombosis: Epidemiologic Aspects. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef]
- Severin, S.; Gratacap, M.P.; Lenain, N.; Alvarez, L.; Hollande, E.; Penninger, J.M.; Gachet, C.; Plantavid, M.; Payrastre, B. Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. J. Clin. Investig. 2007, 117, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhang, L.; Zhang, L.; Sun, W.; Fang, Z.; Leng, Y.; Li, M.; Ren, X.; Zhang, R.; Zhang, Y.; et al. Danshensu prevents thrombosis by inhibiting platelet activation via SIRT1/ROS/mtDNA pathways without increasing bleeding risk. Phytomedicine 2022, 104, 154271. [Google Scholar] [CrossRef]
- Porter, J.C.; Hogg, N. Integrins take partners: Cross-talk between integrins and other membrane receptors. Trends Cell. Biol. 1998, 8, 390–396. [Google Scholar] [CrossRef]
- Yang, W.; Wu, K.; Liu, X.; Jiao, Y.; Zhou, C. Construction and characterization of an antibacterial/anticoagulant dual-functional surface based on poly l-lactic acid electrospun fibrous mats. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Hao, M.F.; Wang, G.; Peng, H.; Wahid, F.; Yang, Y.; Liang, L.; Liu, S.Q.; Li, R.L.; Feng, S.Y. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. Sci. Total Environ. 2023, 873, 162438. [Google Scholar] [CrossRef] [PubMed]
Material | Size (nm) | Effects on Platelets | Interactions with Platelets | Reference |
---|---|---|---|---|
Amorphous SiO2 NPs | 10, 50, 150, 500 | Accelerated aggregation | GPIIb/IIIa and P-selectin were exposed on platelet surface, and ADP 1 and MMP-2 2 were released | [8] |
Amorphous SiO2 NPs | 70 | Accelerated aggregation | Interaction with coagulation factor XII | [9] |
Adenosine diphosphate Coated chitosan NPs | 251.0 ± 9.8 | Accelerated aggregation | Produces stronger clots in less time | [10] |
Polystyrene NPs | 25, 50, 119, 151, 201 | Accelerated aggregation | Cause GPIIIb/IIIa exposure through passive aggregation and regulation by Src and Syk tyrosine kinases | [11] |
Platinum NPs | 7, 73 | Accelerated aggregation | ||
Polystyrene latex NPs | 50, 100 | Accelerated aggregation | Endocytosis of the platelets and physical bridging to adjacent inactive platelets | [12] |
Platelet-derived microparticles | 100 | Accelerated aggregation | Surface phosphatidylserine interacts with coagulation factors in plasma | [13] |
ZnO NPs | 20, 100 | Inhibited aggregation | Reduced the thrombin generation potential | [5] |
Ag NPs | 13, 20, 29 | Inhibited aggregation | Endocytosis of the platelets and inhibition of GPIIb/IIIa expression | [6] |
Polyethylene glycol-coated silver NPs | 20 | Inhibited aggregation | Inhibits the synthesis of arachidonic acid into thromboxane and prevents GPIIb/IIIa exposure | [14] |
Perfluorotributylamine NPs | 150, 200 | Inhibited aggregation | [15] | |
Polyvinyl alcohol-coated superparamagnetic iron oxide NPs | 78 ± 22 | Inhibited aggregation | Conformation of fibrinogen changes, causing the bridge between platelets to fail | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, D.; Sun, S.; Zhao, M.; Zhan, L.; Wang, X. Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. J. Funct. Biomater. 2024, 15, 188. https://doi.org/10.3390/jfb15070188
Peng D, Sun S, Zhao M, Zhan L, Wang X. Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. Journal of Functional Biomaterials. 2024; 15(7):188. https://doi.org/10.3390/jfb15070188
Chicago/Turabian StylePeng, Dongxin, Sujing Sun, Man Zhao, Linsheng Zhan, and Xiaohui Wang. 2024. "Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets" Journal of Functional Biomaterials 15, no. 7: 188. https://doi.org/10.3390/jfb15070188
APA StylePeng, D., Sun, S., Zhao, M., Zhan, L., & Wang, X. (2024). Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. Journal of Functional Biomaterials, 15(7), 188. https://doi.org/10.3390/jfb15070188