Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
- starting solution: 2% citric acid solution containing 1 g/dm3 of chitosan,
- solution 1: 2% citric acid solution in 25% ethanol containing 1 g/dm3 of chitosan,
- solution 2: 2% citric acid solution in 50% ethanol containing 1 g/dm3 of chitosan,
- solution 3: 2% citric acid solution in 75% ethanol containing 1 g/dm3 of chitosan
2.2. Material Characterization
3. Results and Discussion
3.1. Porous Ti Substrate Characterization
3.2. Chitosan Coatings Characterization
3.3. Mechanical Study
3.4. Biological Study
4. Conclusions
- The EPD method makes it possible to obtain chitosan-based biopolymer coatings on porous titanium substrates.
- This study showed that this method allows the penetration of the coating material into the substrate’s pores.
- It was also shown that it is possible to control the thickness and morphology of coatings by selecting deposition conditions. The deposition time and voltage increase, resulting in thicker coatings.
- Moreover, the voltage increase in the electrophoretic deposition process promotes the formation of pores in chitosan.
- The negative influence of ethanol content in the deposition solution was observed during this study. The increase in ethanol concentration increases the likelihood of cracking and peeling of the coating.
- The deposition of coatings at 10 V for 30 min from the solutions resulted in coatings of good quality and effective coverage of the interior pores of the Ti substrate. Furthermore, these coatings exhibited the highest roughness, which may enhance the integration of the implant with the surrounding tissue.
- Vital staining showed a high cell survival rate of 99.71%. The conducted tests show the absence of a cytotoxic effect of the produced biomaterial on fibroblast cells.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahapatro, A. Bio-functional nano-coatings on metallic biomaterials. Mater. Sci. Eng. C 2015, 55, 227–251. [Google Scholar] [CrossRef] [PubMed]
- Dinglingge, C.; Ding, J. Recent advances in regenerative biomaterials. Regen. Biomater. 2022, 9, rbac098. [Google Scholar]
- Yang, K.; Zhou, C.; Fan, H.; Fan, Y.; Jiang, Q.; Song, P.; Fan, H.; Chen, Y.; Zhang, X. Bio-Functional Design, Application and Trends in Metallic Biomaterials. Int. J. Mol. Sci. 2017, 19, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, N.; Zhu, M.; Qiu, Q.; Zhao, P.; Zheng, C.; Bai, Q.; Zeng, Q.; Lu, T. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomater. Adv. 2022, 133, 112651. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sanchez, C.; Al Mushref, F.R.A.; Norrito, M.; Yendall, K.; Liu, Y.; Conway, P.P. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater. Sci. Eng. C 2017, 77, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.A.; Ilyas, K.; Dlouhý, I.; Siska, F.; Boccaccini, A.R. Electrophoretic Deposition of Copper(II)-Chitosan Complexes for Antibacterial Coatings. Int. J. Mol. Sci. 2020, 21, 2637. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Alginates, R.S.G. A Seaweed Product: Its Properties and Applications. In Properties and Applications of Alginates; Deniz, I., Imamoglu, E., Keskin-Gundogdu, T., Eds.; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Abdel-Rahman, R.M.; Abdel-Mohsen, A.M. Marine Biomaterials: Hyaluronan. Mar. Drugs 2023, 21, 426. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; El-Hakim, Y.M.A.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications. A review. Int. J. Biol. Macromol. 2020, 164, 2726–2744. [Google Scholar] [CrossRef]
- Cohen, E.; Poverenov, E. Hydrophilic Chitosan Derivatives: Synthesis and Applications. Chemistry 2022, 28, 202202156. [Google Scholar] [CrossRef]
- Kankariya, Y.; Chatterjee, B. Biomedical Application of Chitosan and Chitosan Derivatives: A Comprehensive Review. Curr. Pharm. Des. 2023, 29, 1311–1325. [Google Scholar] [CrossRef] [PubMed]
- Mahlooji, E.; Atapour, M.; Labbaf, S.A. Electrophoretic deposition of Bioactive glass—Chitosan nanocomposite coatings on Ti-6Al-4V for orthopedic applications. Carbohydr. Polym. 2019, 226, 115299. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef] [PubMed]
- Confederat, L.G.; Tuchilus, C.G.; Dragan, M.; Sha, M.; Dragostin, O.M. Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021, 26, 3694. [Google Scholar] [CrossRef] [PubMed]
- Sivanesan, I.; Hasan, N.; Muthu, M.; Blessing, G.; Gopal, J.; Chun, S.; Shin, J.; Oh, J.W. Exploring the Impact of Chitosan Composites as Artificial Organs. Polymers 2022, 14, 1587. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, R.; Baker, K.; Zhitomirsky, I. Electrophoretic deposition of polymers and proteins for biomedical applications. Adv. Colloid Interface Sci. 2020, 284, 102272. [Google Scholar] [CrossRef]
- Obregón, S.; Amor, G.; Vázquez, A. Electrophoretic deposition of photocatalytic materials. Adv. Colloid Interface Sci. 2019, 269, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Boccaccini, A.R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I. Electrophoretic deposition of biomaterials. J. R. Soc. Interface. 2010, 7, 581–613. [Google Scholar] [CrossRef] [PubMed]
- Shapagina, N.A.; Dushik, V.V. Application of Electrophoretic Deposition as an Advanced Technique of Inhibited Polymer Films Formation on Metals from Environmentally Safe Aqueous Solutions of Inhibited Formulations. Materials 2022, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Deen, I.; Selopal, G.S.; Wang, Z.M.; Rosei, F. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. J. Colloid. Interface Sci. 2022, 607, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Stevanović, M.; Djošić, M.; Janković, A.; Nešović, K.; Kojić, V.; Stojanović, J.; Grujić, S.; Bujagić, I.M.; Rhee, K.Y.; Mišković-Stanković, V. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. ACS Omega 2020, 5, 15433–15445. [Google Scholar] [CrossRef] [PubMed]
- Błoniarz, A.; Marchewka, J.; Sitarz, M.; Drożdż, K.; Gosiewski, T.; Brzychczy-Włoch, M.; Moskalewicz, T. Effect of adding selected carboxylic acids to the solution on electrophoretic deposition, adhesion strength, morphology and antibacterial properties of chitosan coatings on titanium. Prog. Org. Coat. 2024, 189, 108258. [Google Scholar] [CrossRef]
- Mahmoodi, S.; Sorkhi, L.; Farrokhi-Rad, M.; Shahrabi, T. Electrophoretic deposition of hydroxyapatite–chitosan nanocomposite coatings in different alcohols. Surf. Coat. Technol. 2013, 216, 106–114. [Google Scholar] [CrossRef]
- Cordero-Arias, L.; Cabanas-Polo, S.; Gao, H.; Gilabert, J.; Sanchez, E.; Roether, J.A.; Schubert, D.W.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel. RSC Adv. 2013, 28, 11247. [Google Scholar] [CrossRef]
- Sorkhi, L.; Farrokhi-Rad, M.; Shahrabi, T. Electrophoretic deposition of chitosan in different alcohols. J. Coat. Technol. Res. 2014, 11, 739–746. [Google Scholar] [CrossRef]
- ISO 14577-4; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 4: Test Method for Metallic and Non-Metallic Coatings. ISO: Geneva, Switzerland, 2016.
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- ISO10993-5; Biological Evaluation of Medical Devices. Part 5. ISO: Geneva, Switzerland, 1999.
- Morsy, M.; Khaled, M.; Amyn, H.; El Ebissy, A.; Salah, A.; Youssef, M. Synthesis and Characterization of Freeze Dryer Chitosan Nano particles as Multi functional Eco-Friendly Finish for Fabricating Easy Care and Antibacterial Cotton Textiles. Egypt. J. Chem. 2019, 62, 1277–1293. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Lotfy, T.M.R.; Shawir, S.M.S. Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bull. Natl. Res. Cent. 2019, 43, 83. [Google Scholar] [CrossRef]
- Pishbin, F.; Mouriño, V.; Gilchrist, J.B.; McComb, D.W.; Kreppel, S.; Salih, V.; Ryan, M.P.; Boccaccini, A.R. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013, 9, 7469. [Google Scholar] [CrossRef] [PubMed]
- Ordikhani, F.; Tamjid, E.; Simchi, A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections. Mater. Sci. Eng. C. 2014, 41, 240. [Google Scholar] [CrossRef]
- Gebhardt, F.; Seuss, S.; Turhan, M.C.; Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Characterization of electrophoretic chitosan coatings on stainless steel. Mater. Lett. 2012, 66, 302. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Xu, R.; Wang, W.; Liu, X.; Yeung, K.W.K.; Chu, P.K. Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application. Surf. Coat. Technol. 2013, 232, 370. [Google Scholar] [CrossRef]
- Pawłowski, Ł.; Bartmański, M.; Strugała, G.; Mielewczyk-Gryń, A.; Jażdżewska, M.; Zieliński, A. Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate. Coatings 2020, 10, 607. [Google Scholar] [CrossRef]
Without Layer | Starting Solution | Solution 1 | Solution 2 | Solution 3 | |
---|---|---|---|---|---|
Ra/μm | 2.83 | 3.32 | 3.32 | 1.51 | 2.06 |
Rp/μm | 5.64 | 7.26 | 6.67 | 3.16 | 4.41 |
Rz/μm | 16.36 | 15.93 | 17.07 | 6.72 | 11.77 |
Control Test | Starting Solution 2% Citric Acid Solution Containing 1 g/dm3 of Chitosan (30 min/10 V) | Solution 1 2% Citric Acid Solution in 25% Ethanol Containing 1 g/dm3 of Chitosan (30 min/10 V) |
---|---|---|
99.80% | 99.71% | 99.71% |
Control Sample | Sample 1 (Solution 1 *) 30 min/10 V | Sample 2 (Solution 1 *) 30 min/10 V | Sample 1 (Starting Solution **) 30 min/10 V | Sample 2 (Starting Solution **) 30 min/10 V | |
70.90% | 65.79% | 68.56% | 63.73% | 65.79% | |
71.25% | 68.35% | 70.45% | 68.75% | 66.52% | |
68.54% | 65.89% | 67.20% | 64.89% | 67.12% | |
64.03% | 59.78% | 62.21% | 54.89% | 60.11% | |
65.11% | 60.42% | 63.62% | 59.26% | 63.99% | |
Average | 68% | 64% | 66% | 62% | 65% |
STD | 3% | 4% | 3% | 5% | 3% |
One-way ANOVA | F | df1 | df2 | P |
2.28 | 2 | 22 | 0.126 | |
No sufficiently strong evidence exists to reject the null hypothesis of equality of mean values between groups. | ||||
Levene test | F | df1 | df2 | P |
0.123 | 2 | 22 | 0.885 | |
No sufficiently strong evidence exists to reject the null hypothesis of equality of variance values between groups. | ||||
Shapiro–Wilk test | W | P | ||
0.938 | 0.131 | |||
No sufficiently strong evidence exists to reject the null hypothesis of normality of the data distribution. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flesińska, J.; Szklarska, M.; Matuła, I.; Barylski, A.; Golba, S.; Zając, J.; Gawlikowski, M.; Kurtyka, P.; Ilnicka, B.; Dercz, G. Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate. J. Funct. Biomater. 2024, 15, 190. https://doi.org/10.3390/jfb15070190
Flesińska J, Szklarska M, Matuła I, Barylski A, Golba S, Zając J, Gawlikowski M, Kurtyka P, Ilnicka B, Dercz G. Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate. Journal of Functional Biomaterials. 2024; 15(7):190. https://doi.org/10.3390/jfb15070190
Chicago/Turabian StyleFlesińska, Julia, Magdalena Szklarska, Izabela Matuła, Adrian Barylski, Sylwia Golba, Julia Zając, Maciej Gawlikowski, Przemysław Kurtyka, Barbara Ilnicka, and Grzegorz Dercz. 2024. "Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate" Journal of Functional Biomaterials 15, no. 7: 190. https://doi.org/10.3390/jfb15070190
APA StyleFlesińska, J., Szklarska, M., Matuła, I., Barylski, A., Golba, S., Zając, J., Gawlikowski, M., Kurtyka, P., Ilnicka, B., & Dercz, G. (2024). Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate. Journal of Functional Biomaterials, 15(7), 190. https://doi.org/10.3390/jfb15070190