Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of AgNPs
2.2. Patient Recruitment
2.3. Collection of Oral Biofilms
2.4. Bacterial Growth Rate and Standard Bacterial Suspension
2.5. Antimicrobial Test of AgNPs on Oral Biofilms
2.6. Identification of Bacterial Species by Polymerase Chain Reaction (PCR)
2.7. Statistical Analysis
3. Results
3.1. Characterization of AgNPs
3.2. General Characteristics of Patients
3.3. Initial Bacterial Growth
3.4. Bactericidal Activity of AgNPs in Oral Biofilms
3.5. Identification and Distribution of Bacterial Species by PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Disability. Available online: https://www.who.int/news-room/fact-sheets/detail/disability-and-health (accessed on 19 February 2024).
- Pan American Health Organization Disability. Available online: https://www.paho.org/en/topics/disability (accessed on 19 February 2024).
- World Health Organization Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030. Available online: https://www.who.int/publications/i/item/9789240061484 (accessed on 19 February 2024).
- Wilson, N.J.; Lin, Z.; Villarosa, A.; Lewis, P.; Philip, P.; Sumar, B.; George, A. Countering the Poor Oral Health of People with Intellectual and Developmental Disability: A Scoping Literature Review. BMC Public Health 2019, 19, 1530. [Google Scholar] [CrossRef]
- Wilson, N.J.; Patterson-Norrie, T.; Villarosa, A.; Calache, H.; Slack-Smith, L.; Kezhekkekara, S.G.; George, A. Supporting the Oral Health of People with Intellectual Disability: A Survey of Disability Staffs’ Knowledge, Perceptions, Disability Service Barriers, and Training. Disabil. Health J. 2024, 17, 101536. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.J.; Lin, Z.; Villarosa, A.; George, A. Oral Health Status and Reported Oral Health Problems in People with Intellectual Disability: A Literature Review. J. Intellect. Dev. Disabil. 2019, 44, 292–304. [Google Scholar] [CrossRef]
- Dembowska, E.; Jaroń, A.; Gabrysz-Trybek, E.; Bladowska, J.; Trybek, G. Evaluation of Common Factors of Periodontitis and Cardiovascular Disease in Patients with the Acute Coronary Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 8139. [Google Scholar] [CrossRef]
- Dieguez-Perez, M.; de Nova-Garcia, M.; Mourelle-Martinez, M.; Bartolome-Villar, B. Oral Health in Children with Physical (Cerebral Palsy) and Intellectual (Down Syndrome) Disabilities: Systematic Review I. J. Clin. Exp. Dent. 2016, 8, e337–e343. [Google Scholar] [CrossRef]
- van Duin, D.; Paterson, D.L. Multidrug-Resistant Bacteria in the Community. Infect. Dis. Clin. N. Am. 2020, 34, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Goerke, P.; Holtmann, C.; Frings, A.; MacKenzie, C.R.; Geerling, G. Spectrum and Resistance in Bacterial Infections of the Ocular Surface in a German Tertiary Referral Center 2009–2019. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 3909–3917. [Google Scholar] [CrossRef]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance toward Chlorhexidine in Oral Bacteria—Is There Cause for Concern? Front. Microbiol. 2019, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Loyola-Rodriguez, J.P.; Ponce-Diaz, M.E.; Loyola-Leyva, A.; Garcia-Cortes, J.O.; Medina-Solis, C.E.; Contreras-Ramire, A.A.; Serena-Gomez, E. Determination and Identification of Antibiotic-Resistant Oral Streptococci Isolated from Active Dental Infections in Adults. Acta Odontol. Scand. 2018, 76, 229–235. [Google Scholar] [CrossRef]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The Oral Microbiota: Dynamic Communities and Host Interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Espinosa-Cristóbal, L.F.; López-Ruiz, N.; Cabada-Tarín, D.; Reyes-López, S.Y.; Zaragoza-Contreras, A.; Constandse-Cortéz, D.; Donohué-Cornejo, A.; Tovar-Carrillo, K.; Cuevas-González, J.C.; Kobayashi, T. Antiadherence and Antimicrobial Properties of Silver Nanoparticles against Streptococcus Mutans on Brackets and Wires Used for Orthodontic Treatments. J. Nanomater. 2018, 2018, 9248527. [Google Scholar] [CrossRef]
- Loyola-Rodriguez, J.P.; Martinez-Martinez, R.E.; Flores-Ferreyra, B.I.; Patiño-Marin, N.; Alpuche-Solis, A.G.; Reyes-Macias, J.F. Distribution of Streptococcus Mutans and Streptococcus Sobrinus in Saliva of Mexican Preschool Caries-Free and Caries-Active Children by Microbial and Molecular (PCR) Assays. J. Clin. Pediatr. Dent. 2007, 32, 121–126. [Google Scholar] [CrossRef]
- Khocht, A.; Yaskell, T.; Janal, M.; Turner, B.F.; Rams, T.E.; Haffajee, A.D.; Socransky, S.S. Subgingival Microbiota in Adult Down Syndrome Periodontitis. J. Periodontal Res. 2012, 47, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Contaldo, M.; Lucchese, A.; Romano, A.; Della Vella, F.; Di Stasio, D.; Serpico, R.; Petruzzi, M. Oral Microbiota Features in Subjects with Down Syndrome and Periodontal Diseases: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 9251. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.H.; Rodrigues, T.O.; Finoti, L.S.; Teixeira, S.R.L.; Mayer, M.P.A.; Scarel-Caminaga, R.M.; Giro, E.M.A. The Effect of Conventional Mechanical Periodontal Treatment on Red Complex Microorganisms and Clinical Parameters in Down Syndrome Periodontitis Patients: A Pilot Study. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Poppolo Deus, F.; Ouanounou, A. Chlorhexidine in Dentistry: Pharmacology, Uses, and Adverse Effects. Int. Dent. J. 2022, 72, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Kozelskaya, A.I.; Verzunova, K.N.; Akimchenko, I.O.; Frueh, J.; Petrov, V.I.; Slepchenko, G.B.; Bakina, O.V.; Lerner, M.I.; Brizhan, L.K.; Davydov, D.V.; et al. Antibacterial Calcium Phosphate Coatings for Biomedical Applications Fabricated via Micro-Arc Oxidation. Biomimetics 2023, 8, 444. [Google Scholar] [CrossRef]
- Villapún, V.M.; Esat, F.; Bull, S.; Dover, L.G.; González, S. Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing. Materials 2017, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Seo, M.; Oh, T.; Bae, S. Antibiofilm Activity of Silver Nanoparticles against Biofilm Forming Staphylococcus Pseudintermedius Isolated from Dogs with Otitis Externa. Vet. Med. Sci. 2021, 7, 1551–1557. [Google Scholar] [CrossRef]
- das Neves, P.B.A.; Agnelli, J.A.M.; Kurachi, C.; de Souza, C.W.O. Addition of Silver Nanoparticles to Composite Resin: Effect on Physical and Bactericidal Properties in Vitro. Braz. Dent. J. 2014, 25, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.; Sibuyi, N.R.S.; Fadaka, A.O.; Madiehe, A.M.; Maboza, E.; Olivier, A.; Meyer, M.; Geerts, G. Antimicrobial Effects of Gum Arabic-Silver Nanoparticles against Oral Pathogens. Bioinorg. Chem. Appl. 2022, 2022, 9602325. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Venegas, P.A.; Martínez-Martínez, R.E.; Zaragoza-Contreras, E.A.; Domínguez-Pérez, R.A.; Reyes-López, S.Y.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Molina-Frechero, N.; Espinosa-Cristóbal, L.F. Bactericidal Activity of Silver Nanoparticles on Oral Biofilms Related to Patients with and without Periodontal Disease. J. Funct. Biomater. 2023, 14, 311. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.S.; Rodrigues, D.M.; Sokolonski, A.R.; Stanisic, D.; Tomé, L.M.; Góes-Neto, A.; Azevedo, V.; Meyer, R.; Araújo, D.B.; Tasic, L.; et al. Activity of Fusarium oxysporum-Based Silver Nanoparticles on Candida spp. Oral Isolates. Nanomaterials 2022, 12, 501. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Andrade, G.M.; Tanomaru-Filho, M.; Basso Bernardi, M.I.; de Toledo Leonardo, R.; Faria, G.; Guerreiro-Tanomaru, J.M. Antimicrobial and Biofilm Anti-Adhesion Activities of Silver Nanoparticles and Farnesol against Endodontic Microorganisms for Possible Application in Root Canal Treatment. Arch. Oral Biol. 2019, 107, 104481. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.G.; Roque, G.S.C.; Conrado, R.; De Souza, A.O. Antifungal Activity of Mycogenic Silver Nanoparticles on Clinical Yeasts and Phytopathogens. Antibiotics 2023, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, R.E.; Abud-Mendoza, C.; Patiño-Marin, N.; Rizo-Rodríguez, J.C.; Little, J.W.; Loyola-Rodríguez, J.P. Detection of Periodontal Bacterial DNA in Serum and Synovial Fluid in Refractory Rheumatoid Arthritis Patients. J. Clin. Periodontol. 2009, 36, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, R.E.; Moreno-Castillo, D.F.; Loyola-Rodríguez, J.P.; Sánchez-Medrano, A.G.; Miguel-Hernández, J.H.S.; Olvera-Delgado, J.H.; Domínguez-Pérez, R.A. Association between Periodontitis, Periodontopathogens and Preterm Birth: Is It Real? Arch. Gynecol. Obstet. 2016, 294, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.D.; Rudney, J.D. Multiplex PCR Using Conserved and Species-Specific 16S RRNA Gene Primers for Simultaneous Detection of Actinobacillus Actinomycetemcomitans and Porphyromonas Gingivalis. J. Clin. Microbiol. 1996, 34, 2674–2678. [Google Scholar] [CrossRef]
- Stubbs, S.; Park, S.F.; Bishop, P.A.; Lewis, M.A.O. Direct Detection of Prevotella Intermedia and P. Nigrescens in Suppurative Oral Infection by Amplification of 16S RRNA Gene. J. Med. Microbiol. 1999, 48, 1017–1022. [Google Scholar] [CrossRef]
- Watanabe, K.; Frommel, T.O. Porphyromonas Gingivalis, Actinobacillus Actinomycetemcomitans and Treponema Denticola Detection in Oral Plaque Samples Using the Polymerase Chain Reaction. J. Clin. Periodontol. 1996, 23, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Ashimoto, A.; Chen, C.; Bakker, I.; Slots, J. Polymerase Chain Reaction Detection of 8 Putative Periodontal Pathogens in Subgingival Plaque of Gingivitis and Advanced Periodontitis Lesions. Oral Microbiol. Immunol. 1996, 11, 266–273. [Google Scholar] [CrossRef]
- Poulsen, K.; Ennibi, O.-K.; Haubek, D. Improved PCR for Detection of the Highly Leukotoxic JP2 Clone of Actinobacillus Actinomycetemcomitans in Subgingival Plaque Samples. J. Clin. Microbiol. 2003, 41, 4829–4832. [Google Scholar] [CrossRef]
- Hoshino, T.; Kawaguchi, M.; Shimizu, N.; Hoshino, N.; Ooshima, T.; Fujiwara, T. PCR Detection and Identification of Oral Streptococci in Saliva Samples Using Gtf Genes. Diagn. Microbiol. Infect. Dis. 2004, 48, 195–199. [Google Scholar] [CrossRef]
- Yoshida, A.; Suzuki, N.; Nakano, Y.; Kawada, M.; Oho, T.; Koga, T. Development of a 5’ Nuclease-Based Real-Time PCR Assay for Quantitative Detection of Cariogenic Dental Pathogens Streptococcus Mutans and Streptococcus Sobrinus. J. Clin. Microbiol. 2003, 41, 4438–4441. [Google Scholar] [CrossRef] [PubMed]
- Ullah Khan, S.; Saleh, T.A.; Wahab, A.; Ullah Khan, M.H.; Khan, D.; Ullah Khan, W.; Rahim, A.; Kamal, S.; Ullah Khan, F.; Fahad, S. Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold. Int. J. Nanomed. 2018, 13, 733–762. [Google Scholar] [CrossRef]
- Martínez-Castañón, G.A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanoparticle Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Vanitha, G.; Rajavel, K.; Boopathy, G.; Veeravazhuthi, V.; Neelamegam, P. Physiochemical Charge Stabilization of Silver Nanoparticles and Its Antibacterial Applications. Chem. Phys. Lett. 2017, 669, 71–79. [Google Scholar] [CrossRef]
- Pini, D.d.M.; Fröhlich, P.C.G.R.; Rigo, L. Oral Health Evaluation in Special Needs Individuals. Einstein 2016, 14, 501–507. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Kafshdooz, L.; Razban, Z.; Dastranj Tbrizi, A.; Rasoulpour, S.; Khalilov, R.; Kavetskyy, T.; Saghfi, S.; Nasibova, A.N.; Kaamyabi, S.; et al. An Overview Application of Silver Nanoparticles in Inhibition of Herpes Simplex Virus. Artif. Cells Nanomed. Biotechnol. 2018, 46, 263–267. [Google Scholar] [CrossRef]
- de Lacerda Coriolano, D.; de Souza, J.B.; Bueno, E.V.; Medeiros, S.M. de F.R. dos S.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. Antibacterial and Antibiofilm Potential of Silver Nanoparticles against Antibiotic-Sensitive and Multidrug-Resistant Pseudomonas Aeruginosa Strains. Braz. J. Microbiol. 2021, 52, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Cristóbal, L.F.; Martínez-Castañón, G.A.; Téllez-Déctor, E.J.; Niño-Martínez, N.; Zavala-Alonso, N.V.; Loyola-Rodríguez, J.P. Adherence Inhibition of Streptococcus Mutans on Dental Enamel Surface Using Silver Nanoparticles. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013, 33, 2197–2202. [Google Scholar] [CrossRef] [PubMed]
- Nafarrate-Valdez, R.; Martínez-Martínez, R.; Zaragoza-Contreras, E.; Áyala-Herrera, J.; Domínguez-Pérez, R.; Reyes-López, S.; Donohue-Cornejo, A.; Cuevas-González, J.; Loyola-Rodríguez, J.; Espinosa-Cristóbal, L. Anti-Adherence and Antimicrobial Activities of Silver Nanoparticles against Serotypes C and K of Streptococcus Mutans on Orthodontic Appliances. Medicina 2022, 58, 877. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Cristóbal, L.F.; Holguín-Meráz, C.; Zaragoza-Contreras, E.A.; Martínez-Martínez, R.E.; Donohue-Cornejo, A.; Loyola-Rodríguez, J.P.; Cuevas-González, J.C.; Reyes-López, S.Y. Antimicrobial and Substantivity Properties of Silver Nanoparticles against Oral Microbiomes Clinically Isolated from Young and Young-Adult Patients. J. Nanomater. 2019, 2019, 3205971. [Google Scholar] [CrossRef]
- Jiménez-Ramírez, A.J.; Martínez-Martínez, R.E.; Ayala-Herrera, J.L.; Zaragoza-Contreras, E.A.; Domínguez-Pérez, R.A.; Reyes-López, S.Y.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Silva-Benítez, E.L.; Espinosa-Cristóbal, L.F. Antimicrobial Activity of Silver Nanoparticles against Clinical Biofilms from Patients with and without Dental Caries. J. Nanomater. 2021, 2021, 5587455. [Google Scholar] [CrossRef]
- Pérez-Tanoira, R.; Fernández-Arias, M.; Potel, C.; Carballo-Fernández, R.; Pérez-Castro, S.; Boutinguiza, M.; Górgolas, M.; Lusquiños, F.; Pou, J. Silver Nanoparticles Produced by Laser Ablation and Re-Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation. Int. J. Mol. Sci. 2022, 23, 2027. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential Antibacterial Mechanism of Silver Nanoparticles and the Optimization of Orthopedic Implants by Advanced Modification Technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, M.; Tachibana, H.; Yamada, K. Effect of Estrogens on the Interferon-Gamma Producing Cell Population of Mouse Splenocytes. Biosci. Biotechnol. Biochem. 2006, 70, 47–53. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Bhardwaj, S. Effect of Menopause on Women′s Periodontium. J. Midlife. Health 2012, 3, 5. [Google Scholar] [CrossRef]
- Machtei, E.E.; Mahler, D.; Sanduri, H.; Peled, M. The Effect of Menstrual Cycle on Periodontal Health. J. Periodontol. 2004, 75, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Loyola-Rodriguez, J.P.; Garcia-Cortes, J.O.; Martinez-Martinez, R.E.; Patiño-Marin, N.; Martinez-Castañon, G.A.; Zavala-Alonso, N.V.; Amano, A. Molecular Identification and Antibiotic Resistant Bacteria Isolated from Primary Dentition Infections. Aust. Dent. J. 2014, 59, 497–503. [Google Scholar] [CrossRef]
- Lipsky, M.S.; Su, S.; Crespo, C.J.; Hung, M. Men and Oral Health: A Review of Sex and Gender Differences. Am. J. Mens. Health 2021, 15, 155798832110163. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhata, C.; Kado, N.; Hamada, M.; Nomura, R.; Kozai, K. Characterization of the Unique Oral Microbiome of Children with Down Syndrome. Sci. Rep. 2022, 12, 14150. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Robles, Á.; Loyola-Rodríguez, J.; Zavala-Alonso, N.; Martinez-Martinez, R.; Ruiz, F.; Lara-Castro, R.; Donohué-Cornejo, A.; Reyes-López, S.; Espinosa-Cristóbal, L. Antimicrobial Properties of Biofunctionalized Silver Nanoparticles on Clinical Isolates of Streptococcus Mutans and Its Serotypes. Nanomaterials 2016, 6, 136. [Google Scholar] [CrossRef]
- Munger, M.A.; Radwanski, P.; Hadlock, G.C.; Stoddard, G.; Shaaban, A.; Falconer, J.; Grainger, D.W.; Deering-Rice, C.E. In Vivo Human Time-Exposure Study of Orally Dosed Commercial Silver Nanoparticles. Nanomedicine 2014, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hebeish, A.; El-Rafie, M.H.; EL-Sheikh, M.A.; Seleem, A.A.; El-Naggar, M.E. Antimicrobial Wound Dressing and Anti-Inflammatory Efficacy of Silver Nanoparticles. Int. J. Biol. Macromol. 2014, 65, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
AgNP (nm) | DLS (nm) | Shape | Initial Concentration (µg/mL) | Zeta Potential (mV) |
---|---|---|---|---|
First preparation (small) | 10.2 ± 0.7 | Spherical | 1070 | −35.0 ± 3.3 |
Second preparation (large) | 29.3 ± 2.3 | Spherical | 1070 | −52.6 ± 8.5 |
Variable | Motor and Intellectual Disabilities n = 17 Subjects | Control (Healthy) n = 20 Subjects | Total n = 37 Subjects | p-Value | ||
---|---|---|---|---|---|---|
DS n = 13 Subjects | ID n = 2 Subjects | ID/CP n = 2 Subjects | ||||
Mean ± SD | ||||||
Age (years old) | 16.6 ± 3.0 | 16.0 ± 2.8 | 15.5 ± 7.7 | 22.2 ± 2.4 | 19.5 ± 4.0 | 0.000 * |
Women | 17.5 ± 1.9 | 18.0 ± 0.0 | 21.0 ± 0.0 | 22.7 ± 1.7 | 20.9 ± 2.9 | |
Men | 16.3 ± 3.4 | 14.0 ± 0.0 | 10.0 ± 0.0 | 21.8 ± 2.8 | 18.6 ± 4.5 | |
Frequency (%) | ||||||
Gender | 13 (35.1) | 2 (5.4) | 2 (5.4) | 20 (54.1) | 37 (100) | 0.843 |
Women | 4 (30.8) | 1 (50.0) | 1 (50.0) | 9 (45.0) | 15 (40.5) | |
Men | 9 (69.2) | 1 (50.0) | 1 (50.0) | 11 (55.0) | 22 (59.5) |
Variable | MID (n = 17 Subjects) | Healthy n = 20 Subjects (rho) | p-Value | Total n = 37 Subjects (rho) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
DS n = 13 Subjects (rho) | p-Value | ID n = 2 Subjects (rho) | p-Value | ID/CP n = 2 Subjects (rho) | p-Value | |||||
Age | ||||||||||
OD | 0.367 | 0.000 ** | 1.00 | - | 1.00 | - | 0.965 | 0.000 ** | −0.070 | 0.232 |
AgNP 10.2 nm | 0.304 | 0.060 | 0.905 | 0.013 ** | 0.577 | 0.230 | −0.322 | 0.012 * | 0.285 | 0.002 ** |
AgNP 29.3 nm | 0.144 | 0.382 | 0.000 | 1.00 | 0.000 | 1.00 | −0.011 | 0.933 | 0.443 | 0.000 ** |
Variable | MID n = 8 Subjects (%) | Control (Healthy) n = 4 Subjects (%) | Total n = 12 Subjects (%) | |||
---|---|---|---|---|---|---|
DS n = 6 Subjects (%) | ID n = 1 Subject (%) | ID/CP n = 1 Subject (%) | Total of Disabilities n = 8 Subjects (%) | |||
Age (years) | 15.8 ± 0.7 | 15.0 | 16.0 | 15.7 ± 0.7 | 15.7 ± 0.9 | 15.7 ± 0.7 |
Women | 15.6 ± 0.5 | 15.0 | - | 15.5 ± 0.5 | 15.5 ± 0.7 | 15.5 ± 0.5 |
Men | 16.0 ± 1.0 | - | 16.0 | 16.0 ± 0.8 | 16.0 ± 1.4 | 16.0 ± 0.8 |
Gender | ||||||
Women | 3 (50.0) | 1 (100) | - | 4 (50.0) | 2 (50.0) | 6 (50.0) |
Men | 3 (50.0) | - | 1 (100) | 4 (50.0) | 2 (50.0) | 6 (50.0) |
Bacterial strains | ||||||
S. mutans | 6 (100) | 1 (100) | 1 (100) | 8 (100) | 4 (100) | 12 (100) |
S. sobrinus | 3 (50.0) | 1 (100) | 1 (100) | 5 (62.5) | 1 (25.0) | 6 (50.0) |
P. gingivalis | 5 (83.3) | 1 (100) | 1 (100) | 7 (87.5) | 1 (25.0) | 8 (66.6) |
T. forsythia | 5 (83.3) | 0 (0.0) | 1 (100) | 6 (75.0) | 3 (75.0) | 9 (75.0) |
T. denticola | 5 (83.3) | 1 (100) | 0 (0.0) | 6 (75.0) | 3 (75.0) | 9 (75.0) |
P. intermedia | 6 (100) | 1 (100) | 1 (100) | 8 (100) | 3 (75.0) | 11 (91.6) |
F. nucleatum | 5 (83.3) | 0 (0.0) | 0 (0.0) | 5 (62.5) | 3 (75.0) | 8 (66.6) |
A. actinomycetemcomitans | 1 (16.6) | 0 (0.0) | 0 (0.0) | 1 (12.5) | 0 (0.0) | 1 (8.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holguín-Meráz, C.; Martínez-Martínez, R.E.; Zaragoza-Contreras, E.A.; Domínguez-Pérez, R.A.; Reyes-López, S.Y.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Silva-Benítez, E.d.L.; Molina-Frechero, N.; Espinosa-Cristóbal, L.F. Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities. J. Funct. Biomater. 2024, 15, 191. https://doi.org/10.3390/jfb15070191
Holguín-Meráz C, Martínez-Martínez RE, Zaragoza-Contreras EA, Domínguez-Pérez RA, Reyes-López SY, Donohue-Cornejo A, Cuevas-González JC, Silva-Benítez EdL, Molina-Frechero N, Espinosa-Cristóbal LF. Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities. Journal of Functional Biomaterials. 2024; 15(7):191. https://doi.org/10.3390/jfb15070191
Chicago/Turabian StyleHolguín-Meráz, Carolina, Rita Elizabeth Martínez-Martínez, Erasto Armando Zaragoza-Contreras, Rubén Abraham Domínguez-Pérez, Simón Yobanny Reyes-López, Alejandro Donohue-Cornejo, Juan Carlos Cuevas-González, Erika de Lourdes Silva-Benítez, Nelly Molina-Frechero, and León Francisco Espinosa-Cristóbal. 2024. "Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities" Journal of Functional Biomaterials 15, no. 7: 191. https://doi.org/10.3390/jfb15070191
APA StyleHolguín-Meráz, C., Martínez-Martínez, R. E., Zaragoza-Contreras, E. A., Domínguez-Pérez, R. A., Reyes-López, S. Y., Donohue-Cornejo, A., Cuevas-González, J. C., Silva-Benítez, E. d. L., Molina-Frechero, N., & Espinosa-Cristóbal, L. F. (2024). Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities. Journal of Functional Biomaterials, 15(7), 191. https://doi.org/10.3390/jfb15070191