Luteinizing Hormone-Releasing Hormone (LHRH)-Conjugated Cancer Drug Delivery from Magnetite Nanoparticle-Modified Microporous Poly-Di-Methyl-Siloxane (PDMS) Systems for the Targeted Treatment of Triple Negative Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Preparation of Conjugated Drugs
2.2.2. Fabrication of Drug-Loaded MNP-Modified Microporous PDMS System and Nonporous MNP-Modified PDMS Structure
Fabrication of Drug Loaded MNP-Modified Microporous PDMS System
Fabrication of Nonporous MNP-Modified PDMS Structure
2.2.3. Characterization of MNP-Modified PDMS
Fourier-Transform Infrared Spectroscopy (FTIR)
Scanning Electron Microscopy (SEM)
Thermogravimetric Analysis
Differential Scanning Calorimetry
2.2.4. In Vitro Drug Release Studies
2.2.5. In Vitro Drug Release Kinetics
2.2.6. Cell Culture
2.2.7. Cell Viability Studies
2.2.8. Flow Cytometry: Evaluation of Apoptosis Induction
2.2.9. Targeted Drug Delivery System for Triple-Negative Breast Cancer: Schematic Representation and Process Description
2.2.10. Data Analysis
3. Results
3.1. FTIR Analysis of MNP-Modified PDMS-Based Substrates
3.2. Scanning Electron Microscopy
3.3. Thermo-Gravimetric Analysis of MNP-Modified PDMS-Based Substrates
3.4. Differential Scanning Calorimetry of MNP-Modified PDMS-Based Substrates
3.5. Drug Release
3.6. In Vitro Drug Release Kinetics
3.7. Cell Viability and Cytotoxicity Assessment
3.8. Effect of Treatments on the Induction of Apoptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Launches New Roadmap on Breast Cancer. 2023. Available online: https://www.who.int/news/item/03-02-2023-who-launches-new-roadmap-on-breast-cancer#:~:text=There%20are%20more%20than%202.3,cause%20of%20female%20cancer%20deaths (accessed on 14 March 2024).
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Rivenbark, A.G.; O’Connor, S.M.; Coleman, W.B. Molecular and cellular heterogeneity in breast cancer: Challenges for personalized medicine. Am. J. Pathol. 2013, 183, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Onyekanne, C.E.; Salifu, A.A.; Obayemi, J.D.; Ani, C.J.; Ashouri Choshali, H.; Nwazojie, C.C.; Onwudiwe, K.C.; Oparah, J.C.; Ezenwafor, T.C.; Ezeala, C.C.; et al. Laser-induced heating of polydimethylsiloxane-magnetite nanocomposites for hyperthermic inhibition of triple-negative breast cancer cell proliferation. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 2727–2743. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554. [Google Scholar] [CrossRef]
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target Ther. 2018, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R.; Bannerjee, S.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012, 2, 2. [Google Scholar] [CrossRef]
- Kong, X.; Qi, Y.; Wang, X.; Jiang, R.; Wang, J.; Fang, Y.; Gao, J.; Chu, H.; Wang, K. Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer. Prog. Mater. Sci. 2023, 134, 101070. [Google Scholar] [CrossRef]
- Farzin, A.; Etesami, S.A.; Quint, J.; Memic, A.; Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 2020, 9, e1901058. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, Q.; Jones, S.; Dobson, J. Applications of magnetic nanoparticles in biomedicine: The story so far. J. Phys. D Appl. Phys. 2016, 49, 501002. [Google Scholar] [CrossRef]
- Shi, K.; Aviles-Espinosa, R.; Rendon-Morales, E.; Woodbine, L.; Salvage, J.P.; Maniruzzaman, M.; Nokhodchi, A. Magnetic Field Triggerable Macroporous PDMS Sponge Loaded with an Anticancer Drug, 5-Fluorouracil. ACS Biomater. Sci. Eng. 2021, 7, 180–195. [Google Scholar] [CrossRef]
- Esch, E.W.; Bahinski, A.; Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 2015, 14, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Jiang, L.; Luo, X.; Chen, J.; Wang, Q.; Chen, Y.; Ye, E.; Loh, X.J.; Wu, C.; Wu, Y.L.; et al. Hybrid Polydimethylsiloxane (PDMS) Incorporated Thermogelling System for Effective Liver Cancer Treatment. Pharmaceutics 2022, 14, 2623. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Bhattacharyya, S.; Bhatia, V.; Ateeq, B.; Sharma, A.; Sivakumar, S. Direct Intranuclear Anticancer Drug Delivery via Polydimethylsiloxane Nanoparticles: In vitro and in vivo Xenograft Studies. ACS Appl. Mater. Interfaces 2017, 9, 34625–34633. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Ghosh, U.; Samanta, K.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact. Mater. 2021, 6, 3269–3287. [Google Scholar] [CrossRef] [PubMed]
- Föst, C.; Duwe, F.; Hellriegel, M.; Schweyer, S.; Emons, G.; Gründker, C. Targeted chemotherapy for triple-negative breast cancers via LHRH receptor. Oncol. Rep. 2011, 25, 1481–1487. [Google Scholar] [CrossRef]
- Obayemi, J.D.; Salifu, A.A.; Eluu, S.C.; Uzonwanne, V.O.; Jusu, S.M.; Nwazojie, C.C.; Onyekanne, C.E.; Ojelabi, O.; Payne, L.; Moore, C.M.; et al. LHRH-Conjugated Drugs as Targeted Therapeutic Agents for the Specific Targeting and Localized Treatment of Triple Negative Breast Cancer. Sci. Rep. 2020, 10, 64979. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Flamini, M.I.; Zullino, S.; Russo, E.; Giannini, A.; Mannella, P.; Naccarato, A.G.; Genazzani, A.R.; Simoncini, T. Regulatory actions of LH and follicle-stimulating hormone on breast cancer cells and mammary tumors in rats. Front. Endocrinol. 2018, 9, 239. [Google Scholar] [CrossRef]
- Danyuo, Y.; Dozie-Nwachukwu, S.; Obayemi, J.D.; Ani, C.J.; Odusanya, O.S.; Oni, Y.; Anuku, N.; Malatesta, K.; Soboyejo, W.O. Swelling of poly(N-isopropylacrylamide) P(NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery. Mater. Sci. Eng. C 2016, 59, 19–29. [Google Scholar] [CrossRef]
- Aina, T.; Salifu, A.A.; Kizhakkepura, S.; Danyuo, Y.; Obayemi, J.D.; Oparah, J.C.; Ezenwafor, T.C.; Onwudiwe, K.C.; Ani, C.J.; Biswas, S.S.; et al. Sustained release of alpha-methylacyl-CoA racemase (AMACR) antibody-conjugated and free doxorubicin from silica nanoparticles for prostate cancer cell growth inhibition. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 665–683. [Google Scholar] [CrossRef]
- Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Microsphere design for the colonic delivery of 5-fluorouracil. J. Control. Release 2003, 90, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Thong-On, B.; Rutnakornpituk, B.; Wichai, U.; Rutnakornpituk, M. Magnetite nanoparticle coated with amphiphilic bilayer surfactant of polysiloxane and poly(poly(ethylene glycol) methacrylate). J. Nanopart. Res. 2012, 14, 953. [Google Scholar] [CrossRef]
- Silva, F.A.B.; Chagas-Silva, F.A.; Florenzano, F.H.; Pissetti, F.L. Poly(dimethylsiloxane) and poly[vinyltrimethoxysilane-co-2-(dimethylamino) ethyl methacrylate] based cross-linked organic-inorganic hybrid adsorbent for copper(II) removal from aqueous solutions. J. Braz. Chem. Soc. 2016, 27, 2181–2191. [Google Scholar] [CrossRef]
- Johnson, L.M.; Gao, L.; Shields, W.; Smith, M.; Efimenko, K.; Cushing, K.; Genzer, J.; López, G.P. Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 2013, 11, 22. Available online: http://www.jnanobiotechnology.com/content/11/1/22 (accessed on 26 February 2024). [CrossRef]
- Ansary, J.; Chaurasiya, A.K.; Huq, K.B. Formulation and evaluation of metformin HCl floating microspheres. Asian J. Med. Biol. Res. 2016, 1, 396–405. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Stibor, I. Preparation and characterization of magnetite-PDMS composites by magnetic induction heating. Mater. Chem. Phys. 2015, 164, 163–169. [Google Scholar] [CrossRef]
- Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016, 3, 16–61. [Google Scholar] [CrossRef]
- Jeronimo, K.; Koutsos, V.; Cheung, R.; Mastropaolo, E. PDMS-ZnO piezoelectric nanocomposites for pressure sensors. Sensors 2021, 21, 5873. [Google Scholar] [CrossRef]
- Soni, G.; Yadav, K.S. High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharm. Dev. Technol. 2014, 19, 651–661. [Google Scholar] [CrossRef]
- Carradori, D.; Gaudin, A.; Brambilla, D.; Andrieux, K. Application of Nanomedicine to the CNS Diseases. In International Review of Neurobiology; Academic Press Inc.: Cambridge, MA, USA, 2016; Volume 130, pp. 73–113. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Aydin, N.E. Effect of Temperature on Drug Release: Production of 5-FU-Encapsulated Hydroxyapatite-Gelatin Polymer Composites via Spray Drying and Analysis of in vitro Kinetics. Int. J. Polym. Sci. 2020, 2020, 8017035. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Onuki, Y.; Yakou, S.; Takayama, K. Effect of temperature-increase rate on drug release characteristics of dextran microspheres prepared by emulsion solvent evaporation process. Int. J. Pharm. 2006, 324, 144–151. [Google Scholar] [CrossRef]
- Werzer, O.; Tumphart, S.; Keimel, R.; Christian, P.; Coclite, A.M. Drug release from thin films encapsulated by a temperature-responsive hydrogel. Soft Matter 2019, 15, 1853–1859. [Google Scholar] [CrossRef]
- Eluu, S.C.; Obayemi, J.D.; Salifu, A.A.; Yiporo, D.; Oko, A.O.; Aina, T.; Oparah, J.C.; Ezeala, C.C.; Etinosa, P.O.; Ugwu, C.M.; et al. In-vivo studies of targeted and localized cancer drug release from microporous poly-di-methyl-siloxane (PDMS) devices for the treatment of triple negative breast cancer. Sci. Rep. 2024, 14, 31. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 136183466, Prodigiosin. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/prodigiosin-R1 (accessed on 24 June 2024).
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022, 8, e08674. [Google Scholar] [CrossRef]
- Larson, N.; Ghandehari, H. Polymeric conjugates for drug delivery. Chem. Mater. 2012, 24, 840–853. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gumy, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Heredia, N.S.; Vizuete, K.; Flores-Calero, M.; Pazmiño, V.K.; Pilaquinga, F.; Kumar, B.; Debut, A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS ONE 2022, 17, 0264825. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- William, D. Apoptosis and cancer drug targeting. J. Clin. Investig. 1999, 104, 1655–1661. [Google Scholar]
- Barahuie, F.; Dorniani, D.; Saifullah, B.; Gothai, S.; Hussein, M.Z.; Pandurangan, A.K.; Arulselvan, P.; Norhaizan, M.E. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J. Nanomed. 2017, 12, 2361–2372. [Google Scholar] [CrossRef]
- Bai, X.; Smith, Z.L.; Wang, Y.; Butterworth, S.; Tirella, A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines 2022, 13, 1623. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Q.; Qi, J.; Lu, Y.; Wu, W. Sustained and controlled release of herbal medicines: The concept of synchronized release. Int. J. Pharm. 2019, 560, 116–125. [Google Scholar] [CrossRef]
- Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Siraj, E.A. Targeted Drug Delivery—From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J. Multidiscip. Healthc. 2021, 14, 1711. [Google Scholar] [CrossRef]
- Veselov, V.V.; Nosyrev, A.E.; Jicsinszky, L.; Alyautdin, R.N.; Cravotto, G. Targeted Delivery Methods for Anticancer Drugs. Cancers 2022, 14, 622. [Google Scholar] [CrossRef]
- Kari, S.; Subramanian, K.; Altomonte, I.A.; Murugesan, A.; Yli-Harja, O.; Kandhavelu, M. Programmed cell death detection methods: A systematic review and a categorical comparison. Apoptosis 2022, 27, 482–508. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, B.; Chang, H.; Xiao, M.; Wu, Y.; Liu, Y. Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells. Mol. Med. Rep. 2018, 17, 8289–8299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis 2022, 27, 647–667. [Google Scholar] [CrossRef] [PubMed]
- Abal, M.; Andreu, J.M.; Barasoain, I. Taxanes: Microtubule and Centrosome Targets, and Cell Cycle Dependent Mechanisms of Action. Curr. Cancer Drug Targets 2003, 3, 193–203. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Wang, X.; Kong, D.; Du, W.; Li, H.; Hse, C.Y.; Shupe, T.; Zhou, D.; Zhao, K. Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. Lawsoniana in human choriocarcinoma and prostate cancer cell lines. Int. J. Mol. Sci. 2018, 19, 3465. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eluu, S.C.; Obayemi, J.D.; Yiporo, D.; Salifu, A.A.; Oko, A.O.; Onwudiwe, K.; Aina, T.; Oparah, J.C.; Ezeala, C.C.; Etinosa, P.O.; et al. Luteinizing Hormone-Releasing Hormone (LHRH)-Conjugated Cancer Drug Delivery from Magnetite Nanoparticle-Modified Microporous Poly-Di-Methyl-Siloxane (PDMS) Systems for the Targeted Treatment of Triple Negative Breast Cancer Cells. J. Funct. Biomater. 2024, 15, 209. https://doi.org/10.3390/jfb15080209
Eluu SC, Obayemi JD, Yiporo D, Salifu AA, Oko AO, Onwudiwe K, Aina T, Oparah JC, Ezeala CC, Etinosa PO, et al. Luteinizing Hormone-Releasing Hormone (LHRH)-Conjugated Cancer Drug Delivery from Magnetite Nanoparticle-Modified Microporous Poly-Di-Methyl-Siloxane (PDMS) Systems for the Targeted Treatment of Triple Negative Breast Cancer Cells. Journal of Functional Biomaterials. 2024; 15(8):209. https://doi.org/10.3390/jfb15080209
Chicago/Turabian StyleEluu, Stanley C., John D. Obayemi, Danyuo Yiporo, Ali A. Salifu, Augustine O. Oko, Killian Onwudiwe, Toyin Aina, Josephine C. Oparah, Chukwudi C. Ezeala, Precious O. Etinosa, and et al. 2024. "Luteinizing Hormone-Releasing Hormone (LHRH)-Conjugated Cancer Drug Delivery from Magnetite Nanoparticle-Modified Microporous Poly-Di-Methyl-Siloxane (PDMS) Systems for the Targeted Treatment of Triple Negative Breast Cancer Cells" Journal of Functional Biomaterials 15, no. 8: 209. https://doi.org/10.3390/jfb15080209
APA StyleEluu, S. C., Obayemi, J. D., Yiporo, D., Salifu, A. A., Oko, A. O., Onwudiwe, K., Aina, T., Oparah, J. C., Ezeala, C. C., Etinosa, P. O., Osafo, S. A., Ugwu, M. C., Esimone, C. O., & Soboyejo, W. O. (2024). Luteinizing Hormone-Releasing Hormone (LHRH)-Conjugated Cancer Drug Delivery from Magnetite Nanoparticle-Modified Microporous Poly-Di-Methyl-Siloxane (PDMS) Systems for the Targeted Treatment of Triple Negative Breast Cancer Cells. Journal of Functional Biomaterials, 15(8), 209. https://doi.org/10.3390/jfb15080209