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Abstract: Acute kidney injury (AKI) is the most severe and fatal complication of sepsis resulting
from infectious trauma. Currently, effective treatment options are still lacking. Dihydromyricetin is
the main component extracted from Vine tea (Ampelopsis megalophylla Diels et Gilg). In our previous
research, chitosan–tripolyphosphate-encapsulated nanoparticles of dihydromyricetin (CS-DMY-NPs)
have been proven to have potential protective effects against cisplatin-induced AKI. Here, we
investigated the protective effects and mechanisms of DMY and its nano-formulations against LPS-
induced AKI by assessing pathological and inflammatory changes in mice. In mice with LPS-AKI
treated with 300 mg/kg CS-DMY-NPs, the levels of creatinine (Cr), blood urea nitrogen (BUN), and
KIM-1 were significantly reduced by 56%, 49%, and 88%, respectively. CS-DMY-NPs can upregulate
the levels of GSH, SOD, and CAT by 47%, 7%, and 14%, respectively, to inhibit LPS-induced oxidative
stress. Moreover, CS-DMY-NPs decreased the levels of IL-6, IL-1β, and MCP-1 by 31%, 49%, and
35%, respectively, to alleviate the inflammatory response. TUNEL and immunohistochemistry
showed that CS-DMY-NPs reduced the number of apoptotic cells, increased the Bcl-2/Bax ratio
by 30%, and attenuated renal cell apoptosis. Western blot analysis of renal tissue indicated that
CS-DMY-NPs inhibited TLR4 expression and downregulated the phosphorylation of NF-κB p65 and
IκBα. In summary, DMY prevented LPS-induced AKI by increasing antioxidant capacity, reducing
inflammatory responses, and blocking apoptosis, and DMY nanoparticles were shown to have a
better protective effect for future applications.

Keywords: acute kidney injury; inflammation; sepsis; apoptosis

1. Introduction

AKI is a heterogeneous condition characterized by a sudden deterioration in renal
function. It manifests as a sudden decrease in the glomerular filtration rate, elevated Cr
concentration, or oliguria [1,2]. Multiple factors lead to AKI, including ischemia, sepsis,
the use of diagnostic iodinated contrast agents, and the administration of aminoglycoside
antibiotics [3]. Globally, there are estimated to be approximately 13 million cases annually,
resulting in approximately 1.7 million deaths [4]. AKI has become a global public health
issue, with high mortality rates and significant socioeconomic burdens due to the lack of
effective treatments.

Sepsis, which is associated with a systemic inflammatory response, is caused by the
invasion of pathogenic microorganisms such as bacteria. Sepsis often leads to multiorgan
damage, and the kidney is the most commonly affected organ [5]. Lipopolysaccharides
(LPSs) are a crucial component of Gram-negative bacteria and can be used to induce
septic AKI. Studies have shown that TLR4 is the receptor for LPS and plays a critical role
in the pathogenesis of LPS-induced septic AKI [6]. Moreover, NF-κB is a downstream
transcription factor of the TLR4 signaling pathway. Activation of NF-κB increases the
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production of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 [7]. Excessive
inflammatory responses and oxidative stress further induce cell apoptosis, leading to severe
AKI [8]. Recent studies have shown that inflammatory cytokines such as IL-6 and TNF-α
are associated with an increased risk of mortality in AKI patients; alleviating excessive
inflammatory states is effective in treating AKI [9].

DMY, a natural dihydro-flavonol compound, is isolated from the leaves and tender
stems of Ampelopsis grossedentata (Vine tea) [10]. Modern research has revealed various
pharmacological properties of DMY, including antimicrobial, anti-inflammatory, anticancer,
antioxidant, and antidiabetic activities [11]. DMY exhibits limited solubility, being soluble
only in ethanol and hot water. The bioavailability of DMY is only about 4.02% in rats
and may be <10% in humans [12]. These are the decisive factors that limit the pharma-
cological action and clinical application of DMY. Nanodrug carriers based on chitosan–
tripolyphosphate have shown good delivery performance for poorly soluble drugs [13]. In
our previous study, we prepared chitosan–tripolyphosphate-encapsulated nanoparticles of
DMY to improve its stability, solubility, and bioavailability and demonstrated their protec-
tive effects in a mouse model of cisplatin-induced AKI [14]. Additionally, DMY exhibited
protective effects on LPS-treated HK2 cells, reducing apoptosis and oxidative stress damage
in these cells [15]. DMY has potential renal protective effects to reduce inflammation and
oxidative stress, but its ability to prevent LPS-induced AKI in mice remains unknown.
Therefore, this study aims to investigate the protective effects and mechanisms of DMY
and its nano-formulation against septic AKI.

2. Materials and Methods
2.1. Chemicals and Antibodies

Dihydromyricetin (greater than 98%) was obtained from Shanghai Yuanye Bio-Technology
Co., Ltd. (Shanghai, China). CS-DMY-NPs were prepared according to methods previously
published by our team [14]. LPS was purchased from Solarbio Co., Ltd. (Beijing, China).
Primary antibodies against NF-κB p65, IκBα, Caspase-3, Bax, Bcl-2, TLR4, and β-actin were
purchased from Servicebio (Wuhan, China). Primary antibodies against NF-κB p-p65 and
p-IκBα were obtained from Proteintech Group (Wuhan, China).

2.2. Animal Experiments

All animal experiments conformed to the guidance of the Animal Welfare and Ethics
Committee of Sichuan Agricultural University (Approval No. 20230045). ICR mice (18–20 g,
6 weeks old), both male and female, were purchased from SPF Biotechnology Co., Ltd.
(Beijing, China) and were housed in a 12 h light–dark cycle environment at room temper-
ature 23 ± 1 ◦C. These animals had free access to food and water. Six groups were set
(n = 8, with an equal number of male and female mice per group) as the control (saline)
model (LPS only, 10 mg/kg), DMY water suspension (300 mg/kg), and LPS (10 mg/kg) +
CS-DMY-NP (300, 200, and 100 mg/kg) groups. After 5 days of DMY treatment, the mice
were intraperitoneally injected with LPS (10 mg/kg) to induce AKI; 24 h later, the mice
were euthanized. Serum and kidney samples were collected for further analysis.

2.3. Assessment of BUN and Cr

The Cr and BUN test kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China)
were used to determine the serum biomarker of renal function. The detection operation
was in accordance with the manufacturer’s instructions.

2.4. Measurements of Antioxidant Enzyme Activity

The levels of antioxidative enzymes (CAT, SOD and GSH) were measured using
commercially available kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).
To measure the activity of these enzymes, mouse kidney homogenate was tested following
the instructions supplied by the manufacturer.
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2.5. Measurement of Inflammatory Cytokines

Serum inflammatory cytokines (TNF-α, IL-1β, and IL-6) were tested by using com-
mercial ELISA kits (Ruixin Industrial Co., Ltd., Quanzhou, China). The detection operation
was in accordance with the manufacturer’s instructions.

2.6. Renal Histological Studies

Mouse kidney tissues were harvested, fixed and embedded in paraffin. Thin sections
(µm) were cut and stained (H&E). The visualized morphological changes in the cellular
and tissue structure were observed and photographed using a light microscope.

2.7. qRT-PCR

TransZol Up (TransGen Biotech, Beijing, China) was used to extract the Total RNA
from the kidney, and cDNA was synthesized by using a reverse transcription kit (Applied
Biological Materials, Vancouver, BC, Canada). qRT-PCR was conducted on a LightCycler®

480II Master Mix (Roche, Munich, Germany) machine with a 10 µL reaction volume. The
primer pairs are recorded in Table 1.

Table 1. Primers used in qRT-PCR.

Genes Type Sequences (5→3)

KIM-1 Fw CTGGAATGGCACTGTGACATCC
Rev GCAGATGCCAACATAGAAGCCC

IL-1β Fw GCAACTGTTCCTGAACTCAACT
Rev ATCTTTTGGGGTCCGTCAACT

MCP-1 Fw CATCCACGTGTTGGCTCA
Rev GATCATCTTGCTGGTGAATGAGT

IL-6 Fw AAAGAGTTGTGCAATGGCAATTCT
Rev AAGTGCATCATCGTTGTTCATACA

Bcl-2 Fw TGTGAGGACCCAATCTGGAAA
Rev TTGCAATGAATCGGGAGTTG

Bax Fw GATCAGCTCGGGCACTTTAG
Rev TTGCTGATGGCAACTTCAAC

NF-κB Fw ATGTGGAGATCATTGAGCAGC
Rev CCTGGTCCTGTGTAGCCATT

GAPDH Fw AGGTCGGTGTGAACGGATTTG
Rev TGTAGACCATGTAGTTGAGGTCA

2.8. TUNEL Staining

Sections of 4 µm thick embedded kidney tissue were prepared and subjected to de-
paraffinization and rehydration. Proteinase K was used for antigen retrieval. Following
antigen retrieval, a membrane-breaking solution was applied for permeabilization. Subse-
quently, the buffer was added and incubated at room temperature for 10 min. A mixture
of the TDT enzyme, dUTP, and buffer at a ratio of 1:5:50 was prepared and applied to
immerse the tissue. The cells were counterstained with DAPI for nuclear visualization,
and the slides were mounted with an anti-fade mounting medium. Under a microscope,
blue fluorescence of DAPI-stained nuclei was observed, while the nuclei of target-positive
apoptotic cells exhibited green fluorescence.

2.9. Immunohistochemistry

According to the experimental protocol, antigen retrieval was performed using citrate
buffer (pH 6.0). After antigen retrieval, the sections were placed in a 3% hydrogen peroxide
solution. The sections were then blocked with 3% BSA, and the blocking solution was
removed by flicking. Primary antibodies were incubated at 4 ◦C overnight, followed
by the addition of HRP-conjugated secondary antibodies, and were incubated at room
temperature for 50 min. The sections were washed with PBS (pH 7.4) on a decolorization
shaker. DAB chromogen solution was applied and the sections were monitored under a
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microscope until brownish-yellow positive cells appeared, at which point tap water was
used to stop color development. Hematoxylin was used to counterstain the nuclei, and a
bluing reagent was applied, followed by rinsing under running water. Finally, the sections
were dehydrated with ethanol and mounted. Under the microscope, the target cellular
proteins appeared brownish-yellow, while the hematoxylin-stained nuclei were blue.

2.10. Western Blot Analysis

The kidney tissue was washed with precooled PBS and cut into small pieces. The
tissue was then placed in a tissue grinder with grinding beads for homogenization. To
ensure complete tissue lysis, the homogenate was kept on ice for an additional 30 min. The
homogenate was subsequently centrifuged at 12,000 r/min for 10 min at 4 ◦C, after which
the supernatant was collected. The protein concentration was tested using a BCA protein
assay kit. The proteins were denatured and stored at −20 ◦C for later use. According
to the calculated loading amount, proteins were loaded into wells for electrophoresis.
After electrophoresis, the proteins were transferred onto a membrane. The 0.45 µm PVDF
membrane was activated with methanol for 2 min before use. The transfer was carried
out at a constant current of 300 mA for 30 min. The transferred membrane was quickly
washed in TBST and then mixed with 5% milk at room temperature. The PVDF membrane
was incubated with the primary antibody dilution on a shaker at 4 ◦C overnight. After
the secondary antibodies were diluted in TBST (caspase-3, 1:3000; Bax, 1:500; Bcl-2, 1:1000;
p-65, 1:3000; p-p65, 1:3000; TLR4, 1:3000; IκBa, 1:3000; p-IκBa, 1:3000), the membrane was
incubated at room temperature for 30 min. The membrane was quickly rinsed with TBST,
followed by a quick wash on a decolorization shaker. After washing, the PVDF membrane
was dried and placed on a chemiluminescence imager tray. The mixed ECL detection
reagent was added; after the reaction, the membrane was placed in a chemiluminescence
imager (Thermo Fisher Scientific, Waltham, MA, USA) to visualize the target bands. Protein
densitometry analysis was performed using ImageJ version 2.1.

2.11. Statistical Analysis

All the data are presented as the means ± SDs and analyzed by one-way ANOVA
with Tukey’s post hoc test (IBM SPSS statistics 25, IBM, Armonk, NY, USA). The following
marker was used to denote statistical significance: * p < 0.05; ** p < 0.01.

3. Results
3.1. DMY Alleviates LPS-Induced AKI in Mice

In addition to Cr and BUN, KIM-1 is a new and more sensitive biomarker for kidney
function [16]. Normal kidneys appear reddish-brown. After LPS treatment, the kidneys
appear pale and slightly larger, but the kidney index is not significant (Figure 1A,B). We
measured the levels of Cr and BUN in the serum to evaluate the preliminary therapeutic
effect of CS-DMY-NPs on LPS-induced AKI in mice. Where LPS caused AKI, it led to
significant increases in Cr and BUN. Administration of high doses of CS-DMY-NPs resulted
in a significant reduction in Cr and BUN levels, whereas the Cr and BUN levels did not
significantly change in the suspension group (Figure 1C,D). Additionally, qRT-PCR was
performed to detect the mRNA expression levels of KIM-1 (Figure 1E). Following the
intraperitoneal injection of LPS, the expression of KIM-1 increased rapidly. The CS-DMY-
NPs and DMY suspensions had similar effects on reducing KIM-1.
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Figure 1. CS-DMY-NPs alleviated LPS-induced AKI. Kidney visual lesion (A), kidney index (B), Cr
(C), and BUN (D) levels and mRNA expression levels of KIM-1 (E). All the data are presented as the
means ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. Antioxidant Enzyme Detection

As shown in Figure 2, LPS significantly decreased the release of GSH levels but had
no significant influence on the SOD or CAT levels. Compared to the control treatment, the
high dose of CS-DMY-NPs significantly alleviated the decreases in the GSH levels, and
the GSH levels significantly increased in the serum of the mice. SOD activity significantly
increased in the suspension group. Additionally, a high dose of CS-DMY-NPs had a greater
effect on GSH accumulation in AKI mice than did the suspension treatment. However, LPS
and CS-DMY-NPs had no significant effect on CAT activity.
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3.3. Detection of Inflammatory Cytokines in Serum and Tissue

As shown in Figure 3, after intraperitoneal injection of LPS, the levels of IL-6 and TNF-
α in the serum significantly increased, while the levels of IL-1β, although not significantly
different, still increased, and DMY decreased the levels of inflammatory factors in the serum.
The qRT-PCR results demonstrated a similar increase in inflammatory factor levels in mouse
kidney tissues. MCP-1 significantly increased under LPS stimulation, and although not
significantly, high-dose CS-DMY-NP treatment still reduced MCP-1. These results suggest
that DMY effectively alleviates renal inflammation induced by LPS.
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Figure 3. CS-DMY-NPs blocked the release of inflammation factors induced by LPS. IL-6 (A), IL-1β
(B), and TNF-α (C) levels in serum and mRNA expression levels of IL-1β (D), IL-6 (E), and MCP-1 (F)
in kidney tissue. All the data are presented as the means ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Histopathological Analysis

LPS administration results in pathological damage to the kidneys, including tubular
dilation, tubular epithelial vacuolation, loss of brush border, and exposure of renal epithelial
nuclei [17]. As shown in Figure 4, the model group exhibited tubular swelling, luminal
narrowing, and tubular vacuolation in the kidneys. Following treatment with 300 mg/kg
CS-DMY-NPs, no significant renal lesions or tubular vacuolation were observed. However,
the same dose of DMY suspension still resulted in some degree of tubular swelling and
vacuolar degeneration of the renal epithelium.

3.5. DMY Decreased the TUNEL Staining Signal

To investigate the influence of CS-DMY-NPs on renal cell apoptosis, TUNEL staining
was used to evaluate the cell apoptosis by observing the intensity of green fluorescence. As
shown in Figure 5, LPS induced cell apoptosis, whereas CS-DMY-NPs significantly reduced
the number of TUNEL-positive cells in AKI mice. The TUNEL results demonstrated that
CS-DMY-NPs reduced the number of apoptotic cells in the kidney.
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3.6. CS-DMY-NPs Reduced Cell Apoptosis in the Kidneys

The expression levels of Bcl-2 and Bax in renal tissue were assessed via immunohisto-
chemistry (Figure 6A,B). In the control group, both Bcl-2 and Bax exhibited low expression
levels. Following LPS injection, Bax protein expression significantly increased, whereas
Bcl-2 expression was only slightly elevated. After treatment, Bax expression markedly
decreased in a dose-dependent manner, with minimal impact on Bcl-2 levels. The Bcl-
2/Bax ratio was calculated; it showed a significant increase in the model group and a
dose-dependent decrease in the treatment group (Figure 6C). The qRT-PCR results further
indicated that CS-DMY-NPs reduced Bax mRNA expression(Figure 6D), consistent with the
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immunohistochemistry findings. The results suggested that DMY has a more pronounced
effect on Bax, and administering high doses of CS-DMY-NPs can significantly reduce Bax
expression, thereby alleviating LPS-induced apoptosis in mouse renal cells.
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Figure 6. The regulatory effect of CS-DMY-NPs on the Bcl-2 and Bax pathways. Immunohistochemical
analysis of Bcl-2 (A) and Bax (B), immunohistochemical quantification of Bcl-2 and Bax (C), and
mRNA expression ratios of Bcl-2 and Bax (D). All the data are presented as the means ± SD; * p < 0.05,
** p < 0.01, *** p < 0.001.
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3.7. The Impact of CS-DMY-NPs on Apoptotic Signaling Pathways

Bcl-2 family proteins and caspase family proteins are key regulators of cell apoptosis.
Caspase-3 is a central kinase in the caspase family that, upon activation, can initiate a
caspase cascade leading to cell apoptosis [18]. To determine the effect of CS-DMY-NPs on
apoptotic proteins, the expression of Bax, Bcl-2, and caspase-3 was analyzed using West-
ern blotting. As shown in Figure 7, CS-DMY-NPs significantly reduced the LPS-induced
overexpression of caspase-3. The Bcl-2/Bax ratio determines a cell’s susceptibility to apop-
tosis, with a higher ratio indicating stronger antiapoptotic effects [19]. The model group
showed little change compared to the control group, likely due to the body’s inherent repair
mechanisms. However, after treatment with CS-DMY-NPs, the ratio increased significantly.
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and Caspase-3 (A), grayscale intensity chart of Caspase-3 (B), and grayscale intensity ratios of Bcl-2
and Bax (C). All the data are presented as the means ± SD; * p < 0.05, ** p < 0.01.

3.8. The Impact of CS-DMY-NPs on the TLR4/NF-κB Signaling Pathway

To elucidate the anti-inflammatory mechanism of CS-DMY-NPs in LPS-induced septic
AKI mouse kidneys, further investigation into the activation of the signaling pathway
was conducted through Western blot analysis. As shown in Figure 8, LPS stimulation
significantly activated TLR4, NF-κB, and IκBα phosphorylation, leading to the degradation
of IκBα. These results suggest that CS-DMY-NPs have the potential to inhibit the activation
of the TLR4/NF-κB pathway in AKI mice induced by LPS.
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(B–D). All the data are presented as the means ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001.
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4. Discussion

Bacterial virulence is one of the most dangerous factors contributing to the develop-
ment of septic AKI. LPSs, the main pathogenic factor in Gram-negative bacterial infections,
trigger a robust inflammatory response in the body [20]. Septic AKI is characterized by
complex pathogenic mechanisms, including infiltration of inflammatory mediators, dys-
function of renal vascular endothelial cells, and apoptosis of renal cells [21]. Currently, there
are no specific drugs for treating sepsis-induced AKI. This study indicates that DMY can
alleviate AKI induced by LPS in mice, and the effect greatly improves when it is prepared
in the form of nanoparticles.

This study has demonstrated that high-dose CS-DMY-NPs significantly regulated the
release of IL-1β, TNF-α, and IL-6 in the kidneys of mice, suggesting that DMY may atten-
uate LPS-induced acute kidney inflammation injury. Furthermore, histological analysis
confirmed that DMY alleviated LPS-induced kidney damage. These results suggest that
DMY also has a protective effect against LPS-induced AKI. The inflammation induced by
LPS can trigger the release of numerous pro-inflammatory cytokines, which are consid-
ered to be a direct trigger of renal tubular epithelial cell injury, one of the most important
pathogenic mechanisms of AKI [22]. TNF-α is a key mediator of sepsis that can induce
kidney injury by activating TNF receptors. IL-1β plays a major role in local acute inflam-
mation, while IL-6 is considered to be a predictor of AKI in critically ill septic patients [23].
These inflammatory cytokines initiate and amplify the inflammatory response, leading to
the occurrence of AKI [24]. In previous mechanism research studies, DMY was shown to
inhibit the activation of NOD-like receptor protein 3, nuclear factor kappa-B, and mitogen-
activated protein kinase signaling pathways to block the intense release of inflammatory
products induced by LPS [25,26]. The nano-formulated DMY would provide a higher kid-
ney drug concentration, which showed that CS-DMY-NPs have a better anti-inflammatory
effect against AKI.

TLR4 serves as a pattern recognition receptor and functions as a sensor for LPS.
Activation of TLR4 leads to the recruitment of inflammatory factors and subsequent renal
damage [27]. Moreover, the binding of TLR4 to LPS induces the activation of NF-κB, a
crucial transcription factor that plays a pivotal role in inflammation. Activated NF-κB
translocates to the nucleus and stimulates the release of inflammatory mediators, such
as IL-1β, IL-6, and TNF-α [28]. Under inflammatory stimulation, the IκBa protein is
phosphorylated, ubiquitinated, and degraded. Degradation of IκBa allows NF-κB proteins
to regulate the transcription of inflammatory regulation genes in the nucleus [29]. Inhibiting
the TLR4/NF-κB-mediated inflammatory response has been shown to have a renoprotective
effect against AKI [30]. Our data indicate that DMY can suppress LPS-induced NF-κB
activation by downregulating the expression of p-p65 and p-IκBα. In addition, the effect
of CS-DMY-NPs is more significant. These results are consistent with previous research
results that DMY significantly inhibits NF-κB (IκBα) phosphorylation and degradation, as
well as subsequent nuclear translocation of p65 [31].

The results indicate that LPSs deplete antioxidant enzymes in mice, whereas CS-DMY-
NPs mitigate the depletion of GSH and SOD, significantly increasing their levels in mouse
serum. Oxidative stress can induce the expression of multiple pro-inflammatory cytokines.
The body’s antioxidant defense system can clear excessive released free radicals efficiently
and inhibit the production of lipid peroxidation to protect cells [32]. Studies have reported
an increase in lipid oxidation biomarkers and a decrease in antioxidant enzyme activity in
septic patients [33]. DMY can activate ERK/Nrf2/HO-1 signaling pathway to upregulate
the antioxidant capacity in cells and organisms [34,35].

The results of this study demonstrate that CS-DMY-NPs reduce the number of apop-
totic cells and increase the ratio of Bcl-2 to Bax proteins. These results confirm the significant
inhibitory effect of CS-DMY-NPs on LPS-induced cell apoptosis. Although there is some
controversy regarding the role of tubular cell apoptosis in organ damage associated with
sepsis, cell apoptosis has been recognized as an important pathogenic mechanism of septic
AKI [36]. Bcl-2 and Bax can interact to regulate the release of cytochrome C and further
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activate the cell apoptosis [37]. There are many studies that have shown a clear relation-
ship between oxidative stress, inflammation and apoptosis, which indicates that DMY
may cause different results due to the activation process [38,39]. Here, DMY can reduce
LPS-induced cell apoptosis mainly by inhibiting the oxidative stress and inflammation
in AKI.

In summary, DMY has a protective effect on LPS-induced AKI in mice. After it is
prepared in the form of nanoparticles, its anti-inflammatory activity, antioxidant capacity,
and anti-apoptotic ability are all improved. This means that DMY is a potential drug for
the treatment of AKI, and the nanoparticles we prepared provide a reference for the clinical
use of DMY.

5. Conclusions

In conclusion, CS-DMY-NPs exhibited the potential to inhibit oxidative stress and pro-
inflammatory cytokines, significantly reducing renal cell apoptosis, and thereby improving
LPS-induced renal dysfunction and histological damage. The protective mechanism involves
the inhibition of renal cell apoptosis and the downregulation of p-p65 and p-IκBα expression via
the TLR4/NF-κB pathway. Our study indicates that CS-DMY-NPs exhibited protective effects
on septic AKI and that the effect is greater than that of the DMY suspension.
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