The Antibacterial Properties of a Reinforced Zinc Oxide Eugenol Combined with Cloisite 5A Nanoclay: An In-Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
- Zonalin 1 (Z1): 100 wt% zonalin (negative control).
- Zonalin 2 (Z2): 80 wt% zonalin + 20 wt% nanoclay.
- Zonalin 3 (Z3): 60 wt% zonalin + 40 wt% nanoclay.
- Zonalin 4 (Z4): 40 wt% zonalin + 60 wt% nanoclay.
- Zonalin 5 (Z5): 20 wt% zonalin + 80 wt% nanoclay.
- Zonalin 6 (Z6): 100 wt% nanoclay (positive control).
- The disk diffusion test by measuring the diameter of inhibition zone.
- The well diffusion test by measuring the diameter of inhibition zone.
- The microtiter dish assay.
2.1. Material and Bacteria Preparation
2.2. Disk Diffusion Test: (n = 9)
2.3. Well Diffusion Test: (n = 9)
2.4. The Microtiter Dish Assay: (n = 9)
3. Results
3.1. Disk Diffusion Test
3.2. Well Diffusion Test
3.3. Microtiter Dish Assay
4. Discussion
4.1. E. faecalis
4.2. S. mutans
4.3. E. coli
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finucane, D. Rationale for restoration of carious primary teeth: A review. Eur. Arch. Paediatr. Dent. 2012, 13, 281–292. [Google Scholar] [CrossRef]
- Moskovitz, M.; Sammara, E.; Holan, G. Success rate of root canal treatment in primary molars. J. Dent. 2005, 33, 41–47. [Google Scholar] [CrossRef]
- Pandranki, J.; Vanga, N.R.; Chandrabhatla, S.K. Zinc oxide eugenol and Endoflas pulpectomy in primary molars: 24-month clinical and radiographic evaluation. J. Indian Soc. Pedod. Prev. Dent. 2018, 36, 173–180. [Google Scholar] [CrossRef]
- Fabricius, L.; Dahlén, G.; Holm, S.E.; Möller, A.J. Influence of combinations of oral bacteria on periapical tissues of monkeys. Eur. J. Oral Sci. 1982, 90, 200–206. [Google Scholar] [CrossRef]
- Kakehashi, S.; Stanley, H.; Fitzgerald, R. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg. Oral Med. Oral Pathol. 1965, 20, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Holan, G.; Eidelman, E.; Fuks, A.B. Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr. Dent. 2005, 27, 129–136. [Google Scholar]
- Lin, P.-Y.; Chen, H.-S.; Wang, Y.-H.; Tu, Y.-K. Primary molar pulpotomy: A systematic review and network meta-analysis. J. Dent. 2014, 42, 1060–1077. [Google Scholar] [CrossRef]
- Brothwell, D.J. Guidelines on the use of space maintainers following premature loss of primary teeth. J. Can. Dent. Assoc. 1997, 63, 753–757. [Google Scholar] [PubMed]
- Shahi, S.; Samiei, M.; Rahimi, S.; Nezami, H. In vitro comparison of dye penetration through four temporary restorative materials. Iran. Endod. J. 2010, 5, 59. [Google Scholar]
- Manappallil, J.J. Basic Dental Materials; JP Medical Ltd.: London, UK, 2015. [Google Scholar]
- Gonzalez-Lara, A.; Ruiz-Rodriguez, M.S.; Pierdant-Perez, M.; Garrocho-Rangel, J.A.; Pozos-Guillen, A.J. Zinc Oxide–eugenol pulpotomy in primary teeth: A 24-month follow-up. J. Clin. Pediatr. Dent. 2016, 40, 107–112. [Google Scholar] [CrossRef]
- Hui-Derksen, E.; Chen, C.-F.; Majewski, R.; Tootla, R.G.; Boynton, J.R. Retrospective record review: Reinforced zinc oxide-eugenol pulpotomy: A retrospective study. Pediatr. Dent. 2013, 35, 43–46. [Google Scholar] [PubMed]
- Erausquin, J.; Muruzábal, M. Root canal fillings with zinc oxide-eugenol cement in the rat molar. Oral Surg. Oral Med. Oral Pathol. 1967, 24, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Rifkin, A. A simple, effective, safe technique for the root canal treatment of abscessed primary teeth. ASDC J. Dent. Child. 1980, 47, 435–441. [Google Scholar] [PubMed]
- Mortazavi, M.; Mesbahi, M. Comparison of zinc oxide and eugenol, and Vitapex for root canal treatment of necrotic primary teeth. Int. J. Paediatr. Dent. 2004, 14, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, X.; Zhong, J. Clinical and radiographic evaluation of pulpectomy in primary teeth: A 18-months clinical randomized controlled trial. Head Face Med. 2017, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jena, A. Pulpectomy: A comprehensive review. Indian J. Forensic Med. Toxicol. 2020, 14, 9321–9324. [Google Scholar] [CrossRef]
- Cox, S.T., Jr.; Hembree, J.H., Jr.; McKnight, J.P. The bactericidal potential of various endodontic materials for primary teeth. Oral Surg. Oral Med. Oral Pathol. 1978, 45, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Tchaou, W.S.; Turng, B.F.; Minah, G.E.; Coll, J.A. Inhibition of pure cultures of oral bacteria by root canal filling materials. Pediatr. Dent. 1996, 18, 444–449. [Google Scholar] [PubMed]
- Fuks, A.; Eidelman, E. Pulp therapy in the primary dentition. Curr. Opin. Dent. 1991, 1, 556–563. [Google Scholar]
- Mount, G.J. Glass ionomers: A review of their current status. Oper. Dent. 1999, 24, 115–124. [Google Scholar]
- Kasraei, S.; Sami, L.; Hendi, S.; AliKhani, M.-Y.; Rezaei-Soufi, L.; Khamverdi, Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod. 2014, 39, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Cho, B.H.; Lee, I.B.; Um, C.M.; Lim, B.S.; Oh, M.H.; Chang, C.G.; Son, H.H. Effect of the hydrophilic nanofiller loading on the mechanical properties and the microtensile bond strength of an ethanol-based one-bottle dentin adhesive. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Mousavinasab, S.M.; Atai, M.; Alavi, B. To compare the microleakage among experimental adhesives containing nanoclay fillers after the storages of 24 hours and 6 months. Open Dent. J. 2011, 5, 52. [Google Scholar] [CrossRef]
- Vasiliu, S.; Racovita, S.; Gugoasa, I.A.; Lungan, M.-A.; Popa, M.; Desbrieres, J. The benefits of smart nanoparticles in dental applications. Int. J. Mol. Sci. 2021, 22, 2585. [Google Scholar] [CrossRef] [PubMed]
- Darvish, S.; Budala, D.-G.; Goriuc, A. Antibacterial Properties of an Experimental Dental Resin Loaded with Gold Nanoshells for Photothermal Therapy Applications. J. Funct. Biomater. 2024, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules 2019, 24, 1033. [Google Scholar] [CrossRef] [PubMed]
- Okada, A.; Usuki, A. Twenty years of polymer-clay nanocomposites. Macromol. Mater. Eng. 2006, 291, 1449–1476. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Slutzky, H.; Slutzky-Goldberg, I.; Weiss, E.; Matalon, S. Antibacterial properties of temporary filling materials. J. Endod. 2006, 32, 214–217. [Google Scholar] [CrossRef]
- Solhi, L.; Atai, M.; Nodehi, A.; Imani, M.; Ghaemi, A.; Khosravi, K. Poly (acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: Synthesis, characterization and properties of the adhesive. Dent. Mater. 2012, 28, 369–377. [Google Scholar] [CrossRef]
- Dowling, A.H.; Stamboulis, A.; Fleming, G.J. The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorative. J. Dent. 2006, 34, 802–810. [Google Scholar] [CrossRef]
- Park, J.H.; Jana, S.C. The relationship between nano-and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer 2003, 44, 2091–2100. [Google Scholar] [CrossRef]
- Ritto, F.P.; da Silva, E.M.; Borges, A.L.S.; Borges, M.A.P.; Sampaio-Filho, H.R. Fabrication and characterization of low-shrinkage dental composites containing montmorillonite nanoclay. Odontology 2022, 110, 35–43. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Hossain, S.; Majhi, M.R. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste. Boletín Soc. Española Cerámica Y Vidr. 2017, 56, 256–262. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Mazloumi, M.; Nouri, A.; Lotfiman, S. Silver-doped nanoclay with antibacterial activity. J. Ultrafine Grained Nanostruct. Mater. 2017, 50, 124–131. [Google Scholar]
- Hasheminiya, S.M.; Havaee, S.A.; Rajabi, M. Antibacterial and substantivity evaluation of 2.5% sodium hypochlorite, 0.2% cholorhexidine and distilled water as root canal irrigants (In-vitro). J. Iran. Dent. Assoc. 2005, 17, 38–45. [Google Scholar]
- Mims, C.; Dockrell, H.; Goering, R.; Roitt, I.; Wakelin, D.; Zuckerman, M. Medical microbiology. Structure 2004, 7, 7–8. [Google Scholar]
- Oho, T.; Yamashita, Y.; Shimazaki, Y.; Kushiyama, M.; Koga, T. Simple and rapid detection of Streptococcus mutans and Streptococcus sobrinus in human saliva by polymerase chain reaction. Oral Microbiol. Immunol. 2000, 15, 258–262. [Google Scholar] [CrossRef]
- Chomicz, L.; Piekarczyk, J.; Starosciak, B.; Fiedor, P.; Piekarczyk, B.; Szubinska, D.; Zawadzki, P.; Walski, M. Comparative studies on the occurrence of protozoans, bacteria and fungi in the oral cavity of patients with systemic disorders. Acta Parasitol. 2002, 2, 147–153. [Google Scholar]
- Zawadzki, P.J.; Perkowski, K.; Starościak, B.; Baltaza, W.; Padzik, M.; Pionkowski, K.; Chomicz, L. Identification of infectious microbiota from oral cavity environment of various population group patients as a preventive approach to human health risk factors. Ann. Agric. Environ. Med. 2016, 23, 566–569. [Google Scholar] [CrossRef]
- Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Adsorption of dyes using different types of clay: A review. Appl. Water Sci. 2017, 7, 543–568. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, L.; Zhou, X.; Yu, Y.; Li, Z.; Zuo, D.; Wu, Y. Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 2019, 13, 369–391. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, A.; Ghaffari, T. Nanoclay-reinforced polymethylmethacrylate and its mechanical properties. Dent. Res. J. 2018, 15, 295–301. [Google Scholar]
- Yousef, J.M.; Danial, E.N. In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci. 2012, 2, 38–42. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Samiei, M.; Farjami, A.; Dizaj, S.M.; Lotfipour, F. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies. Mater. Sci. Eng. C 2016, 58, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Thosar, N.R.; Chandak, M.; Bhat, M.; Basak, S. Evaluation of antimicrobial activity of two endodontic sealers: Zinc oxide with thyme oil and zinc oxide eugenol against root canal microorganisms—An in vitro study. Int. J. Clin. Pediatr. Dent. 2018, 11, 79. [Google Scholar] [PubMed]
- Sinha, R.; Karan, R.; Sinha, A.; Khare, S. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 2011, 102, 1516–1520. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Jaidka, S.; Somani, R.; Singh, D.J.; Sheikh, T.; Chaudhary, N.; Basheer, A. Herbal combat against E. faecalis–An in vitro study. J. Oral Biol. Craniofac. Res. 2017, 7, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Thosar, N.; Basak, S.; Bahadure, R.N.; Rajurkar, M. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. Eur. J. Dent. 2013, 7, S071–S077. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-I.; Rhim, J.-W. Antimicrobial activity of organically modified nano-clays. J. Nanosci. Nanotechnol. 2008, 8, 5818–5824. [Google Scholar] [CrossRef]
- Sothornvit, R.; Rhim, J.-W.; Hong, S.-I. Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J. Food Eng. 2009, 91, 468–473. [Google Scholar] [CrossRef]
Bacterial Species | Zonalin Group | |||||
---|---|---|---|---|---|---|
E. coli | Z6> | Z5> | Z3> | Z4 = Z2> | Z1 | |
S. mutans | Z3> | Z2> | Z6> | Z5 = Z4> | Z1 | |
E. faecalis | Z4> | Z6> | Z3> | Z5> | Z2> | Z1 |
Bacterial Species | Zonalin Group | |||||
---|---|---|---|---|---|---|
E. coli | Z6> | Z5> | Z1> | Z2> | Z3> | Z4 |
S. mutans | Z6> | Z5> | Z4> | Z3> | Z2> | Z1 |
E. faecalis | Z6> | Z5> | Z4> | Z3 = Z2> | Z1 |
Bacterial Species | Zonalin Group | |||||
---|---|---|---|---|---|---|
E. coli | Z4> | Z1> | Z5> | Z6> | Z2> | Z3 |
S. mutans | Z6> | Z5> | Z1> | Z2> | Z4> | Z3 |
E. faecalis | Z6> | Z1> | Z2> | Z5> | Z3> | Z4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazemisalman, B.; Niaz, S.; Darvish, S.; Notash, A.; Ramazani, A.; Luchian, I. The Antibacterial Properties of a Reinforced Zinc Oxide Eugenol Combined with Cloisite 5A Nanoclay: An In-Vitro Study. J. Funct. Biomater. 2024, 15, 198. https://doi.org/10.3390/jfb15070198
Nazemisalman B, Niaz S, Darvish S, Notash A, Ramazani A, Luchian I. The Antibacterial Properties of a Reinforced Zinc Oxide Eugenol Combined with Cloisite 5A Nanoclay: An In-Vitro Study. Journal of Functional Biomaterials. 2024; 15(7):198. https://doi.org/10.3390/jfb15070198
Chicago/Turabian StyleNazemisalman, Bahareh, Shaghayegh Niaz, Shayan Darvish, Ayda Notash, Ali Ramazani, and Ionut Luchian. 2024. "The Antibacterial Properties of a Reinforced Zinc Oxide Eugenol Combined with Cloisite 5A Nanoclay: An In-Vitro Study" Journal of Functional Biomaterials 15, no. 7: 198. https://doi.org/10.3390/jfb15070198
APA StyleNazemisalman, B., Niaz, S., Darvish, S., Notash, A., Ramazani, A., & Luchian, I. (2024). The Antibacterial Properties of a Reinforced Zinc Oxide Eugenol Combined with Cloisite 5A Nanoclay: An In-Vitro Study. Journal of Functional Biomaterials, 15(7), 198. https://doi.org/10.3390/jfb15070198