Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Trabecular Bone Specimens and Micro-CT Image-Based Reconstruction
2.2. Calculation of Bone Surface Curvatures
2.3. Characteristics of Trabecular Microarchitecture
2.4. Determination of the Mechanical Properties of Trabecular Bone Using the Micro-FE Method
2.5. Development of DL Model
2.5.1. Characterization of Bone Surface Curvature Distributions Using a 2D Projection Image-Based Approach
2.5.2. Convolutional Neural Network (CNN) Modeling
2.6. Data Analysis
3. Results
3.1. Correlation between Bone Aurface Curvature Distributions and Histmorphometric Parameters of Trabecular Bone
3.2. Correlation between Bone Surface Curvature Distributions and Geometric Parameters of Trabecular Bone
3.3. Correlation between Bone Surface Curvature Distributions and Apparent Stiffness Tensor of Trabecular Bone
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Seeman, E.; Delmas, P.D. Mechanisms of disease—Bone quality—The material and structural basis of bone strength and fragility. N. Engl. J. Med. 2006, 354, 2250–2261. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.; Glüer, C.; Binkley, N.; McCloskey, E.; Brandi, M.-L.; Cooper, C.; Kendler, D.; Lamy, O.; Laslop, A.; Camargos, B.; et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015, 78, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Pothuaud, L.; Carceller, P.; Hans, D. Correlations between grey level variations on 2D DXA-images (TBS) and 3D microarchitecture in human cadaver bone samples. Bone 2007, 40, S248. [Google Scholar]
- Ohs, N.; Collins, C.J.; Atkins, P.R. Validation of HR-pQCT against micro-CT for morphometric and biomechanical analyses: A review. Bone Rep. 2020, 13, 100711. [Google Scholar] [CrossRef]
- Steiner, L.; Synek, A.; Pahr, D.H. Comparison of different microCT-based morphology assessment tools using human trabecular bone. Bone Rep. 2020, 12, 100261. [Google Scholar] [CrossRef] [PubMed]
- Odgaard, A. Three-dimensional methods for quantification of cancellous bone architecture. Bone 1997, 20, 315–328. [Google Scholar] [CrossRef]
- Haque, E.; Xiao, P.; Ye, K.; Wang, X. Probability-based approach for characterization of microarchitecture and its effect on elastic properties of trabecular bone. J. Mech. Behav. Biomed. Mater. 2022, 131, 105254. [Google Scholar] [CrossRef]
- Liu, X.S.; Cohen, A.; Shane, E.; Stein, E.; Rogers, H.; Kokolus, S.L.; Yin, P.T.; McMahon, D.J.; Lappe, J.M.; Recker, R.R.; et al. Individual trabeculae segmentation (ITS)–based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J. Bone Miner. Res. 2010, 25, 1496–1505. [Google Scholar] [CrossRef]
- Callens, S.J.; Betts, D.C.T.N.; Müller, R.; Zadpoor, A.A. The local and global geometry of trabecular bone. Acta Biomater. 2021, 130, 343–361. [Google Scholar] [CrossRef]
- Jinnai, H.; Watashiba, H.; Kajihara, T.; Nishikawa, Y.; Takahashi, M.; Ito, M. Surface curvatures of trabecular bone microarchitecture. Bone 2002, 30, 191–194. [Google Scholar] [CrossRef]
- Xiao, P.; Zhang, T.; Dong, X.N.; Han, Y.; Huang, Y.; Wang, X. Prediction of trabecular bone architectural features by deep learning models using simulated DXA images. Bone Rep. 2020, 13, 100295. [Google Scholar] [CrossRef]
- Xiao, P.W.; Zhang, T.; Haque, E.; Wahlen, T.; Dong, X.N.; Huang, Y.; Wang, X. Prediction of Elastic Behavior of Human Trabecular Bone Using A DXA Image-Based Deep Learning Model. JOM 2021, 73, 2366–2376. [Google Scholar] [CrossRef]
- Xiao, P.; Haque, E.; Zhang, T.; Dong, X.N.; Huang, Y.; Wang, X. Can DXA image-based deep learning model predict the anisotropic elastic behavior of trabecular bone? J. Mech. Behav. Biomed. Mater. 2021, 124, 104834. [Google Scholar] [CrossRef] [PubMed]
- Rusinkiewicz, S. Estimating curvatures and their derivatives on triangle meshes. In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2004, Thessaloniki, Greece, 9 September 2004; IEEE: Piscataway, NJ, USA, 2004. [Google Scholar]
- Kirby, M.; Morshed, A.H.; Gomez, J.; Xiao, P.; Hu, Y.; Guo, X.E.; Wang, X. Three-dimensional rendering of trabecular bone microarchitecture using a probabilistic approach. Biomech. Model. Mechanobiol. 2020, 19, 1263–1281. [Google Scholar] [CrossRef] [PubMed]
- Cowin, S.C.; Mehrabadi, M.M. Identification of the Elastic Symmetry of Bone and Other Materials. J. Biomech. 1989, 22, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Kabel, J.; van Rietbergen, B.; Odgaard, A.; Huiskes, R.; Cowin, S.C. The anisotropic Hooke’s law for cancellous bone and wood. J. Elast. 1998, 53, 125–146. [Google Scholar] [CrossRef]
- Goldstein, S.A. The Mechanical-Properties of Trabecular Bone—Dependence on Anatomic Location and Function. J. Biomech. 1987, 20, 1055–1061. [Google Scholar] [CrossRef]
- Walker, A.M.; Wookey, J. MSAT-A new toolkit for the analysis of elastic and seismic anisotropy. Comput. Geosci. 2012, 49, 81–90. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, B.; Parkinson, I.; Thomas, C.D.L.; Clement, J.G.; Fazzalari, N.; Guo, X.E. Trabecular plate loss and deteriorating elastic modulus of femoral trabecular bone in intertrochanteric hip fractures. Bone Res. 2013, 1, 346–354. [Google Scholar] [CrossRef]
- Mittra, E.; Rubin, C.; Gruber, B.; Qin, Y.-X. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, μCT, and DXA. J. Biomech. 2008, 41, 368–375. [Google Scholar] [CrossRef]
- Xi, J.; Hu, X.; Jin, Y. Shape Analysis and Parameterized Modeling of Hip Joint. J. Comput. Inf. Sci. Eng. 2003, 3, 260–265. [Google Scholar] [CrossRef]
- da F. Costa, L.; dos Reis, S.F.; Arantes, R.A.T.; Alves, A.C.R.; Mutinari, G. Biological shape analysis by digital curvature. Pattern Recognit. 2004, 37, 515–524. [Google Scholar] [CrossRef]
- Rohr, K. Extraction of 3D anatomical point landmarks based on invariance principles. Pattern Recognit. 1999, 32, 3–15. [Google Scholar] [CrossRef]
- Subburaj, K.; Ravi, B.; Agarwal, M. Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images. Comput. Med. Imaging Graph. 2009, 33, 359–368. [Google Scholar] [CrossRef]
- Blanquer, S.B.G.; Werner, M.; Hannula, M.; Sharifi, S.; Lajoinie, G.P.R.; Eglin, D.; Hyttinen, J.; Poot, A.A.; Grijpma, D.W. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds. Biofabrication 2017, 9, 025001. [Google Scholar] [CrossRef]
- Guo, Y.; Sharma, S.; Kumar, S. Inverse Designing Surface Curvatures by Deep Learning. Adv. Intell. Syst. 2024, 6, 2300789. [Google Scholar] [CrossRef]
- Murray, A.A.; MacKinnon, M.; Carswell, T.M.R.; Giles, J.W. Anterior diaphyseal curvature of the femur and tibia has biomechanical consequences during unloaded uphill locomotion. Front. Ecol. Evol. 2023, 11, 1220567. [Google Scholar] [CrossRef]
Models | Input | Kernel Size | Pool Size | Convolutional Layers | # of Hidden Layers | Learning Rates | No. of Epochs | No. of Filters | Drop-Out | Output |
---|---|---|---|---|---|---|---|---|---|---|
#1 | Bone surface curvature distributions | 3 × 3 | 2 × 2 | (8, 16, 32) | 3 | 0.0001 | 200 | 128 × 64 × 6 | 0.3 | Histomorphometric parameters |
#2 | 5 × 5 | 2 × 2 | (16, 16, 64) | 3 | 0.0001 | 300 | 128 × 64 × 8 | 0.4 | Geometric parameters | |
#3 | 3 × 3 | 2 × 2 | (16, 32, 64) | 3 | 0.0001 | 250 | 128 × 64 × 9 | 0.5 | Stiffness tensor |
Inputs for DL Model | Prediction Accuracy (R2) | |||||
---|---|---|---|---|---|---|
BS | BV/TV | Tb.Th | SMI | Conn.D | DA | |
K1 | 0.94 | 0.92 | 0.86 | 0.77 | 0.42 | 0.11 |
K2 | 0.91 | 0.91 | 0.85 | 0.76 | 0.44 | 0.11 |
G | 0.84 | 0.92 | 0.91 | 0.77 | 0.37 | 0.08 |
H | 0.94 | 0.91 | 0.88 | 0.76 | 0.47 | 0.06 |
K1, K2, G, H | 0.96 | 0.94 | 0.90 | 0.79 | 0.57 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Schilling, C.; Wang, X. Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions. J. Funct. Biomater. 2024, 15, 239. https://doi.org/10.3390/jfb15080239
Xiao P, Schilling C, Wang X. Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions. Journal of Functional Biomaterials. 2024; 15(8):239. https://doi.org/10.3390/jfb15080239
Chicago/Turabian StyleXiao, Pengwei, Caroline Schilling, and Xiaodu Wang. 2024. "Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions" Journal of Functional Biomaterials 15, no. 8: 239. https://doi.org/10.3390/jfb15080239
APA StyleXiao, P., Schilling, C., & Wang, X. (2024). Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions. Journal of Functional Biomaterials, 15(8), 239. https://doi.org/10.3390/jfb15080239