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Abstract: Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs), a biologically ac-
tive compound derived from selenium polysaccharides, have demonstrated potential in addressing
obesity. However, the mechanism through which LCS-SeNPs alleviate high-fat diet (HFD)-induced
non-alcoholic fatty liver disease (NAFLD) remains unclear. Our results elucidated that LCS-SeNPs
significantly inhibited fat accumulation and markedly improved the intestinal barrier by increasing
mucus secretion from goblet cells. Moreover, LCS-SeNPs reshaped intestinal flora composition by
increasing the abundance of mucus-associated microbiota (Bifidobacterium, Akkermansia, and Muribac-
ulaceae_unclassified) and decreasing the abundance of obesity-contributed bacterium (Anaerotruncus,
Lachnoclostridium, and Proteus). The modulation of intestinal microbiota by LCS-SeNPs influenced
several metabolic pathways, including bile acid secretion, purine metabolites, and tryptophan deriva-
tion. Meanwhile, glycocholic acid and tauro-beta-muricholic acid were significantly reduced in
the LCS-SeNP group. Our study suggests the crucial role of intestinal microbiota composition and
metabolism, providing a new theoretical foundation for utilizing selenium polysaccharides in the
intervention of HFD-induced NAFLD.

Keywords: low molecular weight chitosan selenium nanoparticles; intestinal barrier function;
non-alcoholic fatty liver disease; intestinal microbiota; metabolomics

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) is a
clinical pathological syndrome characterized by hepatocyte lipid degeneration, which is
an important predisposing factor for the development of hepatocellular carcinoma and
cirrhosis [1–3]. Moreover, the development of NAFLD is accompanied by the disruption
of the intestinal epithelial barrier, leading to an increase in intestinal permeability and the
translocation of gut bacteria [4,5]. Previous studies have shown that the gut microbiota
can impact multiple metabolic pathways, including tryptophan metabolism, primary bile
acid biosynthesis, and glycerolipid metabolism, which contribute to reducing inflammation
and modulating lipid metabolism in NAFLD patients [6]. However, there is currently
no approved drug therapy for NAFLD [7]. Dietary adjustments and exercise regimens
represent the effective therapeutic options for NAFLD [8].

Selenium polysaccharides represent a novel functional polysaccharide product formed
by the combination of inorganic selenium with polysaccharides [9]. Additionally, multiple
studies have shown that selenium polysaccharides exhibit remarkable effects in lowering
blood lipids, reducing blood glucose, and modulating immune function [10–12]. Moreover,
selenium supplementation enhances the growth of beneficial gut microbiota and influences
the enrichment of associated metabolic pathways [13]. For example, selenium-enriched kiwi

J. Funct. Biomater. 2024, 15, 236. https://doi.org/10.3390/jfb15080236 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb15080236
https://doi.org/10.3390/jfb15080236
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0003-4135-553X
https://doi.org/10.3390/jfb15080236
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb15080236?type=check_update&version=2


J. Funct. Biomater. 2024, 15, 236 2 of 23

fruit was demonstrated to alleviate hyperlipidemia in HFD mice by significantly increasing
the relative abundance of beneficial gut bacteria such as Parabacteroides, Bacteroides, and
Allobaculum, as well as influencing the pyrimidine metabolism and purine metabolism
pathways [14].

Chitosan (CS) is a naturally occurring cationic polysaccharide derived from chitin,
ranking as the world’s second most abundant biopolymer [15]. Moreover, CS has demon-
strated broad biological activity in several fields, including anti-obesity, anti-inflammatory,
and immune modulation [16]. Previous studies have shown that low molecular weight CS
enhanced intestinal barrier integrity and reduced inflammation in HFD mice by increasing
the relative abundance of the beneficial gut bacteria Akkermansia and Gammaproteobacteria
while decreasing the relative abundance of the inflammatory bacteria Erysipelatoclostrid-
ium and Alistipes [17]. In addition, CS also exhibits remarkable drug delivery capabilities
attributable to its superior solubility, biocompatibility, biodegradability, and structural
modifiability [15,18,19]. For instance, Sen Li et al. developed a targeted nanoparticle coated
with N-trimethyl chitosan designed to promote sustained release in the intestine [20].
This formulation significantly enhanced the bioavailability and antioxidant activity of
vitexin in vivo. Thus, nanoparticles constructed from chitosan for encapsulating bioactive
compounds may represent an effective strategy for alleviating NAFLD.

According to our previous research, low molecular weight chitosan selenium nanopar-
ticles (LCS-SeNPs) have demonstrated excellent anti-inflammatory, antioxidant, and gut
barrier function-improving effects [21]. To investigate whether LCS-SeNPs alleviate HFD-
induced NAFLD, we established the HFD mouse model. Herein, we determined the
efficacy of LCS-SeNPs in alleviating HFD-induced intestinal barrier dysfunction. Next, we
explored the relationship between key microbial species altered by LCS-SeNPs and colon
metabolites in relation to alleviating NAFLD. Ultimately, the findings of this study may
offer a novel insight into prevention and treatment strategies for NAFLD.

2. Materials and Methods
2.1. Materials

Low molecular weight chitosan (LCS) with a molecular weight (MW) of 3000 Da
and a deacetylation degree (DD) of 90% (DD 90%) was purchased from Golden-Shell
Pharmaceutical Co., Ltd. (Zhejiang, China). The same LCS was used for the synthesis
of low molecular weight chitosan selenium nanoparticles (LCS-SeNPs). Thermo Fisher
Scientific (Waltham, MA, USA) furnished methanol, formic acid, and acetonitrile at High-
Performance Liquid Chromatography (HPLC) grade. Sodium selenites were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Ethanol absolute and glacial acetic acid were
obtained from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). The remaining
chemicals utilized were of analytical grade.

2.2. Preparation of Low Molecular Weight Chitosan Selenium Nanoparticles

The LCS-SeNPs used in this study were synthesized using LCS from our previous
work [21]. In brief, 1 g chitosan was dissolved in 49 mL distilled water, followed by the
addition of 1 mL acetic acid and 10 mg sodium selenite. The mixture was heated at 60 ◦C
for 4 h, filtered through a 0.2 µm membrane after standing overnight, and confirmed
sodium selenite-free via ascorbic acid testing. LCS-SeNPs were obtained through vacuum
freeze-drying.

2.3. Animal Experiments

The Guidelines for the Care and Use of Laboratory Animals were followed in this
study and approved by the Animal Ethics Committee of Zhejiang Ocean University (au-
thorization number: 2022025). All mice were housed according to the requirements of
the committee in the standard-specific pathogen-free level animal facility of Zhejiang
Ocean University. Healthy male C57BL/6J mice (5-week-old, 18 ± 2 g) purchased from
Charles River Laboratory (Jiaxing, China) were raised in a standardized environment (12
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h light/12 h dark cycle, temperature 23 ± 1 ◦C, relative humidity 55 ± 5%). Adhering to
the principle of ad libitum feeding, four mice were housed in each cage (each cage had
two compartments, and each compartment contained two mice).

After one week of acclimatization, all mice were randomly assigned to four groups
(n = 6) for the dietary intervention: (1) normal chow diet (NCD) group (D12450J, 4.3% fat);
(2) high-fat diet (HFD) group (D12492, 35% fat); (3) high-fat diet with low molecular weight
chitosan (HFD+C) (200 mg/kg/day); (4) high-fat diet with low molecular weight chitosan
selenium nanoparticles (HFD+S) (200 mg/kg/day). Administration was conducted by
intragastric gavage in this study. The entire experimental process is delineated in Figure 1A.
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Figure 1. LCS-SeNP intervention in HFD mice effectively curtailed fat accumulation. (A) Overview 
of the entire experimental process; (B) Trend of body weight in mice after a 14-week dietary inter-
vention; (C) Average body weight gain of mice in each group throughout the entire experimental 
duration; (D) The average energy intake of each mouse at the end of the experimental period; (E) 
Daily food intake; (F) Food efficiency = body weight gain/food intake; Weight measurements for (G) 
epididymal lipid, (H) perirenal lipid, (I) subcutaneous lipid, and (J) liver; (K) Sections of epididymal 
adipose tissue were stained with H&E (proportional scale: 100 µm); (L) The epididymal adipocyte 
size (µm2); (M) Oil Red O staining of the liver section (proportional scale: 100 µm); (N) the liver lipid 
droplet positive area (%). Data are presented as the mean ± SEM (n = 6). The distinct letters above 
the bar chart indicated significant differences (p < 0.05). LCS-SeNPs, low molecular weight chitosan 
selenium nanoparticles; HFD, high-fat diet; H&E, Hematoxylin and Eosin; SEM, standard error of 
the mean. 

Figure 1. LCS-SeNP intervention in HFD mice effectively curtailed fat accumulation. (A) Overview of
the entire experimental process; (B) Trend of body weight in mice after a 14-week dietary intervention;
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(C) Average body weight gain of mice in each group throughout the entire experimental duration;
(D) The average energy intake of each mouse at the end of the experimental period; (E) Daily food
intake; (F) Food efficiency = body weight gain/food intake; Weight measurements for (G) epididymal
lipid, (H) perirenal lipid, (I) subcutaneous lipid, and (J) liver; (K) Sections of epididymal adipose
tissue were stained with H&E (proportional scale: 100 µm); (L) The epididymal adipocyte size (µm2);
(M) Oil Red O staining of the liver section (proportional scale: 100 µm); (N) the liver lipid droplet
positive area (%). Data are presented as the mean ± SEM (n = 6). The distinct letters above the bar
chart indicated significant differences (p < 0.05). LCS-SeNPs, low molecular weight chitosan selenium
nanoparticles; HFD, high-fat diet; H&E, Hematoxylin and Eosin; SEM, standard error of the mean.

The experimental duration for each group spanned 14 weeks, with weekly recordings
of body weight gain and food intake data. After a 12 h fasting period, mouse serum samples
were obtained by retroorbital bleeding, and the resultant serum was stored at −80 ◦C. All
mice were sacrificed by cervical dislocation following anesthesia with ether. We carefully
dissected and removed the subcutaneous fat, perirenal fat, liver fat, and epididymal fat
tissues from each group of mice under a microscope and precisely measured the weight
of each tissue sample. The collected liver, epididymal fat, and colon tissues were partially
fixed in 4% paraformaldehyde for subsequent histopathological analysis. The remaining
portions, as well as the colonic contents, were rapidly frozen in liquid nitrogen and stored
at −80 ◦C for further analysis.

2.4. Serum Analysis

Blood samples were obtained by retroorbital bleeding, and serum was collected
after centrifugation (1000 g, 5 min). Serum samples from each group of mice were used
to assess the relevant indicators, including triglyceride (TG) (E-BC-K261-M), aspartate
aminotransferase (AST) (E-BC-K236-M), total cholesterol (TC) (E-BC-K109-M), and alanine
aminotransferase (ALT) (E-BC-K235-M) using commercial kits purchased from Elabscience
Biotechnology Co., Ltd. (Wuhan, China). The levels of lipopolysaccharide (LPS) (CSB-
E13066m), diamine oxidase (DAO) (CSB-E10090m), interleukin-6 (IL-6) (CSB-E04639m),
and tumor necrosis factor (TNF-α) (CSB-E04741m) were measured in the serum using
commercial kits purchased from CUSABIO BIOTECH CO., Ltd. (Wuhan, China).

2.5. Histological Analysis

The epididymal fat was subjected to Hematoxylin and Eosin (H&E) staining to ob-
serve tissue morphology. Subsequently, histological evaluation of the liver involved the
application of both Oil Red O staining and H&E staining techniques. The colon tissue
was stained with H&E staining and Alcian Blue-Periodic Acid-Schiff (AB-PAS) staining.
Sections were observed under a microscope (Carl Zeiss AG, Oberkochen, Germany).

2.6. NAFLD Activity Score

The NAFLD Activity Score is a scoring system used to assess the histological severity
of liver tissue in patients with NAFLD. It evaluates three key histological features in liver
biopsy samples: hepatocellular steatosis, inflammation of hepatic lobules, and ballooning
of hepatocytes, and provides a total score based on the combined evaluation of these three
factors [22].

2.7. Transmission Electron Microscopy

Colon samples designated for Transmission Electron Microscopy (TEM) were fixed
in a solution of 2.5% glutaraldehyde and 1% osmic acid at 4 ◦C overnight. After three
15 min wash cycles in 0.1 M PBS (pH = 7.0), the samples underwent ethanol and acetone
dehydration steps. Osmotic embedding was performed at 37 ◦C using a mixture of acetone
and EMBed 812 (Servicebio, Wuhan, China), followed by polymerization. Ultrathin sections



J. Funct. Biomater. 2024, 15, 236 5 of 23

(60–80 nm) were stained with uranyl acetate and lead citrate and observed using the HT7800
TEM (Hitachi, Tokyo, Japan).

2.8. RNA Isolation and Real-Time PCR

Total RNA from the liver and colon tissues was extracted using the RNAeasy™ animal
RNA extraction kit (Solarbio Science & Technology Co., Ltd., Beijing, China) according
to the manufacturer’s instructions. The resulting RNA solution was immediately stored
in a refrigerator at −80 ◦C. Fluorescent quantitative PCR reactions were conducted using
the TB Green® Premix Ex Taq™ kit (Takara Biomedical Technology Co., Ltd., Shiga, Japan)
following the manufacturer’s instructions. The specific primers used and their sequences
are listed in Table S1. The reaction was set up in a 20 µL system, and the volumes of each
reaction component were as indicated in Table S2. Quantifying the mRNA expression
levels of the target genes using the 2-∆∆Ct method involved employing β-actin as the
reference gene.

2.9. DNA Extraction and Sequencing

Total fecal microbial DNA was obtained through the Fecal Genome DNA extraction
kit (BioTeke, Wuxi, China) according to the manufacturer’s instruction manual. DNA was
quantified by Qubit (Invitrogen, Carlsbad, CA, USA). We utilized the universal primer
341F/805R; the specific sequences are shown in Table S3. The PCR products were subjected
to purification using AMPure XT beads (Beckman Coulter Genomics, Danvers, MA, USA)
and quantification with Qubit. The quality of the PCR products was assessed using
Agilent 2100 Bioanalyzer (Santa Clara, CA, USA) and Illumina library quantitative kits
(Kapa Biosciences, Woburn, MA, USA). LC-Bio Technology Co., Ltd. (Hangzhou, China)
uniformly pooled qualified PCR products and conducted sequencing on the Illumina
NovaSeq 6000 (PE250) platform.

2.10. Microbiota Data Analysis

Sequencing of the samples was conducted on the Illumina NovaSeq platform following
the guidelines provided by LC-Bio Technologies Co., Ltd. Original reads were filtered using
fqtrim (version 0.94) under specific filtering conditions to obtain high-quality clean labels.
Chimeric sequences were identified using Vsearch software (version 2.3.4). Alpha diversity
and beta abundance were calculated using QIIME2 (version 2023.7) and visualized using
the R package (version 4.0.3). To evaluate the similarities among microbial communities
across different samples, we conducted a principal coordinate analysis (PCoA) based on
Bray–Curtis dissimilarity, utilizing the Vegan v2.5–3 package. A volcano plot was generated
by plotting log2 fold change (FC, FC > 2 or <0.5) against –log10 p-value (p > 0.05) using R
software (v2.15.3). The generation of all additional figures was accomplished utilizing the
R package.

2.11. Untargeted Metabolite Analysis of Intestinal Contents

The intestinal contents of the four groups of mice were subjected to metabolomic anal-
ysis. Metabolite profiling was conducted using LC-MS/MS-based metabolomics methodol-
ogy by LC-Bio Technologies Co., Ltd. Initially, chromatographic separation of all samples
was accomplished utilizing a Vanquish Flex UHPLC system manufactured by Thermo
Fisher Scientific. Reversed-phase separation was performed on an ACQUITY UPLC T3
column (100 mm × 2.1 mm, 1.8 µm, Waters, Milford, MA, USA).

Peak intensity data derived from the mass spectra were normalized and processed
using the R package, and exact molecular mass data (m/z) of samples were aligned with the
Kyoto Encyclopedia of Genes and Genomes (KEGG) for metabolite annotation. Establishing
criteria to discern distinctions between the two sets of metabolites involved parameters
such as the variable importance in projection (VIP > 1), fold change (FC > 2 or <0.5), and
Student’s t-test (p < 0.05). Supervised Partial Least Squares Discriminant Analysis (PLS-DA)
was performed with the R package to distinguish different variables between groups.
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2.12. Statistical Analysis

GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA) was used for statistical
testing, and one-way analysis of variance and the Tukey test were used for significant dif-
ferences analysis. The Student’s t-test was employed to assess differences between the two
groups. All the findings were presented in terms of the mean values accompanied by the
standard error of the mean (SEM). The threshold for establishing statistical significance was
defined as a p < 0.05. A heatmap was generated using Spearman’s correlation analysis to
calculate the relationship between different metabolites and microbial community diversity.

3. Results
3.1. LCS-SeNPs Inhibited Body Weight Gain and Alleviated Dyslipidemia

To investigate the effect of LCS-SeNPs on inhibiting lipid accumulation in mice fed
HFD, we monitored the body weights of mice in each group throughout the experimental
period. The results indicated the LCS-SeNP group accumulated significantly less body
weight than the HFD group throughout the experimental period (Figure 1B,C). Following
14 weeks of dietary intervention, notable distinctions in energy consumption were observed
between the NCD group and the treatment groups, whereas no significant alterations were
found among the groups subjected to HFD (Figure 1D). As illustrated in Figure 1E, no
significant differences in food intake were observed between the groups, suggesting that the
reduction in weight gain observed in the HFD+S group was not attributable to variations
in food consumption. Additionally, food efficiency in the HFD+S group was significantly
lower compared with the HFD group (Figure 1F). In contrast, although the HFD+C group
exhibited lower food efficiency than the HFD group, this difference was not statistically
significant. These results indicated that the LCS-SeNP group did not reduce the weight
gain of HFD by reducing the appetite of mice. Additionally, the LCS-SeNPs-treated mice
demonstrated significantly reduced weights in epididymal, perirenal, subcutaneous fat,
and liver, and the liver weight in the LCS-SeNP group displayed no statistically significant
disparity in comparison to the NCD group (Figure 1G–J). Moreover, the results of H&E
staining of epididymal adipose tissue and Oil Red O staining of the liver demonstrated the
anti-obesity effect of LCS-SeNPs in HFD mice (Figure 1K–N).

3.2. LCS-SeNPs Attenuated Hepatic Steatosis in HFD-Fed Mice through Modulation of
Lipid Metabolism

After evaluating the weight-reducing effects of LCS-SeNPs, we proceeded to inves-
tigate the effect of LCS-SeNPs on the liver of HFD-fed mice. According to the H&E
staining, observations revealed that the LCS-SeNP intervention alleviated hepatic cell lipid
degeneration, disorderly arrangement, ballooning degeneration, and inflammatory cell
infiltration induced by an HFD (Figure 2A). Furthermore, the LCS-SeNP group exhibited
significantly reduced NAFLD activity scores compared with the HFD group, with no statis-
tically notable divergence observed between the LCS-SeNPs and NCD groups (Figure 2B).
NAFLD patients are typically identified by asymptomatic elevation of liver enzymes, with
the most common being ALT and AST [23,24]. Serum indicators showed that ALT and
AST levels in the serum of HFD mice were significantly decreased after the LCS-SeNP
intervention (Figure 2C,D), but no statistically significant differences were observed when
compared with the NCD group. Furthermore, LCS-SeNPs significantly improved TC and
TG levels, indicating their potent efficacy in ameliorating dyslipidemia in HFD-fed mice
(Figure 2E–H).
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Figure 2. Variations in liver and blood lipid parameters among mice in different treatment groups. 
(A) Sections of liver tissue were stained with H&E (proportional scale: 100 µm); (B) NAFLD activity 
score; (C) serum ALT; (D) serum AST; (E) serum TC; (F) serum TG; (G) Hepatic TC; (H) Hepatic TG. 
Data are presented as the mean ± SEM (n = 6). The distinct letters above the bar chart indicated 
significant differences (p < 0.05). H&E, Hematoxylin and Eosin; NAFLD, nonalcoholic fatty liver 
disease; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TC, total cholesterol; TG, 
triglyceride; HFD, high-fat diet; SEM, standard error of the mean. 
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Fed Mice 
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opment of NAFLD [25]. In our study, results of colonic tissue staining with H&E and AB-
PAS revealed that LCS-SeNPs improved colonic mucosal epithelial damage induced by 
HFD, significantly restored the number of goblet cells, and increased intestinal mucus 
thickness (Figure 3A–E). Moreover, TEM also revealed a significant increase in mucin 
granules within goblet cells of the colon (shown by the arrow) in mice treated with LCS-
SeNPs (Figure 3F), corroborating the findings of AB-PAS staining. To delve deeper into 
the mechanisms underlying LCS-SeNPs-mediated improvement in intestinal barrier per-
meability, the relative mRNA expression levels of zonula occludens-1 (ZO-1), occludin, 
mucin 2 (Muc2), and anterior gradient 2 (Agr2) in the mouse colon were evaluated by real-
time PCR (Figure 4A). The findings revealed that LCS-SeNPs significantly elevated the 
relative mRNA expression levels of ZO-1, occludin, Muc2, and Agr2 in the colon compared 
with the HFD group. Disruption of the intestinal barrier allows inflammatory factors to 
invade the bloodstream [26–28]. Hence, we monitored the levels of relevant inflammatory 
factors in the serum of each group. The results indicated that the levels of LPS, DAO, TNF-
α, and IL-6 were significantly higher in the HFD group compared with the NCD group 

Figure 2. Variations in liver and blood lipid parameters among mice in different treatment groups.
(A) Sections of liver tissue were stained with H&E (proportional scale: 100 µm); (B) NAFLD activity
score; (C) serum ALT; (D) serum AST; (E) serum TC; (F) serum TG; (G) Hepatic TC; (H) Hepatic TG.
Data are presented as the mean ± SEM (n = 6). The distinct letters above the bar chart indicated
significant differences (p < 0.05). H&E, Hematoxylin and Eosin; NAFLD, nonalcoholic fatty liver
disease; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TC, total cholesterol; TG,
triglyceride; HFD, high-fat diet; SEM, standard error of the mean.

3.3. LCS-SeNPs Ameliorated Intestinal Mucosal Barrier and Inflammatory Responses in
HFD-Fed Mice

Long-term HFD induces sustained low-grade inflammation and leads to the devel-
opment of NAFLD [25]. In our study, results of colonic tissue staining with H&E and
AB-PAS revealed that LCS-SeNPs improved colonic mucosal epithelial damage induced
by HFD, significantly restored the number of goblet cells, and increased intestinal mucus
thickness (Figure 3A–E). Moreover, TEM also revealed a significant increase in mucin
granules within goblet cells of the colon (shown by the arrow) in mice treated with LCS-
SeNPs (Figure 3F), corroborating the findings of AB-PAS staining. To delve deeper into the
mechanisms underlying LCS-SeNPs-mediated improvement in intestinal barrier perme-
ability, the relative mRNA expression levels of zonula occludens-1 (ZO-1), occludin, mucin
2 (Muc2), and anterior gradient 2 (Agr2) in the mouse colon were evaluated by real-time
PCR (Figure 4A). The findings revealed that LCS-SeNPs significantly elevated the relative
mRNA expression levels of ZO-1, occludin, Muc2, and Agr2 in the colon compared with the
HFD group. Disruption of the intestinal barrier allows inflammatory factors to invade the
bloodstream [26–28]. Hence, we monitored the levels of relevant inflammatory factors in
the serum of each group. The results indicated that the levels of LPS, DAO, TNF-α, and
IL-6 were significantly higher in the HFD group compared with the NCD group (Figure 4B).
In contrast, LCS-SeNPs significantly reduced these levels. Moreover, we found that the
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relative mRNA expression levels of TNF-α and IL-6 in the liver were significantly increased
in the HFD group, while the LCS-SeNPs significantly decreased these two inflammatory
cytokines. These findings indicated that the LCS-SeNP intervention mitigated the intestinal
barrier dysfunction induced by an HFD in mice.
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Figure 3. Influences of LCS-SeNPs on colon structure and secretion in mice subjected to an HFD.
(A) Sections of colonic segments were stained with H&E (proportional scale: 100 µm); (B) AB-PAS
staining of colon tissue without fecal content (proportional scale: 50 µm), the arrows in (B) indicate
the stained goblet cells; (C) Blue area proportion (%); (D) Colonic mucus was stained with AB-PAS
(proportional scale: 20 µm); (E) Mucus thickness (µm); (F) The representative ultrastructure of colonic
goblet cells in each group (magnified 2.5 k times), the arrows in (F) indicate mucin granules. Data are
presented as the mean ± SEM (n = 6). The distinct letters above the bar chart indicated significant
differences (p < 0.05). LCS-SeNPs, low molecular weight chitosan selenium nanoparticles; HFD,
high-fat diet; H&E, Hematoxylin and Eosin; AB-PAS, alcian blue-periodic acid-schiff; SEM, standard
error of the mean.
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dexes of intestinal mechanical barrier integrity and inflammatory factors include LPS, DAO, TNF-
α, and IL-6 in HFD-fed mice; (C) The relative mRNA expression levels of TNF-α and IL-6 in liver. 
Data are presented as the mean ± SEM (n = 6). The distinct letters above the bar chart indicated 
significant differences (p < 0.05). LCS-SeNPs, low molecular weight chitosan selenium nanoparticles; 
HFD, high-fat diet; ZO-1, Zonula occludens-1; Muc2, mucin 2; Agr2, anterior gradient 2; LPS, lipo-
polysaccharide; DAO, diamine oxidase; TNF-α, tumor necrosis factor; IL-6, interleukin-6; SEM, 
standard error of the mean. 
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Figure 4. Treatment with LCS-SeNPs enhances intestinal barrier function in HFD-fed mice. (A) The
relative mRNA expression levels of ZO-1, occludin, Muc2, and Agr2 in colon tissue; (B) Serum indexes
of intestinal mechanical barrier integrity and inflammatory factors include LPS, DAO, TNF-α, and
IL-6 in HFD-fed mice; (C) The relative mRNA expression levels of TNF-α and IL-6 in liver. Data are
presented as the mean ± SEM (n = 6). The distinct letters above the bar chart indicated significant
differences (p < 0.05). LCS-SeNPs, low molecular weight chitosan selenium nanoparticles; HFD, high-
fat diet; ZO-1, Zonula occludens-1; Muc2, mucin 2; Agr2, anterior gradient 2; LPS, lipopolysaccharide;
DAO, diamine oxidase; TNF-α, tumor necrosis factor; IL-6, interleukin-6; SEM, standard error of
the mean.

3.4. Modulatory Effects of LCS-SeNPs on Intestinal Microbiota Composition in HFD Mice

To further elucidate whether the improvement in body weight and changes in lipid
metabolism-related indicators following the intake of LCS-SeNPs in HFD mice are associ-
ated with the influence on gut microbiota composition, we performed high-throughput
16S rRNA sequencing of colonic contents. The Chao1 and Shannon rarefaction curves illus-
trated that the sequencing results adequately capture the diversity present in the current
sample (Figure S1A,B). The assessment of bacterial community abundance and diversity
involved relative abundance analysis, examination of 6 alpha diversity indices, a Venn
diagram, and Principal coordinate analysis (PCoA) (Figures S1C,D and 5A). Samples from
the HFD group exhibited a greater distance along the horizontal axis compared with the
NCD and LCS-SeNP groups, demonstrating a substantial modification in the structural
arrangement of gut microbiota initiated by the HFD. In addition, the community structure
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histogram showed significant changes in the gut microbiota structure of the HFD+S group
at the phylum and genus levels. Specifically, at the taxonomic rank of the phylum, Firmicutes
and Bacteroidota emerged as two predominant phyla in particular. Moreover, the LCS-SeNP
group showed an increased abundance of Verrucomicrobia compared with the HFD group
(Figure 5B,C). At the taxonomic rank of the genus, we observed significant increases in the
relative abundances of Tannerellaceae_unclassified, Clostridiales_unclassified, and Anaerotrun-
cus in the HFD group. However, the relative abundances of Muribaculaceae_unclassified,
Akkermansia, and Paramuribaculum significantly increased in the HFD+S group, while Desul-
fovibrio, Muribaculum, Acetatifactor, and Proteus showed significant decreases. Additionally,
the low molecular weight chitosan (LCS)-fed mice exhibited significant elevations in the
relative abundances of Tannerellaceae_unclassified and Eisenbergiella compared with the HFD
group (Figure 5D). Subsequently, differential analysis was separately conducted on the top
25 dominant bacterial genera within the HFD+S and HFD+C groups by setting volcano plot
thresholds at fold change > 2 or <0.5 and p < 0.05. We observed significant upregulation of
five bacterial genera (Akkermansia, Paramuribaculum, Bifidobacterium, Erysipelatoclostridium,
and Muribaculaceae_unclassified), and significant downregulation of five bacterial genera
(Lachnoclostridium, Roseburia, Anaerotruncus, Acetatifactor, and Proteus) in the LCS-SeNPs-
treated group compared with the HFD group (Figure s 5E and S2, Table S4). Meanwhile,
Desulfovibrio, Eubacterium_nodatum_group, and Erysipelatoclostridium exhibited higher rela-
tive abundance in the HFD+C group, and Lachnospiraceae_unclassified appeared with lower
abundance (Figure 5F and Table S5). The results indicate that both LCS and LCS-SeNPs
can alter the gut microbiota of obese mice. However, LCS-SeNPs induce more pronounced
changes in the gut microbiota. Subsequently, we investigated the relationship between ten
key bacteria in the LCS-SeNP group and obesity-related parameters and intestinal barrier
parameters by Spearman correlation analysis. The results indicated that Akkermansia, Murib-
aculaceae_unclassified, and Bifidobacterium exhibited a significant negative correlation with
visceral fat weight and a significant positive correlation with mucus barrier indicators Agr2
mRNA, Muc2 mRNA, occludin mRNA, and mucus thickness. Conversely, Anaerotruncus,
Lachnoclostridium, and Proteus showed a positive correlation with visceral fat weight and a
negative correlation with mucus barrier indicators. Collectively, these findings confirmed
our hypothesis that LCS-SeNPs can alleviate obesity and improve intestinal barrier function
by modulating the gut microbiota in HFD mice.
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Figure 5. Effect of LCS−SeNPs on the gut flora in HFD−induced obese mice. (A) Graph of PCoA
scores based on Bray−Curtis; (B) Phylum−level configuration of the gut flora; (C) The top six
bacteria with the highest relative abundance at the phylum level; (D) Genus−level configuration
of the intestinal flora; Volcano plot analysis based on the gut flora at the genus level (E) between
HFD+S and HFD groups and (F) between HFD+C and HFD groups; (G) The association between ten
key bacteria and obesity parameters, as well as intestinal barrier parameters. Data are presented as
the mean ± SEM (n = 5−6). The distinct letters above the bar chart indicated significant differences
(p < 0.05). The * symbol in the square highlights the significant correlation between the two (*: p < 0.05,
**: p < 0.01). LCS−SeNPs, low molecular weight chitosan selenium nanoparticles; HFD, high−fat
diet; PCoA, principal coordinate analysis; HFD+S, high−fat diet with low molecular weight chitosan
selenium nanoparticles; HFD+C, high−fat diet with low molecular weight chitosan; SEM, standard
error of the mean.
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3.5. The Impacts of LCS-SeNPs on Intestinal Metabolomics in HFD Mice

Symbiotic microbial metabolites are considered crucial mediators in host-microbe
interactions, with dietary nutrients exerting a significant influence on their regulation [29].
Therefore, to determine whether the intake of LCS-SeNPs can alter the fecal metabolite
profile in HFD-induced obese mice, we conducted untargeted metabolomics analysis on
the colonic contents of the four groups. The PLSDA results showed the performance
of the model without overfitting and revealed distinct separation of fecal metabolic pro-
files among different groups (Figure 6A–C and Figure S3A,B). A comprehensive analysis
identified 124 differential metabolites in the LCS-SeNPs versus HFD group, comprising
81 up-regulated and 43 down-regulated metabolites (Figure S3C). Then, there is a cumu-
lative sum of 101 differential metabolites screened, with 60 exhibiting up-regulation and
41 displaying down-regulation in the LCS-SeNPs versus LCS group (Figure S3D). An
enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
for differentially expressed metabolites revealed pathways that were significantly enriched,
facilitating the identification of biologically regulated pathways undergoing significant
alterations. The criteria for identifying metabolites are set as VIP value > 1 and p < 0.05.
The KEGG pathway enrichment analysis between the NCD and the HFD groups revealed
significant alterations in 20 specific pathways (Figure 6D). These pathways included glyc-
erophospholipid metabolism, pyrimidine metabolism, primary bile acid biosynthesis, and
several other pivotal pathways. Furthermore, purine metabolism and glycerophospholipid
metabolism represent the top two significantly enriched pathways between the HFD+C
and the HFD group (Figure 6E). The divergent metabolites identified between the HFD and
LCS-SeNP groups demonstrated notable enrichment in KEGG pathways, such as primary
bile acid biosynthesis, glycerophospholipid metabolism, and steroid hormone biosynthe-
sis (Figure 6F). The steroid hormone biosynthesis, tryptophan metabolism, and purine
metabolism were the predominant differential metabolites observed between the LCS and
LCS-SeNP groups (Figure 6G). Notably, primary bile acid metabolism was one of the most
significantly altered pathways in the LCS-SeNP group; this discovery aligned with the
findings of a previous study that involved a high-fat diet [29]. Subsequently, we conducted
an analysis of significantly different metabolites between the HFD+S and HFD groups
(p < 0.05). Subsequently, we identified 17 significantly different metabolites closely related
to obesity metabolism from the pathways enriched in the KEGG database, which are listed
in Table 1. Glycocholic acid, taurine, taurodeoxycholic acid, and tauro-beta-muricholic
acid exhibited marked down-regulation in mice subjected to the LCS-SeNP intervention
within the context of HFD (Table 1), while 7-Alpha-hydroxy-4-cholesten-3-one was signifi-
cantly up-regulated. These metabolites were all involved in primary bile acid biosynthesis
(Table 1). Moreover, as shown in Figure S4, the fold change value bar chart showed that
there were 13 significant metabolites between LCS-SeNPs and LCS. The most enriched
metabolites were found in the purine metabolism pathway (deoxyinosine, deoxyguanosine,
adenosine, xanthine), and the content of deoxyguanosine was the highest among them,
which was consistent with previous research [14]. Followed by tryptophan metabolism
(kynurenic acid, indole, 4-(2-aminophenyl)-2,4-dioxobutanoic acid).

Table 1. Significant metabolites associated with lipid metabolism (LCS-SeNPs vs. HFD).

Metabolites a Up/Down b Fold Change c VIP m/z RT Metabolism Pathway

Retinyl ester ** Down 0.26 2.72 301.22 6.13 Vitamin digestion and
absorption

2-Isopropylmalic acid * Up 2.52 1.07 175.06 2.67 Valine, leucine, and
isoleucine biosynthesis

L-Cysteinesulfinic acid * Down 0.45 1.57 152.00 0.88
Taurine and
hypotaurine
metabolism
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Table 1. Cont.

Metabolites a Up/Down b Fold Change c VIP m/z RT Metabolism Pathway

Cortisone ** Up 2.81 1.75 361.20 4.04 Steroid hormone
biosynthesis

Corticosterone ** Up 2.80 2.20 347.22 3.03 Steroid hormone
biosynthesis

Retinoyl beta-glucuronide ** Up 4.48 1.76 477.25 4.11 Retinol metabolism
Cytidine ** Down 0.34 2.31 244.09 1.32 Pyrimidine metabolism
7-alpha-hydroxy-4-cholesten-3-
one ** Up 2.47 1.60 401.34 4.96 Primary bile acid

biosynthesis

Glycocholic acid * Down 0.30 1.97 464.31 5.92 Primary bile acid
biosynthesis

Taurine ** Down 0.32 2.07 124.01 0.82 Primary bile acid
biosynthesis

Taurodeoxycholic acid ** Down 0.28 2.01 498.29 3.42 -
Tauro-beta-muricholic acid * Down 0.21 2.24 514.28 3.40 -

Glycerophosphocholine ** Down 0.47 1.58 258.11 1.33 Glycerophospholipid
metabolism

LysoPE 14:0 * Up 3.73 1.81 424.24 4.10 Glycerophospholipid
metabolism

LysoPE 15:0 * Up 4.72 2.05 438.26 4.32 Glycerophospholipid
metabolism

TG 43:8; TG (12:2/12:2/19:4) ** Up 4.28 2.31 743.50 7.01 Glycerolipid
metabolism

Oleic acid ** Up 2.02 2.78 327.25 6.78 Fatty acid biosynthesis
a indicated a significant difference between the HFD and LCS-SeNP groups (* p < 0.05, ** p < 0.01). b “Up”
and “Down” indicate the upregulation and downregulation trends in the LCS-SeNP group compared with the
HFD group. c Fold change represented the extent of change in the intensity of metabolites in the LCS-SeNP
group compared with the same metabolites in the HFD group. A fold change > 1 indicated that the metabolite
intensity was higher in the LCS-SeNP group than in the HFD group, while a fold change < 1 signified that the
metabolite intensity was lower in the LCS-SeNP group compared with the HFD group. LCS-SeNPs, low molecular
weight chitosan selenium nanoparticles; HFD, high-fat diet; VIP, variable importance in projection; m/z, Mass to
charge ratio; RT, Retention Time; LysoPE 14:0 and LysoPE 15:0, lysophosphatidylethanolamine; TG 43:8 and TG
(12:2/12:2/19:4), triacylglycerol.
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Figure 6. Untargeted metabolomics unveiled alterations in fecal metabolites within the colon of
mice subjected to an HFD following LCS−SeNP treatment. (A) Analysis of metabolites in NCD,
HFD, HFD+C, and HFD+S groups using PLSDA; PLSDA scores of HFD versus LCS−SeNPs (B) and
LCS versus LCS−SeNPs (C); (D−G) Enrichment analysis of KEGG pathways was performed on the
different metabolites between the two groups. Thresholds were applied for differentially abundant
metabolites of the KEGG bubble plot (fold change > 2 or <0.5, p < 0.05, and VIP value > 1). (n = 5−6).
HFD, high−fat diet; LCS−SeNPs, low molecular weight chitosan selenium nanoparticles; NCD,
normal chow diet; HFD+C, high−fat diet with low molecular weight chitosan; HFD+S, high−fat
diet with low molecular weight chitosan selenium nanoparticles; PLSDA, partial least squares
discriminant analysis; LCS, low molecular weight chitosan; KEGG, Kyoto Encyclopedia of Genes and
Genomes; SEM, standard error of the mean.

3.6. Correlation between Gut Microbiota and Fecal Metabolites Following LCS-SeNP Treatment

To further explore the potential relationships between significantly altered metabo-
lites and changes in the gut microbiota, we conducted Spearman’s correlation analy-
sis between the ten key bacterial genera significantly influenced by LCS-SeNPs and the
metabolites listed in Table 1. As illustrated in Figure 7, Akkermansia exhibited distinct
correlations within the pathways of primary bile acid metabolism, glycerophospholipid
metabolism, and tryptophan metabolism. For instance, it showed a negative correla-
tion with lipid synthesis-related metabolites such as glycolic acid, tauro-β-muricholic
acid, taurodeoxycholic acid, and glycerophosphocholine, while demonstrating a posi-
tive correlation with gut homeostasis-maintaining metabolites such as kynurenic acid,
indole, and 4-(2-aminophenyl)-2,4-dioxobutanoic acid. Akkermansia has been demon-
strated to alleviate metabolic disorders induced by an HFD in mice [30,31]. Moreover,
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given its role in enhancing intestinal barrier function, Akkermansia may exert therapeu-
tic effects in preventing metabolic or inflammatory diseases such as obesity, type 1 dia-
betes, and alcoholic steatohepatitis [32]. Akkermansia has been demonstrated as a next-
generation probiotic with potential therapeutic effects for treating NAFLD [32]. Further-
more, Muribaculaceae_unclassified showed a positive correlation with kynurenic acid, indole,
4-(2-aminophenyl)-2,4-dioxobutanoic acid, and 7-alpha-hydroxy-4-cholesten-3-one. Previ-
ous studies have shown that Muribaculaceae_unclassified was associated with bile acids and
tryptophan metabolites [33]. Muribaculaceae_unclassified also plays a key role in improving
intestinal structure as well as modulating inflammatory responses [34,35]. In our study, we
also found that the genera Bifidobacterium and Lachnoclostridium were noteworthy contribu-
tors between the HFD and LCS-SeNP groups, significantly enriching unique metabolites. A
preceding investigation documented that Bifidobacterium alleviated HFD-induced NAFLD
by modulating the levels of tryptophan metabolites and bile acids [36]. In another in-
vestigation, a substantial positive correlation was observed between Lachnoclostridium
and glycocholic acid, indicating that Lachnoclostridium may regulate lipid metabolism by
affecting bile acid metabolism to alleviate NAFLD [37].
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4. Discussion

In our study (Figure 8), results indicated that the LCS-SeNPs exhibited significant
anti-obesity effects after intervening in HFD mice. Herein, we found that LCS-SeNPs
significantly reduced body weight in HFD-fed mice and significantly decreased blood lipid
levels compared with the HFD group. Additionally, LCS-SeNPs significantly improved
intestinal mucus barrier and tight junction in HFD mice, markedly increasing the mRNA
expression levels of ZO1, occludin, Muc2, and Agr2. The 16S rDNA sequencing analy-
sis showed that LCS-SeNPs significantly increased the abundance of mucus-enhancing
genera Bifidobacterium, Akkermansia, and Muribaculaceae_unclassified while decreasing the
abundance of obesity-contributing genera Anaerotruncus, Lachnoclostridium, and Proteus.
Moreover, metabolomics analysis indicated that LCS-SeNPs significantly upregulated in-
testinal barrier-supporting metabolites kynurenic acid and indole while decreasing levels of
obesity-inducing metabolites, including glycocholic acid and taurodeoxycholic acid. These
results suggested that LCS-SeNPs, as a form of selenium polysaccharide, demonstrate
excellent efficacy in alleviating NAFLD.
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Selenium polysaccharides, as a novel type of functional polysaccharide, not only
facilitate absorption and utilization by the human body but also exhibit unique biologi-
cal activities such as antioxidant, hypoglycemic, and anti-obesity effects [9]. A previous
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study found that Ziyang selenium-enriched green tea polysaccharide significantly increased
the relative abundance of probiotic bacteria Lactobacillus, Akkermansia, and Bacteroides,
thereby alleviating HFD-induced hepatic steatosis, which was consistent with the re-
sults we observed in the LCS-SeNP group where liver tissue degeneration was alleviated
(Figures 1M and 2A) [38]. Furthermore, resveratrol-loaded selenium/chitosan nano-flowers
(Res@SeNPs@Res-CS-NPs) were demonstrated to reduce LPS levels in HFD mice [39]. Ad-
ditionally, Res@SeNPs@Res-CS-NPs inhibited obesity and restored intestinal homeostasis
by lowering the relative levels of gut microbiota associated with inflammation and lipid
deposition [39]. The low molecular weight chitosan selenium nanoparticles (LCS-SeNPs)
we prepared demonstrated excellent anti-obesity effects in obese mice. Our results indi-
cated that compared with the model group, LCS-SeNPs significantly reduced the weights
of epididymal fat, perirenal fat, subcutaneous fat, and liver fat in HFD-fed mice.

Visceral fat accumulation and dyslipidemia are the key characteristics of HFD-induced
NAFLD [40,41]. Lipid synthesis in lipid metabolism is a complex transcriptional cascade.
AMPK (AMP-activated protein kinase) serves as a critical regulator of lipid metabolism [42,43].
Upon activation, AMPK inhibits the expression of lipogenic genes by attenuating the
biological activity of sterol regulatory element-binding protein 1c (SREBP-1c) [42]. This
regulatory mechanism encompasses key enzymes involved in fatty acid synthesis, including
fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1) [42]. Interestingly, both
low molecular weight chitosan and selenium have been demonstrated to activate the lipid
metabolism gene AMPK while simultaneously suppressing the expression of lipogenesis-
related genes, thereby reducing lipid accumulation [44,45]. In our study, HFD-fed mice that
underwent intervention with LCS-SeNPs exhibited a significant reduction in epididymal
fat weight, subcutaneous fat weight, perirenal fat weight, and hepatic lipid accumulation
compared with the HFD group. These observations suggested that LCS-SeNPs might
have exerted anti-obesity effects by modulating the expression of genes associated with
lipid synthesis.

The intestinal barrier, as the largest and most important biological barrier against
the external environment, plays a vital role in resisting gut microbiota, endotoxins, and
various antigens in the intestine [26]. Prolonged consumption of an HFD resulted in
intestinal barrier disruption, which exacerbated increased intestinal permeability, lead-
ing to elevated levels of endotoxins and various inflammatory factors in the blood [46].
Endotoxins and inflammatory cytokines infiltrate the liver via the portal vein, further
triggering or exacerbating NAFLD [47]. A recent study indicated that a platelet membrane
(PM) cloaks Se nanoparticles (SeNPs) delivery system with chitosan (CS) modifies and
miR-148a-3p inhibitors encapsulated exhibited excellent targeted delivery capabilities in
hyperlipidemic mice, significantly reducing levels of inflammatory factors associated with
hyperlipidemia [48]. In our study, we found that intervention with LCS-SeNPs in HFD-fed
mice significantly reduced serum levels of LPS, DAO, TNF-α, and IL-6, which was accom-
panied by marked histopathological improvement in the liver (Figure 2A). Furthermore,
a decrease in the levels of the tight junction proteins ZO-1 and occludin can compromise
the integrity of the intestinal barrier, leading to increased intestinal permeability [49,50].
This allows more harmful substances to pass through the gut, subsequently triggering
NAFLD [51]. Moreover, as an important secreted protein, Muc2 protein plays a key role in
protecting the intestinal barrier and maintaining intestinal homeostasis [52]. Meanwhile,
Agr2 is pivotal in the biosynthesis of the Muc2 protein [53]. Former research demonstrated
that the mRNA expression levels of Muc2 and Agr2 in the colonic tissues of obese mice
induced by an HFD were significantly reduced [54]. In this experiment, we also assessed the
expression of these genes, and the results indicated that, compared with the model group,
HFD-fed mice subjected to the LCS-SeNP intervention exhibited significant upregulation
of ZO-1, occluding, Muc2, and Agr2 genes. These changes were visually evident in the
significantly thicker colonic mucus layer compared with the model group (Figure 3D), and
in the increased mucin production within goblet cells, as observed under TEM (Figure 3F).
Moreover, low molecular weight chitosan (LCS) did not achieve the same improvements
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in intestinal barrier function or reduction in inflammatory factor levels as LCS-SeNPs
(Figures 3D and 4). These findings corroborate the physiological alleviation of NAFLD
symptoms in HFD-fed mice treated with LCS-SeNPs.

The disruptions in intestinal microbial balance are associated with obesity and corre-
lated metabolic disorders in human beings [55]. Previous studies have suggested that both
chitosan and selenium can individually target the intestinal flora to improve HFD-induced
NAFLD [56–58]. However, there is currently no research on chitosan-based selenium com-
posites as a functional food targeting the microbiota to alleviate NAFLD. In our study, we
found that LCS-SeNPs can significantly increase the abundance of Akkermansia, which is a
well-known beneficial bacteria [59,60]. Previous studies suggested that Akkermansia had
remarkable effects on promoting the differentiation of goblet cells and protecting intestinal
barrier function [61,62]. In our study, after the LCS-SeNP intervention, the amount of
mucin secreted by goblet cells significantly increased, and the thickness of the mucus
layer of HFD mice was restored. Moreover, the increase in Bifidobacterium abundance
had beneficial effects on improving human health, particularly in reducing fat accumu-
lation and improving gut dysbiosis in NAFLD induced by an HFD [63]. Here, we found
that the relative abundance of Bifidobacterium was significantly higher in the LCS-SeNP
group compared with the HFD and LCS groups. This suggested that the improvement
of NAFLD symptoms by LCS-SeNPs might have been due to the increased abundance of
Bifidobacterium. Furthermore, earlier investigations had suggested a decline in the preva-
lence of Muribaculaceae_unclassified under HFD treatment [64,65]. Interestingly, our study
confirmed that after LCS-SeNP treatment, there was a restoration in the abundance of
Muribaculaceae_unclassified. We also observed a reduction in the abundance of several
harmful bacteria to varying degrees in the group treated with LCS-SeNPs, such as the
genus Anaerotruncus, Lachnoclostridium, and Proteus. As reported, there exists a direct asso-
ciation between the abundance of these detrimental bacteria and the incidence of obesity in
mice [37,66,67].

Bile acids and their receptors are considered latent therapeutic targets for intervening
in NAFLD [68]. The farnesoid X receptor (FXR) is a nuclear receptor that regulates bile acid
metabolism [68,69]. Tauro-β-muricholic acid (T-β-MCA) acts as an antagonist to FXR and
can disrupt lipid metabolism when excessively produced [68,69]. According to Spearman’s
correlation analysis, our results showed a significant negative correlation between Akker-
mansia and T-β-MCA, suggesting that Akkermansia may alleviate NAFLD by reducing the
fecal metabolite levels of T-β-MCA. In addition, microbes can deconjugate the primary bile
acids and cholic acids from glycine or taurine conjugates via bile salt hydrolases, followed
by related secondary bile acids that protect the intestinal epithelial barrier and inhibit
obesity by increasing intestinal mucus [70–73]. Significant increases in glycocholic acid and
taurodeoxycholic acid were observed under HFD treatment, indicating a strong association
between these two conjugated bile acids and obesity [74,75]. Previous research indicated
that Bifidobacterium contained various types of bile salt hydrolases, which endow it with a
pivotal role in modulating the signaling pathways of bile acids and influencing lipid ab-
sorption [76]. Interestingly, our study results demonstrated that both glycocholic acid and
taurodeoxycholic acid are negatively correlated with Bifidobacterium in the LCS-SeNP group,
suggesting that LCS-SeNPs may regulate bile acid metabolism by increasing the abundance
of Bifidobacterium. Additionally, Muribaculaceae_unclassified showed a significant positive
correlation with gut homeostasis-maintaining metabolites such as kynurenic acid, indole,
and 4-(2-aminophenyl)-2,4-dioxobutanoic acid. These results implied that LCS-SeNPs
may potentially exert an inducing prebiotic effect in HFD mice. Glycerophospholipid
metabolism exerts a fundamental influence in maintaining liver health and intestinal envi-
ronmental homeostasis [77]. Lysophosphatidylethanolamines (LysoPE) serve as significant
metabolites in glycerophospholipid metabolism, and LysoPE demonstrates the potential to
alleviate disruptions in lipid and glucose metabolism in obese mice, and its lower content
has been observed in individuals with NAFLD [78,79]. According to Spearman’s corre-
lation analysis, harmful bacteria Anaerotruncus, Lachnoclostridium, and Proteus exhibited
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an obvious negative correlation with the metabolite LysoPE. This observation suggested
that LCS-SeNPs may alleviate NAFLD by restoring glycerophospholipid metabolism levels
through reducing the abundance of harmful bacteria.

5. Conclusions

In conclusion, LCS-SeNPs significantly restore intestinal barrier damage induced
by HFD and alleviate NAFLD. In contrast, LCS exhibits only partial efficacy in this re-
gard. The therapeutic effects of LCS-SeNPs are attributable to its modulation of diverse
metabolic pathways, which encompasses glycerophospholipid metabolism, primary bile
acid metabolism, and tryptophan metabolism. This intervention significantly enhances the
abundance of potentially advantageous bacteria within the intestinal tract, conducing to
the restoration of gut homeostasis. It is noteworthy that the difference in the induced bene-
ficial bacterial spectrum may be the reason why LCS-SeNPs have a stronger anti-obesity
ability compared with LCS. Among these, Akkermansia, Bifidobacterium, and Muribacu-
laceae_unclassified may play crucial roles in ameliorating HFD-induced NAFLD. These
bacteria may contribute to the production of conjugated bile acids and tryptophan deriva-
tives. Overall, this study elucidates the complex mechanistic links between LCS-SeNPs
and the composition and metabolism of gut microbiota, providing novel insights into the
therapeutic management of NAFLD.
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