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Abstract: Understanding bone surface curvatures is crucial for the advancement of bone material
design, as these curvatures play a significant role in the mechanical behavior and functionality of
bone structures. Previous studies have demonstrated that bone surface curvature distributions could
be used to characterize bone geometry and have been proposed as key parameters for biomimetic
microstructure design and optimization. However, understanding of how bone surface curvature dis-
tributions correlate with bone microstructure and mechanical properties remains limited. This study
hypothesized that bone surface curvature distributions could be used to predict the microstructure
as well as mechanical properties of trabecular bone. To test the hypothesis, a convolutional neural
network (CNN) model was trained and validated to predict the histomorphometric parameters
(e.g., BV/TV, BS, Tb.Th, DA, Conn.D, and SMI), geometric parameters (e.g., plate area PA, plate
thickness PT, rod length RL, rod diameter RD, plate-to-plate nearest neighbor distance NNDpp,
rod-to-rod nearest neighbor distance NNDgg, plate number PN, and rod number RN), as well as
the apparent stiffness tensor of trabecular bone using various bone surface curvature distributions,
including maximum principal curvature distribution, minimum principal curvature distribution,
Gaussian curvature distribution, and mean curvature distribution. The results showed that the
surface curvature distribution-based deep learning model achieved high fidelity in predicting the
major histomorphometric parameters and geometric parameters as well as the stiffness tenor of
trabecular bone, thus supporting the hypothesis of this study. The findings of this study underscore
the importance of incorporating bone surface curvature analysis in the design of synthetic bone
materials and implants.

Keywords: surface curvature; trabecular bone; histomorphometric parameters; stiffness tensor;
geometric parameter; deep learning; convolution neural network

1. Introduction

Trabecular bone, characterized by a sponge-like structure, comprises a network of
plates and rods at the microstructural level [1]. The microstructure of trabecular bone is
essentially important for determining bone’s resistance to fractures [2]. Currently, the major
method for clinical assessment of bone microstructure is mainly based on dual-energy
X-ray absorptiometry (DXA)-based trabecular bone score (TBS) [3,4], an indirect method
based on bone mineral density known for its limited accuracy. Recent advancements in
micro-CT technology have led to the development of micro-CT image-based reconstruction
methods for evaluating trabecular bone microstructure [5,6]. This method encompasses
a full set of histomorphometric parameters, including degree of anisotropy (DA), bone
volume fraction (BV/TV), connectivity density (Conn.D), bone surface area (BS), structure
model index (SMI), and trabecular thickness (Tb.Th), offering an overall evaluation of bone
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microstructure [7]. However, the histomorphometric parameters are scalar and averaged
measures of trabecular microarchitecture at global levels, thus could not fully capture the
variance of microarchitectural properties and their influence on mechanical properties
of trabecular bone [8]. In addition, Columbia University has developed an Individual
Trabeculae Segmentation ITS technique to characterize the geometric parameters of tra-
becular bone, allowing for the segmentation of trabecular bone into individual plates and
rods [9]. Consequently, the description of bone microstructure could encompass param-
eters related to size (plate area PA, plate thickness PT, rod length RL, rod diameter RD),
spatial arrangement (plate-to-plate nearest neighbor distance NNDpp, rod-to-rod nearest
neighbor distance NNDgg), trabeculae number (plate number PN, rod number RN), and
orientation, thus providing more microarchitectural features of bone microstructure that
contribute to the mechanical competence of trabecular bone. However, these geometric
parameters only provide detailed information about individual trabeculae but interpreting
these parameters in the context of bone mechanical competence can be challenging. Conse-
quently, the fundamental microarchitectural characteristics of trabecular bone remain to be
fully explored.

Recently, a novel methodology utilizing surface curvatures has been proposed for
the comprehensive characterization of cancellous microstructure [10]. Various surface
curvatures, such as maximum principal curvature, minimum principal curvature, Gaussian
curvature, and mean curvature, offer a direct means of assessing the local geometry of
bone in terms of convexity and concavity. Moreover, research has demonstrated a strong
correlation between surface curvatures, SMI, and Euler number (which can be used to
quantify the connectivity of trabecular bone) [11], underscoring the significance of bone
surface curvatures as a pivotal metric for delineating both local and global bone geometry
and effectively capturing diverse spatial structural aspects. Given the intimate relationship
between bone structure and its mechanical properties, the implications of surface curva-
tures on bone mechanical behavior are noteworthy. Hence, understanding bone surface
curvatures is crucial for bone material design as well as prediction of the mechanical behav-
ior and functionality of bone structures. Nevertheless, to the best of our knowledge, few
studies have been conducted to investigate how the surface curvatures are quantitatively
related to the bone microarchitecture as well as its mechanical properties.

In order to characterize the surface geometry of trabecular bone, it is essential to
quantify bone surface curvature distributions [11]. This leads to the technical question
of how to describe the surface curvature distributions by utilizing specific parameters
and establishing the relationships between bone surface curvature distributions and bone
microstructure. Our previous studies [12-14] have shown that a 2D projection image can
be used to describe its 3D bone microstructure and mechanical properties by using a deep
learning (DL) approach. Inspired by the aforementioned applications, we proposed to
describe the curvature spatial distributions through a 2D projection image-based approach
and employ a DL model to establish relationships between surface curvature distributions
and bone microstructure as well as its mechanical properties.

In this study, we hypothesized that there exists a strong correlation between bone
surface curvature distributions and the microstructure as well as mechanical properties of
trabecular bone, and hence bone surface curvature distributions could be used as a holistic
indicator for prediction of both bone microstructure and mechanical behavior. To test the
hypothesis, the spatially distributed surface curvatures across the surface of trabecular
bone were projected onto a two-dimensional plane, and then a deep learning model was
developed to predict the histomorphometric parameters, geometric parameters, as well as
mechanical properties of trabecular bone using the above two-dimensional projections of
bone surface curvature distributions.
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2. Materials and Methods
2.1. Preparation of Trabecular Bone Specimens and Micro-CT Image-Based Reconstruction

A total of six cadaveric proximal femurs were collected from six different donors (three
males and three females, with a mean age of 48.5 &= 24 years) with Institutional Biosafety
Committee (IBC) approval (IBC#B94-01-21). All proximal femurs were scanned using a
micro-CT system (Sky-Scan 1173, Bruker, Billerica, MA, USA) with a resolution of 35 um,
which was able to capture the trabecular microstructure. Then, a total of eight hundred
and sixty-eight trabecular cubes, each with the dimensions of 6 mm X 6 mm x 6 mm, were
dissected out from the micro-CT images of the six proximal femurs to serve as representative
volume elements (RVEs). It should be noted that trabecular cubes with low BV/TV and/or
minimal trabeculae, as well as those containing cortical bone, were excluded from this
study. Finally, all trabecular cubes were constructed digitally using STL format.

2.2. Calculation of Bone Surface Curvatures

Surface curvatures of trabecular bone were computed utilizing the STL format of
the reconstruction of trabecular bone. A previous study demonstrated that bone surface
curvatures, including the principal curvatures, mean curvatures, and Gaussian curvatures,
could distinguish bone microstructure across different locations, suggesting their poten-
tial for predicting bone failure [10]. Therefore, the maximum and minimum principal
curvatures, as well as the mean and Gaussian curvatures (Figure 1), were employed to
define the surface curvature of the trabecular bone in this study, as these surface curvatures
could capture the most fundamental shape details [10]. Specifically, the maximum and
minimum principal curvatures (Kj, Ky) of the trabecular bone surface were computed on
the triangle meshes of the trabecular bone surface using a finite-differences approach [15].
Subsequently, Gaussian curvature K and mean curvature H were defined as follows:

Proximal femur

Trabecular bone

K =KiK, )
H=(K; +Kp)/2 @)
e: Norm.al VECtO"_ i K;:Maximum Principal curvature:
el: Maximum principal curvature K,: Minimum principal curvature
direction H: Mean Curvature: H =(K,+K)/2

e2: Minimum principal curvature
direction

K: Gaussian Curvature: K=K ,K,

Maximum principal
curvature plane

Minimum principal
curvature plane

Figure 1. The schematic represents trabecular bone surface curvature using maximum principal
curvature (Kj), minimum principal curvature (K;), mean curvature (H), and Gaussian curvature (K).

The above four types of surface curvatures were computed for each vertex of the
triangle meshes in each trabecular cube using MATLAB R2023a (The MathWorks, Inc.,
Natick, MA, USA).
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2.3. Characteristics of Trabecular Microarchitecture

To describe the microarchitecture of trabecular bone globally, six histomorphometric
parameters were measured from the micro-CT images of the trabecular bone cubes using
Image]J (1.52 h) and Bone] (https://bonej.org/). These six histomorphometric parameters
included bone volume fraction (BV/TV), bone surface area (BS), trabecular thickness
(Tb.Th), structure model index (SMI), the degree of anisotropy (DA), and connectivity
density (Conn.D). Using these six histomorphmetric parameters, trabecular bone mass,
trabecular size, number, structure types (either plate-like or rod-like), and trabecular
orientation can be defined accurately.

Moreover, the geometric parameters of trabecular bone cubes were also assessed uti-
lizing a novel individual trabecula segmentation (ITS) technique [9]. With recent advance-
ments in biomedical image processing technologies, the microarchitecture of trabecular
bone can be segmented into individual trabecular plates and rods, allowing describing
the microarchitecture of trabecular bone using trabecular number (plate number PN, rod
number RN), trabecular size (mean plate thickness PT, mean plate area PA, mean rod
diameter RD, mean rod length RL), trabecular arrangement (mean plate-to-plate nearest
neighbor distance NNDpp, mean rod-to-rod nearest neighbor distance NNDRgg), and tra-
becular orientation [8,16]. Using the above parameters, the geometry of trabecular bone
could be precisely defined.

2.4. Determination of the Mechanical Properties of Trabecular Bone Using the Micro-FE Method

The anisotropic mechanical behavior of trabecular cubes can be described in terms of
the apparent stiffness tensor. The stiffness tensor of trabecular cubes, which is a fourth-rank
tensor and is considered elastically orthotropic with three mutually perpendicular planes
of symmetry [17,18], can be simplified as

G Cp Cp3 0 00
_ |G G Css 0 00
C= 0 0 0 Cy O 0 @)
0 0 0 0 Css5 O
00 0 0 0 Ce

where Cqp = Cp1, C13 = C31, and Cp3 = Csp. In this study, trabecular cubes with the dimension
of 6 mm x 6 mm x 6 mm dissected out from the various anatomic regions of the femurs,
such as the femur head, neck, and greater trochanter regions, were used as RVEs, and
the stiffness tensor of trabecular cubes was assessed using micro-CT-based finite element
(FE) simulations. The FE analysis was conducted using Abaqus 2021/Standard software
package. Specifically, a direct voxel conversion method was employed to transform each
voxel of the digitized trabecular cubes into first-order tetrahedral elements (C3D4), gen-
erating approximately 0.5 to 2.5 million tetrahedral elements for each trabecular cube.
Trabecular bone was assumed to be homogeneous, linearly elastic, and isotropic material,
with a Young’s modulus of 15 GPa and a Poisson’s ratio of 0.3 [19]. Then, six uniform
boundary conditions, including three uniaxial compression tests along the three orthogonal
coordinate axes and three pure shear tests in the three orthogonal planes, were applied
to the FE model sequentially to assess the stiffness matrix. Finally, the stiffness tensor
was obtained by rotating the fabric coordinate axes of the stiffness matrix to its principal
axes [20] using the MSAT (a toolkit for the analysis of elastic and seismic anisotropy) in a
MATLAB environment.

2.5. Development of DL Model

2.5.1. Characterization of Bone Surface Curvature Distributions Using a 2D Projection
Image-Based Approach

In this study, the spatial distributions of bone surface curvatures on each vertex of the
triangle mesh of trabecular bone were characterized by projecting the surface curvatures
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Spatially distributed
curvature in the
trabecular bone cube

onto a 2D plane (Figure 2). Our previous studies have shown that the 2D projection
of properties effectively captures their 3D spatial distribution and could be effectively
learned by the DL model. Thus, we projected the bone surface curvatures, including
maximum principal curvature, minimum principal curvature, Gaussian curvature, and
mean curvature, onto four different 2D planes for each trabecular cube using custom
MATLARB scripts (MathWorks, Natick, MA, USA). Briefly, the 2D plane was meshed at the
resolution of 172 pixels (bins) x 172 pixels (bins), matching the resolution of the micro-
CT images for each trabecular cube. Next, the trabecular cubes were meshed along the
projection direction with a thickness of one voxel, generating n = 172 planer layers. Then,
the curvature values at each vertex in each planer layer of the trabecular cubes were
projected to the 2D plane. The curvature values at each bin were obtained by summing all
the curvature values falling onto the bin using the following equation:

K(ey) = ¢ L kow2) @

where, K is the curvature value of the bin at the location (x, ¥) on the 2D projection
plane; k is the summation of the curvature values at the location (x, y, z) in the trabecular
cube; n is the number of plane layers of the trabecular cube in the projection direction
(n =172). Finally, the 2D projection plane was converted into a 2D image. In this study,
the 2D projection images of maximum principal curvature, minimum principal curvature,
Gaussian curvature, and mean curvature were used as input to train the DL model.

Input Image
(K1, K5, G, H)

|

%1 Histomorphometric | |

| parameters/ 1

Geometric 1

B I ; | parameters/ 1
L1 ! i O = ~ 0/ N\ Stiffness tensor |

~ MaxPooling MaxPooling MaxPooling - W@ @ 1
Convolution Convolution Convolution Flatten layer Hidden netwrok Output |

Figure 2. The schematic framework DL model based on 2D projections of trabecular surface cur-
vatures (maximum principal curvature (Kj), minimum principal curvature (K;), mean curvature
(H), and Gaussian curvature (K)). (A). Projection of trabecular surface curvatures onto a 2D plane.
(B). The architecture of the CNN model with the 2D projection images of curvatures as input and the
histomorphometric parameters/geometric parameters/stiffness tensor as output.th.

2.5.2. Convolutional Neural Network (CNN) Modeling

In order to explore the correlations between bone surface curvature distributions
and the microstructure and mechanical properties of trabecular bone, one CNN model
was developed and trained in this study to predict the histomorphometric parameters,
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geometric parameters, as well as mechanical properties of trabecular bone based on the
2D projection images of bone surface curvatures. The architecture of the proposed CNN
model is illustrated in Figure 2, consisting of multiple convolutional layers, max-pooling
layers, and a fully connected neural network followed by the outputs. During the training
process, the 2D projection images of bone surface curvatures were used as input, while the
histomorphometric parameters, geometric parameters, and the apparent stiffness tensor
were used as output, respectively. The mean square error (MSE) was utilized as a loss
function throughout the training process. Furthermore, hyperparameter optimization was
conducted to meticulously refine the architecture of the CNN model to achieve optimal
performance across the training process. The parameters assessed in the CNN architecture
comprised the number of hidden layers, the number of filters, the number of convolutional
layers, kernel size, the optimizer functions, the learning rates, the number of epochs, and
the dropout rate. Finally, the details of the optimized architecture of the CNN model were
shown in Table 1.

Table 1. Optimized architecture of CNN model in prediction of histomorphometric parameters,
geometric parameters, and stiffness tensor using bone surface curvature distributions.

Kernel Pool Convolutional # of Hidden Learning No. of No. of
Models Input Size Size Layers Layers Rates Epochs Filters Drop-Out Output
# 3x3  2x2 ®,16,32) 3 0.0001 200 128 % 03 Histomorphometric
64 X 6 parameters
Bone surface 128 x Geometric
#2 curvature 5x5 2x2 (16, 16, 64) 3 0.0001 300 0.4
PR 64 x 8 parameters
distributions
#3 3x3 2x2 (16, 32, 64) 3 0.0001 250 61§8Xx9 0.5 Stiffness tensor

In addition, in order to minimize the effect of different scales on the results, all output
parameters were normalized by using rescaling (min-max normalization) before training
the CNN model using the following formula:

,  x—min (x)

e max(x) — min (x)

©)

where x is the original value, x’ is the normalized value.

In this study, 80% of the datasets were randomly selected as training datasets, while
the remaining 20% were used as testing datasets. The CNN model was programmed in
Python using the Keras library with a TensorFlow backend and was trained on a Dell
desktop computer (XPS 8930, Intel Core i9-9900k 8-Core Processor, 64 GB Memory, NVIDIA
R GeForce® GTX 1080 with 8 GB GDDR5X Graphic Memory, Dell, Round Rock, TX, USA).

2.6. Data Analysis

The correlations between the distributions of bone surface curvature and the histo-
morphometric parameters, geometric parameters, as well as the mechanical properties of
trabecular bone were evaluated by quantifying the prediction accuracy of the DL model in
predicting those parameters. By performing the linear regression analyses, the prediction
accuracy of the DL model was assessed using the Pearson correlation coefficient (R?), with
significance determined at p < 0.05. All the statistical analyses were performed using IBM
SPSS software (version 29, IBM, Chicago, IL, USA).

3. Results
3.1. Correlation between Bone Aurface Curvature Distributions and Histmorphometric Parameters
of Trabecular Bone

The linear regression analyses were performed to assess the prediction accuracy of
the surface curvature-based DL model in predicting the histomorphometric parameters
(Figure 3). The results showed that the histomorphometric parameters predicted by the
surface curvature-based DL model were consistent with those measured directly from
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micro-CT images. The Pearson correlation coefficients (RZ) were 0.96, 0.94, 0.90, 0.79,
0.57, and 0.11 for bone surface (BS), bone volume fraction (BV/TV), trabecular thickness
(Tb.Th), structural model index (SMI), connectivity density (Conn.D), and the degree of
anisotropy (DA), respectively, with all the p-values < 0.0001. Employing R? as an indicator
of predictive accuracy of the surface curvature-based DL model, the results suggest that
bone surface curvature distributions were significantly correlated with BS, BV/TV, Tb.Th,
SMI, and Conn.D, with the exception of DA. Moreover, bone surface curvature distributions
exhibited the highest Pearson correlation coefficient with BS among the histomorphometric
parameters, whereas a weak correlation was observed between bone surface curvature
distributions and DA.
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Figure 3. Regression plots of the microstructural parameters predicted by the curvature-based DL
model vs. measured by micro-CT images.

3.2. Correlation between Bone Surface Curvature Distributions and Geometric Parameters of
Trabecular Bone

The linear regression analyses were also used to assess the prediction accuracy of
the geometric parameters, including trabecular size, spatial arrangement, and trabecular
number (Figure 4). The results indicated the surface curvature-based DL model exhibited
reasonably high accuracy in predicting plate area (PA), plate thickness (PT), and rod
length (RL), with Pearson correlation coefficients R? of 0.80, 0.63, and 0.79, respectively.
However, the model demonstrated lower prediction accuracy for rod diameter (RD), plate-
to-plate nearest neighbor distance (NNDpp), and rod-to-rod nearest neighbor distance
(NNDgg), with R? values of 0.36, 0.36, and 0.10, respectively. These findings indicated
strong correlations between bone surface curvature distributions and PA, PT, and RL but
weak correlations with RD, NNDpp, and NNDggr. Additionally, the Pearson correlation
coefficients R? were 0.83 for plate number PN and 0.34 for rod number RN, suggesting a
strong correlation between bone surface curvature distributions and plate number but a
weak correlation with rod number.

3.3. Correlation between Bone Surface Curvature Distributions and Apparent Stiffness Tensor of
Trabecular Bone

The prediction accuracy of the bone surface curvature-based DL model in predicting
the constant components of the apparent stiffness tensor was assessed by comparing the
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DL-predicted stiffness tensor with the ground-true values measured using FE simulations.
The Pearson correlation coefficients (RZ) were 0.89, 0.89, 0.88, 0.90, 0.90, 0.90, 0.87, 0.87, and
0.86 for the apparent stiffness tensor constants C11, Cap, Ca3, Ca4, Cs5, Cgs, C12, C13, and Cps,
respectively, with all the p-values < 0.001 (Figure 5), suggesting high correlations between
bone surface curvature distributions and the apparent stiffness tenor of trabecular cube.
These findings imply that bone surface curvature distributions could be used to predict the
anisotropic mechanical behavior of trabecular bone with high accuracy.
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Figure 4. Regression plots of the geometric parameters predicted by the curvature-based DL model
vs. measured by micro-CT images.
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4. Discussion

This study investigated the correlations between bone surface curvature distributions
and trabecular microstructure as well as mechanical properties using a DL approach. A
surface curvature-based CNN model was developed and trained to predict the histomor-
phometric parameters, geometric parameters, and the apparent stiffness tensor of trabecular
bone. The results demonstrated that bone surface curvature distributions were not only
highly correlated with the major histomorphometric parameters and geometric parameters,
but also with the apparent stiffness tensor of trabecular bone. These findings supported the
hypothesis that bone surface curvature distributions can serve as a holistic parameter for
predicting bone microstructure and mechanical behavior with reasonably high accuracy,
underscoring the significance of incorporating bone surface curvature analysis in the design
of synthetic bone materials and implants.

Previous studies have indicated that bone surface curvatures primarily capture the
local geometry of trabecular bone [11]. However, our study reveals that bone surface curva-
ture distributions could be used to effectively predict the histomorphometric parameters of
trabecular bone using the DL model, suggesting that bone surface curvature distributions
can be used to evaluate the overall changes of bone microstructure. The results in this
study demonstrated bone surface curvature distributions exhibited the strongest correlation
coefficients with bone BS (R? = 0.96) and Tb.Th (R? = 0.90) among the histomorphometric
parameters. Previous studies have shown that BS is a function of the integration of bone
surface curvature [11]. Given the strong correlation between bone surface curvatures and
BS as well as Tb.Th, it is reasonable to infer a similarly strong correlation with bone volume
fraction (BV/TV) (R? = 0.94). Indeed, by plotting the distributions of bone curvature of
trabecular cubes with different BV/TV values (Figure 6), BV/TV can be clearly identified by
the distributions of bone surface curvatures. In addition, serval studies have demonstrated
the correlation between bone surface curvatures and SMI [11]. This study is the first attempt
to predict SMI using bone surface curvature distributions with high accuracy (R? = 0.79).
Furthermore, this study also finds a reasonable correlation between bone surface curvature
distributions and Conn.D. but a low correlation between bone surface curvatures and DA.
Nonetheless, this study demonstrated bone surface curvature distributions could accu-
rately predict the major histomorphometric parameters of trabecular bone with reasonable
accuracy, suggesting the significance of bone surface curvature distributions in assessing
the overall microstructural changes of trabecular bone.

This study also investigated the correlations between bone surface curvature distri-
butions and the geometric parameters measured using individual trabecula segmentation
(ITS) analysis, such as trabecular size, spatial arrangement, and trabecular number. These
parameters describe the local microstructural features of trabecular bone as well as its
mechanical properties [8]. High correlations were found between bone surface curvature
distributions and parameters such as PA, PT, and RL, with R? values of 0.80, 0.63, and
0.70, respectively, suggesting that bone surface curvature distributions are sensitive to
the changes in trabecular plate area, plate thickness, and rod length. However, a low
correlation was observed between bone surface curvature distributions and rod diameter
(RD) (R? = 0.18), implying that bone surface curvature distributions might not be able to
accurately capture the changes in rod diameter. In addition, it is interesting to find that
there were strong correlations between bone surface curvature distributions and plate
number (R? = 0.83), an important parameter closely related to the onset of osteoporosis.
It has been observed that plate-like trabeculae were seriously depleted in patients with
osteoporotic fractures [21]. The results in this study further demonstrated that bone surface
curvature distributions are able to pick up the local changes in bone microstructure during
the onset of osteoporosis.

To the best of our knowledge, this study represents the first attempt to predict the
mechanical properties of trabecular bone using a DL model based on the distributions of
bone surface curvatures. The strong correlations between bone surface curvature distribu-
tions and stiffness tensors of trabecular bone (R? = 0.89-0.91) demonstrated the capability
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of surface curvature distributions in predicting the anisotropic mechanical properties of
trabecular bone. This suggests that bone surface curvature distributions can serve as a
novel parameter for governing the mechanical behavior of trabecular bone. Previous
studies have shown that the structure-function of trabecular bone is mainly attributed to
a full set of histomorphometric parameters [14,22], such as BV/TV, SMI, Conn.D, Tb.Th,
BS, and DA. However, the changes in individual histomorphometric parameters might
not be able to fully reflect the changes in mechanical behavior. Instead of using a full set
of histomorphometric parameters, the high correlations between bone surface curvature
distributions and the microstructure as well as mechanical properties allow bone surface
curvature distributions to be a holistic parameter in capturing the subtle changes in bone
microstructure as well as bone mechanical properties.

—=—BV/TV=0.12 - % -BV/TV=0.23 —e—BV/TV=0.34 - % —BV/TV=0.52

T
0

Figure 6. Probability distribution of surface curvatures (maximum principal curvature K;, minimum
principal curvature K, Gaussian curvature K, and mean curvature H) vs. bone volume fraction
(BV/TV).

Indeed, the spatial distributions of bone surface curvatures could reveal various
geometric characteristics of bone microstructures (Figure 7). By examining the spatial
distributions of bone surface curvatures, the maximum principal curvature and mean
curvature seem to effectively characterize the overall framework of bone microstructure,
while the minimum principal curvature and Gaussian curvature are more appropriate for
capturing local topological characteristics. Moreover, previous studies have shown that
mean curvature describes the local convexity or concavity of a surface, whereas Gaussian
curvature delineates different surface types, including saddle-shaped regions (K < 0),
intrinsically flat regions (K = 0), and sphere-shaped regions (K > 0) [10]. Additionally, this
study investigated the correlations between individual surface curvature distributions
and the histomorphometric parameters of trabecular bone using DL models. The results
(Table 2) showed that DL models based on maximum principal curvature distribution and
mean curvature distribution demonstrated higher prediction accuracy in predicting bone
surface area, whereas Gaussian curvature-based DL models demonstrated higher prediction
accuracy in predicting trabecular thickness, thus suggesting that maximum principal
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curvature and mean curvature are more closely correlated with bone surface area while
Gaussian curvature is more strongly correlated with trabecular thickness. Furthermore,
the results indicated that the prediction accuracy of DL models using individual surface
curvature as input is comparable to that of DL models using all four surface curvatures
as input, implying that each surface curvature distribution contains the major geometric
characteristics regarding bone microstructure.

BV/TV

10

* BV/TV =0.12

LAbmbblornmwaun

> BV/TV =0.23
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BV/TV =0.35

bwmbbornwsauon

o & bV ON B O

BV/TV =0.52

Ahmwbbornwasot
AN . . =
ok bbonmeowo

Figure 7. Plots of surface curvatures (maximum principal curvature K;, minimum principal curvature
K5, Gaussian curvature K, and mean curvature H) over trabecular surface.

Table 2. Comparison of prediction accuracies of microstructural parameters of trabecular bone using
different inputs for DL model.

Prediction Accuracy (R?)

Inputs for DL Model
BS BV/TV Tb.Th SMI Conn.D DA
K 0.94 0.92 0.86 0.77 0.42 0.11
Ky 0.91 0.91 0.85 0.76 0.44 0.11
G 0.84 0.92 0.91 0.77 0.37 0.08
H 0.94 0.91 0.88 0.76 0.47 0.06
Ky, Ky, G, H 0.96 0.94 0.90 0.79 0.57 0.12

Moreover, surface curvatures have been extensively applied in various fields. Several
studies have been conducted on applying bone surface curvatures for segmenting and label-
ing bone surface regions due to their reliable detection of geometric features [23-26]. Fur-
thermore, researchers have applied bone surface curvature to fabricate tissue scaffolds [27],
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indicating that bone surface curvature allows to create a library of mathematically designed
scaffolds, showing its potential for regeneration of anisotropic bone structure. Guo et al.,
proposed a deep learning approach for designing structures with targeted surface curva-
ture [28], which could be designed to promote mechanical behavior. Researchers further
examined the effects of the curvature of the femur and tibia on biomechanical behavior
during unloaded uphill locomotion [29], highlighting the strong correlation between bone
curvature and locomotor function, as well as underlying skeletal structure. These findings
demonstrated the significant role of bone surface curvature in governing the structure and
mechanical behavior of bone.

Several limitations should be acknowledged in this study. Firstly, training a robust
DL model typically necessitates a comprehensive dataset. However, this study included
only six proximal femurs from six distinct donors, which might not represent the general
population’s bone surface curvatures. Nonetheless, the findings of this study are still
valid to support the hypothesis of this study. Secondly, the projection of bone surface
curvature distributions onto a 2D plane might not fully capture the spatial distributions of
surface curvature by DL model. Future studies could investigate the prediction of bone
microstructure as well as mechanical behavior using 3D surface curvature distributions as
input for the DL model.

5. Conclusions

This study is the first to quantitatively correlate bone surface curvature distributions
with both the microstructure and the mechanical behavior of trabecular bone using a deep
learning (DL) model, demonstrating that bone surface curvature distributions can serve
as a novel parameter governing the microstructure and mechanical behavior of trabecular
bone. The DL model based on the surface curvature distributions demonstrated a high
fidelity in predicting the microstructure as well as the mechanical properties of trabecular
bone, thus verifying the hypothesis of this study. In addition, the following conclusions
could be achieved: Firstly, the maximum principal curvature and mean curvature could
effectively capture the overall framework of bone microstructure, whereas the minimum
principal curvature and Gaussian curvature are better suited for capturing the local topo-
logical features. Secondly, each surface curvature distribution contains the major geometric
characteristics regarding bone microstructure. Finally, bone surface curvature could serve
as a holistic parameter in describing the bone microstructure and mechanical behavior. The
findings of this study underscore the significance of incorporating bone surface curvature
analysis in the design of synthetic bone materials and implants.
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