Bioengineering Approaches and Novel Biomaterials to Enhance Sternal Wound Healing after Cardiac Surgery: A Crosstalk between Innovation and Surgical Practice
Abstract
:1. Introduction
2. Patients and Risk Factors for Postoperative Complications
2.1. Preoperative Risk Factors
2.2. Intraoperative Risk Factors
2.3. Postoperative Risk Factors
3. “Traditional” Alternatives to “Traditional” Wires: Current Evidence
Mechanical Properties
4. New Methods and Devices for Sternal Closure
4.1. Fixsorb Wave
4.2. Flexigrip
4.3. Custom-Made “Neo-sternum”
4.4. Alternatives to Bone Wax
5. Bone Adhesives
6. Fibrous Sheets and Electrospun Fibers
7. Growth Factor Therapies
8. Biophysical Stimulation Techniques
9. Cell-Based Therapies
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Abassi, A.; Papini, M.; Towler, M. Review of Biomechanical Studies and Finite Element Modeling of Sternal Closure Using Bio-Active Adhesives. Bioengineering 2022, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, S.; Khoynezhad, A.; Jahangiri, M. Surgical Site Infections in Cardiac Surgery. Crit. Care Clin. 2020, 36, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Zukowska, A.; Zukowski, M. Surgical Site Infection in Cardiac Surgery. J. Clin. Med. 2022, 11, 6991. [Google Scholar] [CrossRef]
- Balachandran, S.; Lee, A.; Denehy, L.; Lin, K.Y.; Royse, A.; Royse, C.; El-Ansary, D. Risk Factors for Sternal Complications After Cardiac Operations: A Systematic Review. Ann. Thorac. Surg. 2016, 102, 2109–2117. [Google Scholar] [CrossRef]
- Nenna, A.; Nappi, F.; Dougal, J.; Satriano, U.; Chello, C.; Mastroianni, C.; Lusini, M.; Chello, M.; Spadaccio, C. Sternal wound closure in the current era: The need of a tailored approach. Gen. Thorac. Cardiovasc. Surg. 2019, 67, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Copeland, M.; Senkowski, C.; Ulcickas, M.; Mendelson, M.; Griepp, R.B. Breast size as a risk factor for sternal wound complications following cardiac surgery. Arch. Surg. 1994, 129, 757–759. [Google Scholar] [CrossRef]
- Crabtree, T.D.; Codd, J.E.; Fraser, V.J.; Bailey, M.S.; Olsen, M.A.; Damiano, R.J., Jr. Multivariate analysis of risk factors for deep and superficial sternal infection after coronary artery bypass grafting at a tertiary care medical center. Semin. Thorac. Cardiovasc. Surg. 2004, 16, 53–61. [Google Scholar] [CrossRef]
- Colombier, S.; Kessler, U.; Ferrari, E.; von Segesser, L.K.; Berdajs, D.A. Influence of deep sternal wound infection on long-term survival after cardiac surgery. Med. Sci. Monit. 2013, 19, 668–673. [Google Scholar] [CrossRef]
- Trick, W.E.; Scheckler, W.E.; Tokars, J.I.; Jones, K.C.; Reppen, M.L.; Smith, E.M.; Jarvis, W.R. Modifiable risk factors associated with deep sternal site infection after coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2000, 119, 108–114. [Google Scholar] [CrossRef]
- De Paulis, R.; de Notaris, S.; Scaffa, R.; Nardella, S.; Zeitani, J.; Del Giudice, C.; De Peppo, A.P.; Tomai, F.; Chiariello, L. The effect of bilateral internal thoracic artery harvesting on superficial and deep sternal infection: The role of skeletonization. J. Thorac. Cardiovasc. Surg. 2005, 129, 536–543. [Google Scholar] [CrossRef]
- Allen, K.B.; Thourani, V.H.; Naka, Y.; Grubb, K.J.; Grehan, J.; Patel, N.; Guy, T.S.; Landolfo, K.; Gerdisch, M.; Bonnell, M.; et al. Randomized, multicenter trial comparing sternotomy closure with rigid plate fixation to wire cerclage. J. Thorac. Cardiovasc. Surg. 2017, 153, 888–896.e1. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.B.; Thourani, V.H.; Naka, Y.; Grubb, K.J.; Grehan, J.; Patel, N.; Guy, T.S.; Landolfo, K.; Gerdisch, M.; Bonnell, M.; et al. Rigid Plate Fixation Versus Wire Cerclage: Patient-Reported and Economic Outcomes from a Randomized Trial. Ann. Thorac. Surg. 2018, 105, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Madjarov, J.M.; Katz, M.G.; Fazal, S.; Kumar, A.; Madzharov, S.; Handa, A.; Madjarova, S.J.; Robicsek, F. Use of longitudinal rigid sternal fixation in prevention and treatment of wound complications among high-risk patients after cardiac surgery. J. Card. Surg. 2021, 36, 3155–3162. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, N.; Wolfe, B.; Mathes, D.W.; Malgor, R.D.; Kaoutzanis, C. Vacuum-assisted closure therapy for the management of deep sternal wound complications: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthet. Surg. 2023, 94, 251–260. [Google Scholar] [CrossRef]
- Sjogren, J.; Malmsjo, M.; Gustafsson, R.; Ingemansson, R. Poststernotomy mediastinitis: A review of conventional surgical treatments, vacuum-assisted closure therapy and presentation of the Lund University Hospital mediastinitis algorithm. Eur. J. Cardiothorac. Surg. 2006, 30, 898–905. [Google Scholar] [CrossRef]
- Yu, C.M.; Yu, C.M.; Yao, W.T.; Chen, Y.F.; Lee, A.L.; Liu, Y.C.; Tu, C.; Huang, W.; Tung, K.; Tsai, M. Efficacy and safety of pectoralis muscle flap combined rectus abdominis muscle sheath fasciocutaneous flap for reconstruction of sternal infection. Int. Wound J. 2022, 19, 1829–1837. [Google Scholar] [CrossRef]
- Trumble, D.R.; McGregor, W.E.; Magovern, J.A. Validation of a bone analog model for studies of sternal closure. Ann. Thorac. Surg. 2002, 74, 739–744. [Google Scholar] [CrossRef]
- Nagaoka, E.; Arai, H. Mechanical simulation study of reapproximated sternum rigidity comparing sternal fixation devices. Gen. Thorac. Cardiovasc. Surg. 2023, 71, 98–103. [Google Scholar] [CrossRef]
- Park, Y.G.; Jo, J.H.; Lee, J.K.; Kim, J.M.; Lee, S.J.; Kim, H.Y. Biomechanical comparison of bone staple fixation methods with suture material for median sternotomy closure using 3D-printed bone models. N. Z. Vet. J. 2024, 72, 265–274. [Google Scholar] [CrossRef]
- Jutley, R.S.; Watson, M.A.; Shepherd, D.E.; Hukins, D.W. Finite element analysis of stress around a sternum screw used to prevent sternal dehiscence after heart surgery. Proc. Inst. Mech. Eng. H. 2002, 216, 315–321. [Google Scholar] [CrossRef]
- Oishi, K.; Arai, H.; Kuroki, H.; Fujioka, T.; Tomita, M.; Tasaki, D.; Oi, K.; Nagaoka, E.; Fujiwara, T.; Takeshita, M.; et al. A prospective randomized controlled study to assess the effectiveness of super FIXSORB WAVE((R)) for sternal stabilization after sternotomy. Gen. Thorac. Cardiovasc. Surg. 2023, 71, 665–673. [Google Scholar] [CrossRef]
- Tsunekawa, T.; Usui, A.; Oshima, H.; Mizutani, S.; Araki, Y.; Okada, N.; Ueda, Y. A bioresorbable osteosynthesis device can induce an earlier sternal fusion after median sternotomy. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Takami, Y.; Maekawa, A.; Yamana, K.; Akita, K.; Amano, K.; Sakurai, Y.; Takagi, Y. Early Sternal Bone Healing after Thermoreactive Nitinol Flexigrip Sternal Closure. Ann. Thorac. Cardiovasc. Surg. 2022, 28, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Intihar, U.; Zeleznik, J.; Brajlih, T.; Drstvensek, I.; Hudak, R.; Antonic, M. Sternal Reconstruction Using 3D-Printed Titanium Custom-Made Prosthesis for Sternal Dehiscence After Cardiac Surgery. Heart Surg. Forum 2023, 26, E160–E163. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.K.; Cheng, A.; Vaughan, B.; Stiles, B.; Altorki, N.; Spector, J.A.; Port, J.L. Sternal Reconstruction Using Customized 3D-Printed Titanium Implants. Ann. Thorac. Surg. 2020, 109, e411–e414. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Chen, C.; Liu, M.; Xiao, Y.; Zhang, J.; Yu, G.; Jiang, G. Sternal Resection and Reconstruction With a Novel Modularized Prosthesis. Ann. Thorac. Surg. 2020, 110, 1412–1416. [Google Scholar] [CrossRef]
- Allie, D.E.; Hebert, C.J.; Lirtzman, M.D.; Wyatt, C.H.; Keller, V.A.; Souther, S.M.; A Allie, A.; Mitran, E.V.; Walker, C.M. Novel treatment strategy for leg and sternal wound complications after coronary artery bypass graft surgery: Bioengineered Apligraf. Ann. Thorac. Surg. 2004, 78, 673–678. [Google Scholar] [CrossRef]
- Pradeep, A.; Rangasamy, J.; Varma, P.K. Recent developments in controlling sternal wound infection after cardiac surgery and measures to enhance sternal healing. Med. Res. Rev. 2021, 41, 709–724. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Zhu, T.; Le, H.; Wang, X.; Guo, J.; Liu, G.; Ding, J. Functional macromolecular adhesives for bone fracture healing. ACS Appl. Mater. Interfaces 2021, 14, 1–9. [Google Scholar] [CrossRef]
- Sidhu, V.P.S.; Towler, M.R.; Papini, M. Measurement of Adhesion of Sternal Wires to a Novel Bioactive Glass-Based Adhesive. J. Funct. Biomater. 2019, 10, 37. [Google Scholar] [CrossRef]
- Sa, M.P.; Van den Eynde, J.; Cavalcanti, L.R.; Kadyraliev, B.; Enginoev, S.; Zhigalov, K.; Ruhparwar, A.; Weymann, A.; Dreyfus, G. Mitral valve repair with minimally invasive approaches vs sternotomy: A meta-analysis of early and late results in randomized and matched observational studies. J. Card. Surg. 2020, 35, 2307–2323. [Google Scholar] [CrossRef] [PubMed]
- Mehrvar, C.; Deignan, E.; Hurtig, M.; Cohen, G.; Zalzal, P.; Safir, O.; Alhalawani, A.; Papini, M.; Towler, M.R. In vivo analysis of a proprietary glass-based adhesive for sternal fixation and stabilization using rabbit and sheep models. J. Mater. Sci. Mater. Med. 2021, 32, 53. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of various fillers in adhesives applications: A review. Polym. Bull. 2022, 79, 1–63. [Google Scholar] [CrossRef]
- Nam, S.; Mooney, D. Polymeric tissue adhesives. Chem. Rev. 2021, 121, 11336–11384. [Google Scholar] [CrossRef]
- Shokri, M.; Dalili, F.; Kharaziha, M.; Eslaminejad, M.B.; Tafti, H.A. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv. Colloid. Interface Sci. 2022, 305, 102706. [Google Scholar] [CrossRef]
- Zaokari, Y.; Persaud, A.; Ibrahim, A. Biomaterials for adhesion in orthopedic applications: A review. Eng. Regen. 2020, 1, 51–63. [Google Scholar] [CrossRef]
- Oladele, I.O.; Omotosho, T.F.; Adediran, A.A. Polymer-based composites: An Measurement of Adhesion of Sternal Wires to a Novel Bioactive Glass-Based Adhesiveindispensable material for present and future applications. Int. J. Polym. Sci. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Radulescu, D.E.; Neacsu, I.A.; Grumezescu, A.M.; Andronescu, E. Novel trends into the development of natural hydroxyapatite-based polymeric composites for bone tissue engineering. Polymers 2022, 14, 899. [Google Scholar] [CrossRef]
- Guo, Z.; Poot, A.A.; Grijpma, D.W. Advanced polymer-based composites and structures for biomedical applications. Eur. Polym. J. 2021, 149, 110388. [Google Scholar] [CrossRef]
- Shibata, M.; Takagi, G.; Kudo, M.; Kurita, J.; Kawamoto, Y.; Miyagi, Y.; Kanazashi, M.; Sakatani, T.; Naito, Z.; Tabata, Y.; et al. Enhanced Sternal Healing Through Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel. Tissue Eng. Part A 2018, 24, 1406–1412. [Google Scholar] [CrossRef]
- Rainer, A.; Spadaccio, C.; Sedati, P.; De Marco, F.; Carotti, S.; Lusini, M.; Vadalà, G.; Di Martino, A.; Morini, S.; Chello, M.; et al. Electrospun hydroxyapatite-functionalized PLLA scaffold: Potential applications in sternal bone healing. Ann. Biomed. Eng. 2011, 39, 1882–1890. [Google Scholar] [CrossRef]
- Iwakura, A.; Tabata, Y.; Koyama, T.; Doi, K.; Nishimura, K.; Kataoka, K.; Fujita, M.; Komeda, M. Gelatin sheet incorporating basic fibroblast growth factor enhances sternal healing after harvesting bilateral internal thoracic arteries. J. Thorac. Cardiovasc. Surg. 2003, 126, 1113–1120. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, J.; Yu, W.; Xiong, J. Platelet-rich plasma influence on the sternal wounds healing: A meta-analysis. Int. Wound J. 2023, 20, 3794–3801. [Google Scholar] [CrossRef]
- Song, Y.; Chu, W.; Zhang, M.; Liu, Z.; Li, D.; Zhao, F.; Zhang, B.; Gao, M.; Yuan, H.; Shen, C. A study on the preoperative risk factors for primary healing failure in the reconstruction of deep sternal wound infection with platelet-rich plasma and negative pressure trauma therapy. Int. Wound J. 2023, 20, 3457–3466. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z. Effect of topical application of autologous platelet gel on sternal wound infection after cardiac surgery: A meta-analysis. Int. Wound J. 2024, 21, e14761. [Google Scholar] [CrossRef] [PubMed]
- Kirmani, B.H.; Jones, S.G.; Datta, S.; McLaughlin, E.K.; Hoschtitzky, A.J. A meta-analysis of platelet gel for prevention of sternal wound infections following cardiac surgery. Blood Transfus. 2017, 15, 57–65. [Google Scholar] [CrossRef]
- Gallo, I.; Saenz, A.; Artinano, E.; Esquide, J. Autologous platelet-rich plasma: Effect on sternal healing in the sheep model. Interact. Cardiovasc. Thorac. Surg. 2010, 11, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, A.; Tabata, Y.; Tamura, N.; Doi, K.; Nishimura, K.; Nakamura, T.; Shimizu, Y.; Fujita, M.; Komeda, M. Gelatin sheet incorporating basic fibroblast growth factor enhances healing of devascularized sternum in diabetic rats. Circulation 2001, 104, I325–I329. [Google Scholar] [CrossRef]
- Sharma, V.; Dash, S.K.; Govarthanan, K.; Gahtori, R.; Negi, N.; Barani, M.; Tomar, R.; Chakraborty, S.; Mathapati, S.; Bishi, D.K.; et al. Recent advances in cardiac tissue engineering for the management of myocardium infarction. Cells 2021, 10, 2538. [Google Scholar] [CrossRef]
- Augustine, R.; Dan, P.; Hasan, A.; Khalaf, I.M.; Prasad, P.; Ghosal, K.; Gentile, C.; McClements, L.; Maureira, P. Stem cell-based approaches in cardiac tissue engineering: Controlling the microenvironment for autologous cells. Biomed. Pharmacother. 2021, 138, 111425. [Google Scholar] [CrossRef] [PubMed]
- Garoffolo, G.; Ferrari, S.; Rizzi, S.; Barbuto, M.; Bernava, G.; Pesce, M. Harnessing mechanosensation in next generation cardiovascular tissue engineering. Biomolecules 2020, 10, 1419. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Rouabhia, M.; Zhang, Z. Electrical stimulation and cellular behaviors in electric field in biomedical research. Materials 2021, 15, 165. [Google Scholar] [CrossRef] [PubMed]
- Afjeh-Dana, E.; Naserzadeh, P.; Moradi, E.; Hosseini, N.; Seifalian, A.M.; Ashtari, B. Stem cell differentiation into cardiomyocytes: Current methods and emerging approaches. Stem Cell Rev. Rep. 2022, 18, 2566–2592. [Google Scholar] [CrossRef] [PubMed]
- Arthur, A.; Gronthos, S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int. J. Mol. Sci. 2020, 21, 9759. [Google Scholar] [CrossRef]
- Challapalli, R.S.; Dwyer, R.M.; McInerney, N.; Kerin, M.J.; Lowery, A.J. Effect of breast cancer and adjuvant therapy on adipose-derived stromal cells: Implications for the role of ADSCs in regenerative strategies for breast reconstruction. Stem Cell Rev. Rep. 2021, 17, 523–538. [Google Scholar] [CrossRef]
- Iwakura, A.; Tabata, Y.; Miyao, M.; Ozeki, M.; Tamura, N.; Ikai, A.; Nishimura, K.; Nakamura, T.; Shimizu, Y.; Fujita, M.; et al. Novel method to enhance sternal healing after harvesting bilateral internal thoracic arteries with use of basic fibroblast growth factor. Circulation 2000, 102, III307–III311. [Google Scholar] [CrossRef]
Wire Closure Style | Modeled Illustration | Advantages | Disadvantages |
---|---|---|---|
Alternating peri-sternal and trans-sternal | Superior strength and stability | Can easily injure osteoporotic bones | |
Single trans-sternal | Easy to use Allows for a good body union in most patients | The twisted free ends of the wire may penetrate the sternum (due to osteoporosis or other factors) Requires seven or more wires | |
Single peri-sternal | Reduces risk of deep sternal wound infection by reinforcing the sternum Safe for solid internal fixation Sternal stability was higher in single wire vs. figure-of-eight wire in high-risk obese patients | Requires seven or more wires | |
Figure-of-eight | Potential benefit in osteoporotic bone Biomechanical benefit (larger surface area) | Conflicting results in the literature | |
Modified figure-of-eight | Effective and safe method for limiting sternal dehiscence by limiting the penetration in the intercostal spaces | Conflicting results in the literature | |
Longitudinal parasternal (Robicsek cage) | Used for high-risk patients (chronic pulmonary disease, obesity, bilateral mammary artery harvesting, diabetes, off-midline sternotomy, and patients undergoing reoperations) | Increased risk of sternal de-vascularization due to antero-posterior compression |
Preoperative Factors | Intraoperative Factors | Postoperative Factors |
---|---|---|
Macromastia | Bilateral internal mammary artery harvesting | Reoperation |
Large chest circumference | Paramedian sternotomy | Blood transfusion |
Obesity | Sterility breaks | Longer hospital stay |
Active smoking | Prolonged operation time | |
Diabetes mellitus | Poor closure technique | |
Osteoporosis | ||
Chronic pulmonary disease | ||
Corticosteroid use |
Concept | Materials | Positive Factors | Negative Factors | References |
---|---|---|---|---|
Bone Adhesives | Medical acrylate | Easy to apply Ready to use Biocompatible and does not release any toxic components | Solid adhesives often do not penetrate into the porous structure of bone Transition from high flexibility (modulus of ≤25 MPa) to low flexibility (modulus of ≥500 MPa) | [35,36,37,38,39] |
Fibrous Sheets and Electrospun Fibers | Cotton-like hydrophilic hydroxyapatite (HA) | Ready to use Does not increase surgical time | / | [40] |
Electrospun scaffold poly (lactic acid) (PLLA) | Reduction in postoperative complications and a greater rate of sternal healing Properties similar to native collagen Mitigate the inflammatory reaction | / | [41] | |
Growth Factor Therapies | Gelatin hydrogel with drug-delivery system (DDS) | Release of growth factors Gelatin is converted into amino acids after its application, without adverse reactions | / | [42] |
PRP (platelet-rich plasma) | Excellent alternative for bone wax Promoting bone healing Combined with fibrin or thrombin, it provided a lower rate of infections without side effects Angiogenic properties | When injected in free from, it did not guarantee a proper regeneration process because of its short-acting activity | [43,44,45] | |
Cell-Based Therapies | Mesenchymal stem cells (MSCs) | Contribute to the overall success of the regenerative process | / | [54,55] |
Biomaterial | Use | Action |
---|---|---|
Calcium sulfate with hydroxypropyl methylcellulose (HPMC) or sodium alginate | preclinical | The released calcium ions from the material can activate the coagulation cascade when it comes in contact with the blood thereby preventing bleeding. |
Chitin–fibrin gel incorporated with tigecycline nanoparticles | preclinical | An adhesive gel with hemostatic properties and controlled drug release for 21 days. |
Chitosan, oxidized starch, and hydroxyapatite | preclinical | Wax-like material with viscoelastic properties and biocompatibility. |
Electrospun material Poly (l-lactide)/hydroxyapatite | preclinical | The scaffold was found to enhance sternal healing in the rabbit. |
Gelatin hydrogel sheet with PRP/beta –FGF | preclinical | PRP/beta –FGF release was found to enhance sternal healing |
Hydroxyapatite sheet with beta-tricalcium phosphate | preclinical | The sheet was sandwiched between the sternal halves, and their effects on sternal healing were studied in the canine model. |
PEG- PPG- PEG with pregelatinized starch | preclinical | Has tamponade effects to prevent bleeding and shows good biocompatibility with osteoblast cells. |
Poly-(ethylene glycol)–calcium phosphate cement with pregelatinized starch | preclinical | Like bone wax, it acts as a physical barrier to prevent bleeding. Tetracalcium phosphate provides osteogenic effects. |
Polydopamine-co-acrylate and hydroxyapatite nanoparticles | preclinical | Material with controlled setting time, which can be used to enhance sternal healing. |
Tricalcium silicate, 58S bioglass, chitosan, and carboxymethyl cellulose | preclinical | Injectable wax-like material with osteogenic and hemostatic effects. |
AVITENE (microfibrillar collagen and antibiotic-containing fibrin glue) | clinical | It was applied at the sternum and was able to prevent bleeding and control infection. |
BONESEAL (polylactic acid and hydroxyapatite) | clinical | It can act as a physical barrier against bleeding and enhance bone healing. |
CALLOS (calcium phosphate cement) | clinical | It prevents bleeding and enhances better sternal and soft tissue healing with complete absorption of the material. |
COLLOTAMP (gentamicin-impregnated collagen sponge) | clinical | The gentamicin-impregnated sponge placed in between the sternal halves helps in preventing infection. |
HEMOBLAST (porcine collagen, bovine chondroitin sulfate, and human pooled plasma thrombin) | clinical | Explored for their effects in controlling sternal bleeding. |
KRYPTONITE (castor oil-based adhesive) | clinical | It can enhance sternal union and stability. |
OSTENE (alkylene oxide copolymer) | clinical | Water-soluble bone wax acts as a physical barrier against bleeding and is completely resorbable. |
SPONGOSTAN (gelatin powder with rifamycin powder) | clinical | It is applied on the bone and helps in controlling bleeding. |
VIVOSTAT (fibrin sealant with batroxobin) | clinical | The hemostasis effect of the material was studied, and clotting was observed within 43 s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrisi, C.; Loreni, F.; Nenna, A.; Giacinto, O.; Lusini, M.; Chello, M. Bioengineering Approaches and Novel Biomaterials to Enhance Sternal Wound Healing after Cardiac Surgery: A Crosstalk between Innovation and Surgical Practice. J. Funct. Biomater. 2024, 15, 254. https://doi.org/10.3390/jfb15090254
Ferrisi C, Loreni F, Nenna A, Giacinto O, Lusini M, Chello M. Bioengineering Approaches and Novel Biomaterials to Enhance Sternal Wound Healing after Cardiac Surgery: A Crosstalk between Innovation and Surgical Practice. Journal of Functional Biomaterials. 2024; 15(9):254. https://doi.org/10.3390/jfb15090254
Chicago/Turabian StyleFerrisi, Chiara, Francesco Loreni, Antonio Nenna, Omar Giacinto, Mario Lusini, and Massimo Chello. 2024. "Bioengineering Approaches and Novel Biomaterials to Enhance Sternal Wound Healing after Cardiac Surgery: A Crosstalk between Innovation and Surgical Practice" Journal of Functional Biomaterials 15, no. 9: 254. https://doi.org/10.3390/jfb15090254
APA StyleFerrisi, C., Loreni, F., Nenna, A., Giacinto, O., Lusini, M., & Chello, M. (2024). Bioengineering Approaches and Novel Biomaterials to Enhance Sternal Wound Healing after Cardiac Surgery: A Crosstalk between Innovation and Surgical Practice. Journal of Functional Biomaterials, 15(9), 254. https://doi.org/10.3390/jfb15090254