
Citation: Wu, L.; Yang, L.; Qian, X.;

Hu, W.; Wang, S.; Yan, J.

Mannan-Decorated Lipid Calcium

Phosphate Nanoparticle Vaccine

Increased the Antitumor Immune

Response by Modulating the Tumor

Microenvironment. J. Funct. Biomater.

2024, 15, 229. https://doi.org/

10.3390/jfb15080229

Academic Editors: Dennis Douroumis

and Nenad Ignjatovic

Received: 23 May 2024

Revised: 13 August 2024

Accepted: 14 August 2024

Published: 16 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Functional

Biomaterials

Review

Mannan-Decorated Lipid Calcium Phosphate Nanoparticle
Vaccine Increased the Antitumor Immune Response by
Modulating the Tumor Microenvironment
Liusheng Wu 1,2,† , Lei Yang 1,† , Xinye Qian 1, Wang Hu 1, Shuang Wang 1 and Jun Yan 1,*

1 Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine,
Tsinghua University, Beijing 100084, China; wuliusheng852@126.com (L.W.);
yangl23@mails.tsinghua.edu.cn (L.Y.); qianxy21@mails.tsinghua.edu.cn (X.Q.);
w-hu21@mails.tsinghua.edu.cn (W.H.); s-wang22@mails.tsinghua.edu.cn (S.W.)

2 Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
* Correspondence: yanjun1619@tsinghua.edu.cn
† These authors contributed equally to this study.

Abstract: With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted
much attention as potential therapeutic strategies. A systematic review and analysis must be carried
out to investigate the effect of mannose modification on the immune response to nanoparticles
in regulating the tumor microenvironment, as well as to explore its potential clinical application
in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy,
achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor
immune escape and the overexpression of immunosuppressive factors limit its clinical application.
Therefore, our review explored how to intervene in the immunosuppressive mechanism in the
tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle
vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas
and strategies for the field of tumor therapy.

Keywords: nanoparticle vaccine; antitumor immune response; calcium phosphate (CaP); tumor
microenvironment; review

1. Introduction

Recently, tumor immunotherapy, as a revolutionary treatment, has brought new hope
for patients with tumors [1–3]. However, despite some success, it still faces a number of
challenges and limitations [4].

The core idea of tumor immunotherapy is to activate the body’s own immune system
to attack and eliminate tumor cells [5]. However, the presence of the tumor microen-
vironment seriously affects the activity and function of immune cells, thus weakening
the effectiveness of immunotherapy [6–10]. This microenvironment includes tumor cells,
immune cells, blood vessels, interstitial cells, and other components, which interact with
each other in a complex manner, thus resulting in immunosuppression [11]. The over-
expression of immunosuppressive factors, the existence of immune escape mechanisms,
and the immunosuppressive effect of tumor cells are some of the main challenges facing
tumor immunotherapy [12]. To overcome these challenges, in recent years, scientists have
focused on identifying new strategies and methods to improve the effectiveness of tu-
mor immunotherapy [13–16]. As a new therapeutic strategy, nanoparticle vaccines have
attracted much attention [17–20]. As a new nanoparticle carrier, the mannan-decorated
lipid calcium phosphate nanoparticle vaccine has unique advantages and potential appli-
cation prospects [21–25]. Mannose modification can make it easier for nanoparticles and
tumor cells to be recognized and taken up [26]. This effect can increase the amount of
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vaccine that is enriched in tumor tissues, which improves the effectiveness of tumor im-
munotherapy [27–30]. In addition, mannose modification can also regulate the expression
of immunosuppressive factors in the tumor microenvironment, destroy the interaction be-
tween tumor cells and immune cells, and further enhance the effect of immunotherapy [31].
We found that this nanoparticle vaccine can precisely target tumor cells and significantly
improve the immune system’s ability to recognize and clear tumors by enhancing antigen
delivery and immune cell activation. This study revealed how the vaccine, through a
mannan-decorated strategy, regulates inflammation in the tumor microenvironment, in-
hibits immune escape mechanisms, and promotes the infiltration and activation of immune
cells, thereby enhancing tumor-specific T-cell responses and cytotoxic activity [32]. The
specific design of nanoparticles can optimize the efficiency of antigen delivery and improve
the stability and biocompatibility of vaccines [33]. This reveals the potential of mannan-
decorated lipid calcium–phosphorus nanoparticle vaccines as a novel immunotherapy
strategy, providing an important theoretical and experimental basis for the development of
more effective cancer immunotherapy protocols.

Our review systematically analyzes the research progress of tumor vaccines in en-
hancing the antitumor immune response and regulating the tumor microenvironment to
provide a theoretical basis and practical guidance for further research in this field.

2. Regulation and Influence of the Tumor Microenvironment

The tumor microenvironment is an important aspect of tumor growth and develop-
ment, and its characteristics are closely related to immunosuppressive mechanisms [34–36].
There are many immunosuppressive factors, such as transforming growth factor β (TGF-β)
and interleukin-10 (IL-10), in the area around the tumor [35]. These factors can prevent
immune cells from performing their functions and hinder their ability to find and kill
tumor cells. Many immunosuppressant molecules, such as programmed death ligand-1
(PD-L1) and acidic extracellular matrix protein (TSP), are produced by tumor cells and
surrounding cells [36–40]. These molecules interact with ligands on the surface of immune
cells to allow the immune system to tolerate and escape. In addition, the highly acidified
and hypoxic environment in the tumor microenvironment is also an important factor in
immunosuppression, which not only affects the activity and function of immune cells but
also induces apoptosis and functional abnormalities in immune cells [41–44]. The inflam-
matory response and immune cell infiltration in the tumor microenvironment are also
closely related to immunosuppression [45–48]. The inflammatory response can promote
the activation and infiltration of immune cells; however, it can also lead to their functional
polarization and immune escape [49]. The tumor microenvironment provides favorable
conditions for tumor escape by regulating the activity, function, and quantity of immune
cells and changing the local physiological environment, thereby inhibiting the immune
response [50].

The combined application of 3D bioprinting technology and bio-nanocarrier tech-
nology has led to the construction of a new tumor treatment platform [51–54]. Three-
dimensional bioprinting can accurately manufacture complex three-dimensional structures,
whereas bio-nanocarrier technology can effectively deliver drugs or genes [55]. This
combined application platform can enable customized tumor treatment programs, thus
targeting drugs or gene carriers to the tumor site to improve treatment effectiveness [56].
In addition, the combination of these two technologies can improve the tumor immune
microenvironment [57–60]. The immunosuppressive tumor microenvironment can be con-
trolled by the release of nanocarriers carrying specific immunomodulators. It can also boost
the activity of immune cells, help tumor cells die and immune cells invade, and improve
the immune response of patients [61]. This combined application platform provides a new
method for personalized and precise tumor therapy and has important clinical application
prospects (Figure 1).
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Figure 1. Three-dimensional bioprinting technology and the comprehensive nanocarrier application 
platform enable precise antitumor immunotherapy by combining biomaterials and nanotechnology. 
The platform uses bioprinting technology to accurately manufacture complex three-dimensional 
structures and load modified lipid calcium and phosphorus nanoparticles onto the vaccine, thereby 
enhancing the efficiency and specificity of antigen delivery, significantly regulating the tumor mi-
croenvironment, and enhancing the antitumor response of the immune system. 

Cell interactions in the tumor microenvironment are closely related to those in the 
tumor mesenchyme and have important effects on the immune response [62–64]. The tu-
mor stroma is composed of tumor cells, stromal cells, and stroma, and its complex cellular 
interactions affect the characteristics of the tumor microenvironment and the mechanism 
of immunosuppression [65]. Tumor cells influence the behavior of surrounding cells by 
secreting cytokines and chemokines, such as vascular endothelial growth factor (VEGF) 
and tumor necrosis factor (TNF), and by regulating tumor stromal formation and function 
[66]. Mesenchymal cells, including tumor-associated macrophages (TAMs) and cancer-as-
sociated fibrocytes (CAFs), interact with tumor cells by secreting cytokines and molecules, 
such as TGF-β and IL-6, to promote tumor growth, invasion, and metastasis and inhibit 
the activity of immune cells [67–70]. In a mouse model of brain metastases, studies have 
shown that the mannan-decorated lipid calcium–phosphorus nanoparticle vaccine has a 
significant targeted penetration ability and can successfully penetrate the meninges and 
accurately locate tumor cells. 

This nanoparticle carrier achieves effective drug delivery through specific binding to 
tumor cells, thus significantly killing tumor cells. More importantly, in this process, the 
nanoparticles not only directly act on the tumor cells but also regulate the interaction be-
tween the cells and the tumor matrix in the tumor microenvironment. The tumor micro-
environment is composed of tumor cells, stromal cells, immune cells, and extracellular 
matrix, and its complex dynamic relationship plays a key role in the genesis and develop-
ment of tumors [71]. By regulating this microenvironment, the mannan-decorated nano-
particles effectively destroy the interaction between tumor cells and stromal cells and 
weaken the viability and aggressiveness of tumor cells [72]. The nanoparticle vaccine not 

Figure 1. Three-dimensional bioprinting technology and the comprehensive nanocarrier application
platform enable precise antitumor immunotherapy by combining biomaterials and nanotechnology.
The platform uses bioprinting technology to accurately manufacture complex three-dimensional
structures and load modified lipid calcium and phosphorus nanoparticles onto the vaccine, thereby
enhancing the efficiency and specificity of antigen delivery, significantly regulating the tumor mi-
croenvironment, and enhancing the antitumor response of the immune system.

Cell interactions in the tumor microenvironment are closely related to those in the
tumor mesenchyme and have important effects on the immune response [62–64]. The
tumor stroma is composed of tumor cells, stromal cells, and stroma, and its complex
cellular interactions affect the characteristics of the tumor microenvironment and the
mechanism of immunosuppression [65]. Tumor cells influence the behavior of surrounding
cells by secreting cytokines and chemokines, such as vascular endothelial growth factor
(VEGF) and tumor necrosis factor (TNF), and by regulating tumor stromal formation and
function [66]. Mesenchymal cells, including tumor-associated macrophages (TAMs) and
cancer-associated fibrocytes (CAFs), interact with tumor cells by secreting cytokines and
molecules, such as TGF-β and IL-6, to promote tumor growth, invasion, and metastasis and
inhibit the activity of immune cells [67–70]. In a mouse model of brain metastases, studies
have shown that the mannan-decorated lipid calcium–phosphorus nanoparticle vaccine
has a significant targeted penetration ability and can successfully penetrate the meninges
and accurately locate tumor cells.

This nanoparticle carrier achieves effective drug delivery through specific binding
to tumor cells, thus significantly killing tumor cells. More importantly, in this process,
the nanoparticles not only directly act on the tumor cells but also regulate the interac-
tion between the cells and the tumor matrix in the tumor microenvironment. The tumor
microenvironment is composed of tumor cells, stromal cells, immune cells, and extracel-
lular matrix, and its complex dynamic relationship plays a key role in the genesis and
development of tumors [71]. By regulating this microenvironment, the mannan-decorated
nanoparticles effectively destroy the interaction between tumor cells and stromal cells and
weaken the viability and aggressiveness of tumor cells [72]. The nanoparticle vaccine not
only works by directly killing tumor cells but also further enhances the antitumor immune
response by modulating cell interactions in the tumor microenvironment (Figure 2).
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10. These factors prevent immune cells from functioning and hinder their ability to find 
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Lipid calcium phosphate nanoparticles are usually prepared by the thin-film solution 
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to form a lipid–calcium ion complex. Mannose-modified lipid calcium phosphate nano-
particles were formed by combining mannose with a lipid–calcium complex via the addi-
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Figure 2. The nanoparticle carrier successfully penetrated the meninges and targeted and killed tumor
cells in a mouse model of brain metastases. Through the modified lipid calcium and phosphorus
nanoparticles, the carrier can efficiently deliver antitumor drugs, enhance the drug concentration at
the tumor site, effectively destroy the tumor microenvironment, and promote the antitumor response
of the immune system.

Immune escape and tumor suppressor cells in the tumor microenvironment are impor-
tant reasons for the hindered immune response [73–75]. Tumor cells and their surrounding
cells and molecules work together in the tumor microenvironment to form a pattern of
immune escape [76]. Tumor cells express excessive immunosuppressive molecules, such
as PD-L1 and PD-L2, and immunosuppressive factors, such as TGF-β and IL-10. These
factors prevent immune cells from functioning and hinder their ability to find and kill
tumor cells [77]. In addition, tumor suppressor cells in the area around the tumor (such as
TAMs and Tregs) control the immune response and help the tumor grow and spread by
releasing immunosuppressive substances such as IL-10 and TGF-β [78–80].

Lipid calcium phosphate nanoparticles are usually prepared by the thin-film solution
method, in which phospholipids and calcium phosphate are mixed in a certain proportion
to form a lipid–calcium ion complex. Mannose-modified lipid calcium phosphate nanopar-
ticles were formed by combining mannose with a lipid–calcium complex via the addition
of an appropriate amount of mannose modifier.

In the tumor microenvironment, immune escape and tumor suppressor cells are key
factors in tumor development and treatment difficulties. Tumor cells evade the surveillance
and attack of the immune system through a variety of mechanisms, including regulating the
activity of immunosuppressive cells such as regulatory T cells and myeloid suppressor cells,
thereby suppressing the antitumor immune response. In addition, tumor suppressor cells
in the tumor microenvironment promote tumor cell growth and metastasis by secreting
a variety of cytokines and growth factors. It was found that the mannan-decorated lipid
calcium–phosphorus nanoparticle vaccine can effectively regulate the tumor microenvi-
ronment and enhance the antitumor immune response, thus overcoming immune escape
and inhibiting the function of tumor suppressor cells. Studies [81,82] in mouse models
showed that the mannan-decorated lipid calcium–phosphorus nanoparticle vaccine was
detected and monitored by photoacoustic imaging (PAI), demonstrating its distribution and
biological distribution characteristics in vivo. Photoacoustic imaging technology combines
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the high contrast of optical imaging with the high resolution of acoustic imaging to monitor
the distribution of nanoparticles in the body in real time without damaging tissues. This
imaging technique demonstrated that mannan-decorated nanoparticles can effectively
target tumor tissue and accumulate in the tumor microenvironment, thereby exerting their
antitumor effects.

The accumulation of mannan-decorated nanoparticles at tumor sites can be clearly
observed by photoacoustic imaging, which provides important support for the further
understanding of its mechanism of action. These nanoparticles were not only able to
directly kill tumor cells but also enhanced the antitumor immune response by modulating
immune escape and tumor suppressor cells in the tumor microenvironment (Figure 3).
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Figure 3. Photoacoustic imaging (PAI) of mannan-decorated lipid calcium–phosphorus nanoparticle
vaccine in a mouse model. PAI technology uses its high resolution and deep imaging capabilities
to clearly show the distribution and targeting effects of this nanoparticle in the body. Studies
have shown that this vaccine can precisely accumulate in tumor tissue, significantly enhancing the
immune system’s resistance to tumors through enhanced antigen delivery and regulation of the
tumor microenvironment.

2.1. Role of Lipid Calcium Phosphate Nanoparticles in the Immune System
Lipid Calcium Phosphate Nanoparticles in the Immune System

Lipid calcium phosphate nanoparticles (100–200 nanometers, spherical) are important
nanocarriers that have the potential to modulate antitumor immune responses in the
immune system [83]. These nanoparticles are structurally designed to improve vaccine
stability, biocompatibility, and immunogenicity. These nanoparticles can also mimic the
structure and appearance of the virus. This strongly affects the immune system, which
improves the body’s ability to find and destroy tumor cells [84–87]. In general, as an
effective vaccine carrier, lipid calcium phosphate nanoparticles play an important role in
the immune system, thus enhancing the antitumor immune response by promoting antigen
presentation and immune cell activation and providing new strategies and hope for tumor
treatment. mRNA LNPS (mRNA lipid nanoparticle) and calcium phosphate nanoparticles
play different roles in vaccine delivery systems. mRNA LNPs are primarily used to deliver
mRNA vaccines, and at their core are lipid nanoparticles that enclose mRNA molecules.
This nanoparticle has a small particle size and good biocompatibility, which can effectively
protect mRNA from degradation, improve its stability, and promote mRNA uptake in
cells. In contrast, lipid calcium phosphate nanoparticles, with a calcium phosphate core
and a surface modified with mannose to enhance targeting, are more commonly used to
deliver proteins or antigens. In addition, the two have different application fields and
characteristics. mRNA LNPs are widely used in the delivery of mRNA vaccines. Due to the
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easy degradation and instability of mRNA, LNPs can effectively wrap and protect mRNA
and release it in the body to trigger an immune response. However, lipid calcium phosphate
nanoparticles are more commonly used to deliver protein antigens, enhance targeting
through mannan-decorated pathways, enter the tumor microenvironment, activate immune
cells, and enhance the antitumor immune response.

Our study used photoacoustic imaging (PA) to measure oxidative stress in lipid cal-
cium phosphate nanoparticles. Lipid calcium phosphate nanoparticles were injected into
the tumor site to locate the targeted organs and tumor sites in vivo, and the distribution and
signal intensity of the lipid calcium phosphate nanoparticles were monitored in real time by
using photoacoustic imaging technology; moreover, the intensity of the PA signal reflected
the degree of oxidative stress [88]. During the observation process, we can infer the degree
of oxidative stress in the tumor microenvironment from changes in signal intensity and
further evaluate the role of lipid calcium phosphate nanoparticles in modulating the tumor
immune response [89]. This process effectively combines lipid calcium phosphate, nanopar-
ticle technology, and photoacoustic imaging technology to provide a feasible, noninvasive
measurement method for the study of oxidative stress in the tumor microenvironment
and provides an important reference for the optimal design of antitumor immunotherapy
(Figure 4).
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3. Design and Preparation of a Mannan-Decorated Lipid Calcium Phosphate
Nanoparticle Vaccine
3.1. Effect of Mannose Modification on Vaccines

Mannose modification can confer good biocompatibility and immunological activity
on nanoparticle vaccines [90–121]. Mannose modification can improve the stability of a
vaccine and increase its circulation time in the body.

Mannose modification plays an important role in improving the stability of vaccines
by covalently linking mannose to the surface of lipid calcium phosphate nanoparticles
to form a protective film, which effectively prevents vaccines from being affected by
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the external environment in vivo. This protective film can resist adverse factors, such as
enzyme degradation, pH changes, and temperature fluctuations, increasing the stability and
reliability of the vaccine during storage and delivery. In addition, the addition of mannose
can increase the duration of the vaccine cycle in the body. The modified nanoparticles have
better biocompatibility and anti-clearance and can evade clearance by the liver or spleen,
extending their residence time in the blood circulation.

In addition, mannan-decorated nanoparticles can bind specifically to immune cells to
improve the cellular uptake rate and antigen delivery efficiency of the
vaccine [122–124]. Mannose modification can also activate certain immune signaling
pathways and improve the ability of antigen-presenting cells to express antigens, which
strengthens the immune response of antigen-specific T cells [125–128]. During the design
and preparation of the mannan-decorated lipid calcium phosphate nanoparticle vaccine,
the influence of the mannose modification on the vaccine is reflected in its ability to improve
its stability, enhance its immune activity, and promote antigen presentation, which provides
strong technical support for tumor immunotherapy [129].

Mannan-decorated lipid calcium phosphate nanoparticles have demonstrated a poten-
tially revolutionary role in cancer therapy, and their ability to target cancer-causing long
noncoding RNAs (ARAs) has brought new hope for cancer therapy [130]. By regulating
the tumor microenvironment, nanoparticles can not only inhibit the growth and spread
of tumor cells but also enhance the body’s antitumor immune response [131]. Moreover,
combined with the research progress in tumor immunity, the results demonstrated that the
use of mannan-decorated lipid calcium phosphate nanoparticles is not only a method of
direct attack against tumor cells but also an innovative strategy for promoting the body’s
immune system to participate in antitumor processes (Figure 5).
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Figure 5. Schematic illustration of mannan-decorated lipid calcium–phosphorus nanoparticles
(mannose-LNP-CaP) targeting carcinogenic long noncoding RNAs (lncrnas) for cancer therapy. This
figure shows that mannan-decorated nanoparticles can specifically recognize and bind to cancer-
causing lncrnas in tumor cells, inhibit their expression and function, and thus block the proliferation
and metastasis of tumor cells.

3.2. Design and Preparation of Lipid Calcium Phosphate Nanoparticles
3.2.1. Preparation Method and Structural Advantages

Lipid calcium phosphate (CaP) nanoparticles have attracted much attention due to
their unique advantages in vaccine delivery systems. Their design and preparation are es-
sential for improving the bioavailability and immunological efficacy of
vaccines [132–135]. Typically, the preparation process includes the solvent precipitation
method and the coprecipitation method [136]. During solvent precipitation, the addition
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of phosphate and calcium ions causes the formation of calcium phosphate nanoparticles
in solution. The coprecipitation of the drug and calcium phosphate is typically how the
coprecipitation method produces the drug’s carrier [137–150]. The structural advantages
provide a good platform for vaccine delivery and provide a foundation for regulating the
tumor microenvironment and enhancing the antitumor immune response.

3.2.2. Stability and Biocompatibility of Nanoparticles

Lipid calcium phosphate (CaP) nanoparticles are an important vaccine delivery system
and have potential applications in antitumor immunotherapy [151]. In the design and
preparation of these materials, we need to consider the stability and biocompatibility of the
nanoparticles, which are essential for improving vaccine effectiveness and safety [152–154].
The stability of nanoparticles can be achieved by adjusting the preparation methods and
adding surface modifiers. During the preparation process, the size, morphology, and
dispersion of nanoparticles can be controlled via solvent precipitation or coprecipitation to
ensure their stability [155]. Additionally, the use of appropriate surface modifiers, such as
polyvinylpyrrolidone (PVP), can increase the stability of nanoparticles and prevent them
from being cleared from the bloodstream and breaking down in living organisms [156].

Biocompatibility is an important indicator for evaluating the application of
nanoparticles [157]. Mannan-decorated lipid calcium phosphate nanoparticles have re-
ceived much attention due to their good biocompatibility [158]. Mannose, a natural sugar
in the human body, has good biocompatibility and biodegradability and can reduce the
immune response and toxic side-effects on the body [159]. Mannan-decorated nanopar-
ticles can effectively avoid the clearance and decomposition of nanoparticles caused by
immune responses, thus extending their circulation time in the body and increasing their
accumulation in tumor tissues [160]. Additionally, changing the mannose concentration
can improve the specific binding between nanoparticles and tumor cells, thus allowing
for more precise targeted delivery and a better immune response against the tumor in the
vaccine [161–165].

In general, the stability and biocompatibility of lipid calcium phosphate nanoparticles
are problems that need to be considered and solved. Through rational design and prepara-
tion methods, as well as the introduction of biocompatible modifications such as mannose,
the application of nanoparticles in antitumor immunotherapy can be effectively improved,
thus providing strong support for regulating the tumor microenvironment and enhancing
the antitumor immune response.

4. Immunomodulatory Mechanism of Mannan-Decorated Lipid Calcium Phosphate
Nanoparticle Vaccine
4.1. Tumor Antigen Presentation and T-Cell Activation
4.1.1. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine in
Tumor Immunity

The mannan-decorated lipid calcium phosphate nanoparticle vaccine plays an im-
portant role in enhancing the antitumor immune response, and its immune regulatory
mechanism involves several mechanisms [166]. As carriers, these nanoparticles can effec-
tively load tumor antigens and their related immune stimulators (such as proteins and
nucleic acids) in a stable manner on their surface or on the inside. Mannan-decorated
nanoparticles can achieve precise, targeted delivery through specific binding to tumor cell
surfaces [167–170]. This targeted loading allows the nanoparticles to be more efficiently
sought out in tumor tissue and consumed by tumor cells [171]. NPs release tumor antigens
that are loaded on themselves. This makes it easier for antigen-presenting cells, such as
dendritic cells, to take in and process these antigens, which then causes immune cells
to recognize and respond to the tumor antigens. In addition, mannose can interact with
specific receptors on the surface of tumor cells to promote intracellular phagocytosis and
the internal presentation of nanoparticles [172–180]. Finally, the release of these immune
stimulators and the presentation of tumor antigens activate the body’s immune system,
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especially by promoting the activation and proliferation of antigen-specific T cells and B
cells, thus strengthening the immune response to tumors [181–184].

The mannan-decorated lipid calcium phosphate nanoparticle vaccine regulates the
tumor microenvironment and enhances the antitumor immune response by targeting
tumor antigen delivery, promoting antigen presentation, and activating immune cells, thus
providing new ideas and methods for tumor therapy.

4.1.2. Activation of T Cells by a Mannan-Decorated Lipid Calcium Phosphate
Nanoparticle Vaccine

The mannan-decorated lipid calcium phosphate nanoparticle vaccine changes the
microenvironment of the tumor, which boosts the immune response against it [185]. One
method of achieving this effect is by activating T cells; specifically, T cells are an important
part of the immune system and play a key role in recognizing and eliminating tumor
cells [186–188]. Mannan-decorated nanoparticles can enhance the immune response by
promoting the activation and proliferation of T cells in a variety of ways [189].

Mannan-decorated nanoparticles can effectively improve the delivery efficiency of
tumor antigens. These nanoparticles act as carriers that can stably load tumor antigens and
release them into the tumor microenvironment [190]. Antigen-presenting cells (such as
dendritic cells) take up and process these tumor antigens before presenting them to T cells
and inducing an immune response to the tumor antigen. Mannan-decorated nanoparticles
modulate immunosuppressive factors in the tumor microenvironment, thereby reducing
T-cell suppression [191–195]. In the tumor microenvironment, the presence of immuno-
suppressive factors (such as PD-L1 and TGF-β) can inhibit the activation and function of
T cells [196]. NPs modified with mannose can control the production and release of these
immune-suppressing substances by interacting with specific receptors on the surface of
tumor cells. This makes T cells less inhibited and more active, thus leading to increased cell
growth and activation [197]. The mannan-decorated nanoparticles also activated T-cell cos-
timulatory signaling pathways. Costimulatory signaling is a key factor in T-cell activation
and proliferation, and the CD28/B7 and CD40/CD40L signaling pathways play important
roles in T-cell activation and function [198–200]. NPs modified with mannose can activate
these costimulatory signaling pathways by attaching to the correct receptors on the surface
of T cells. This makes the T-cell immune response stronger.

The use of a mannan-decorated lipid calcium phosphate nanoparticle vaccine, which
is an innovative immunotherapy method, has received extensive attention and research
in recent years [201]. By modulating the tumor microenvironment, this vaccine can sig-
nificantly enhance the antitumor immune response, thus providing new possibilities for
tumor treatment. Several studies [202–205] have explored the treatment of this nanopar-
ticle nucleic acid vaccine through clinical trials. These clinical trials typically involve the
treatment of tumor patients in groups, with one receiving the mannan-decorated lipid
calcium phosphate nanoparticle vaccine and the other receiving either standard treatment
or a placebo. The main purpose of the trial was to assess the effect of the vaccine on
tumor growth in patients and the extent to which it activated the immune system [206]. By
comparing the effects of treatment on different groups of patients, researchers can assess
the effectiveness and safety of the vaccine. In clinical trials [207–212], researchers typically
examine data on several aspects, including changes in tumor size, longer patient survival,
and increased immune cell activity. These data can not only help determine the therapeutic
effect of the vaccine but also provide an important basis for further optimization of the
vaccine design and treatment plan (Figure 6).
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response analysis (Phase II), large-scale multi-center efficacy and safety validation (Phase III), and
continuous post-marketing monitoring and efficacy evaluation (Phase IV).

4.2. Enhancement in the Tumor Immune Response and Establishment of Immune Memory

The use of a mannan-decorated lipid calcium phosphate nanoparticle vaccine is a
novel tumor immunotherapy method that can enhance the immune response to tumors by
regulating the tumor microenvironment [213]. Previous studies [214–220] have shown that
vaccines can activate the body’s immune system, promote the expression and recognition
of tumor-associated antigens, and trigger a specific immune response against tumor cells.
Through mannose modification, the vaccine can be more effectively taken up by antigen-
presenting cells and improve the efficiency of antigen delivery in the lymph nodes, thus
further activating immune cells such as dendritic cells and T cells and enhancing the
potential of the immune response [221].

In the establishment of immune memory, the application of a vaccine has also shown
remarkable results [222–225]. After inoculation with mannan-decorated lipid calcium
phosphate nanoparticles, the body can form a long-term memory of tumor antigens [226].
This immune memory allows the body to recognize and clear tumor cells quickly and
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efficiently during subsequent tumor invasion, thereby reducing the risk of tumor recur-
rence and metastasis. In addition, the establishment of immune memory also provides
a solid foundation for subsequent immunotherapy, thus enabling the body to produce a
more durable and powerful response to further treatment with tumor vaccines or other
immunomodulators [227–230].

As a new method to treat tumors with immunotherapy, a mannan-decorated lipid
calcium phosphate nanoparticle vaccine has shown great promise in improving the im-
mune response to tumors and building immune memory [231–235]. This provides new
ideas and strategies for the future treatment of cancer and is expected to play an im-
portant role in clinical practice, thus resulting in more effective treatments and a better
quality of life for patients [236–240]. The main determinants of drug resistance include
tumor microenvironment heterogeneity, immunosuppressive mechanisms, and inefficient
drug delivery [241]. A mannan-decorated lipid calcium phosphate nanoparticle vaccine
can improve the immunogenicity of tumor cells, regulate the tumor microenvironment,
and promote an antitumor immune response by stimulating natural antigen presentation
(Figure 7).
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Figure 7. Drug resistance factors in cancer and treatment of mannose-modified lipid calcium and
phosphorus nanoparticles (mannose-LNP-CAP). This figure shows that cancer drug resistance in-
cludes key factors such as the complexity of the tumor microenvironment, gene mutations, and
drug efflux pumps. Mannose-LNP-CaP therapy overcomes drug resistance by targeting these re-
sistance mechanisms, especially by precisely regulating the tumor microenvironment, enhancing
antigen delivery, and activating immune cells, and significantly improves the efficacy of antitumor
immune responses.

4.3. Analysis of Immune Cell Infiltration in Tumor Tissue

Tumor tissue immune cell infiltration is an important indicator for evaluating the
ability of the mannan-decorated lipid calcium phosphate nanoparticle vaccine to enhance
the antitumor immune response by regulating the tumor microenvironment [242]. The
infiltration of different types of immune cells (such as CD8+ T cells, CD4+ T cells, and natu-
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ral killer cells) in tumor tissues can be quantitatively analyzed via immunohistochemical
staining, flow cytometry, and other techniques. It was found that the mannan-decorated
lipid calcium phosphate nanoparticle vaccine can significantly increase the amount of
CD8+ T-cell infiltration in tumor tissues, improve the ratio of CD8+/CD4+ T cells, and
promote the transformation of the tumor immune microenvironment [243–245]. In addi-
tion, the vaccine can also effectively increase the degree of invasion of natural killer cells,
thereby enhancing the clearance of tumor cells [246]. An analysis of tumor immune cell
infiltration showed that a mannan-decorated lipid calcium phosphate nanoparticle vac-
cine could significantly regulate the tumor microenvironment and enhance the antitumor
immune response.

5. Promising Research Prospects for Preclinical Research

As a novel tumor immunotherapy strategy, the use of a mannan-decorated lipid cal-
cium phosphate nanoparticle vaccine has shown great potential in preclinical
studies [247–250]. Through in-depth investigation of its mechanism of action, we found
that the vaccine can effectively regulate the tumor microenvironment and enhance the
antitumor immune response of the body. Previous studies [251–253] have shown that
mannan-decorated nanoparticles can promote the uptake and endocytosis of tumor cells
through specific targeting, thereby improving the efficiency of antigen delivery and acti-
vating the activity of tumor-associated antigen-specific T cells. In addition, the vaccine
can also induce immune cells in the tumor microenvironment, such as plasma cells and
dendritic cells, to release proinflammatory factors and inhibit the function of immunosup-
pressive cells, thereby promoting the activation and expansion of T cells, enhancing the
killing ability of cytotoxic T lymphocytes and ultimately realizing the effective elimination
of tumors.

6. Discussion

In future studies, we can further optimize the formulation and preparation process of
a mannan-decorated lipid calcium phosphate nanoparticle vaccine to improve its stability
and bioavailability in vivo, thereby enhancing its antitumor immunotherapy effect [254].
In addition, vaccines could be explored in combination with other tumor therapies, such as
chemotherapy, radiotherapy, and immune checkpoint inhibitors, to achieve better thera-
peutic outcomes. In addition, it is possible to design personalized treatment regimens for
different types and stages of tumors and verify their safety and efficacy through preclinical
and clinical studies. In general, mannan-decorated lipid calcium phosphate nanoparticle
vaccines have broad application prospects in the field of tumor immunotherapy and are
expected to become an important strategy for tumor therapy in the future.

In comparison with existing therapies and the literature, mannan-decorated lipid
calcium–phosphorus nanoparticle vaccines show significant advantages and unique mech-
anisms of action [255]. Traditional cancer treatments such as surgery, radiation, and
chemotherapy, although effective in some cases, are often accompanied by a higher risk
of side-effects and tumor recurrence. In addition, although many immunotherapies have
demonstrated effectiveness against specific cancer types, their universality and targeting
are still insufficient, and they are prone to immune escape and adverse reactions. In con-
trast, mannan-decorated nanoparticle vaccines achieve more efficient antigen delivery and
specific immune responses by precisely regulating the tumor microenvironment, resulting
in more durable and intense antitumor effects in mouse models. A variety of nanoparticle
vaccines in the existing literature have shown some antitumor potential, but most of them
lack the regulatory ability to target the tumor microenvironment, which plays a key role
in tumor growth and immune escape. The nanoparticle vaccine in this review not only
improves tumor targeting and immune cell recognition through mannose modification
but also significantly enhances the effect of the antitumor immune response by regulating
the activity of immune cells in the tumor microenvironment, inhibiting the tumor-related
inflammatory response and reducing the immunosuppressive mechanism.
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7. Conclusions

MK-modified NPs can effectively regulate the tumor microenvironment, inhibit tumor
growth, and enhance the infiltration of immune cells. The mannan-decorated lipid calcium
phosphate nanoparticle vaccine showed good potential for regulating the tumor microenvi-
ronment, promoting immune cell infiltration, and inducing antibody and T-cell responses,
thus providing new ideas and strategies for tumor immunotherapy.
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