Effect of Silica Nanoparticle Treatment on Adhesion between Tissue-like Substrates and In Vivo Skin Wound Sealing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Poly (Dimethylacrylamide) (PDMA) and Gelatin Hydrogel
2.3. Lap Shear Adhesion Tests of SiNP Treated Hydrogels and Tissue Model
2.4. Animal Experiments
2.5. Histological Analysis
2.6. Western Blot Analysis
2.7. Quantitative Real-Time—Polymerase Chain Reaction (RT-qPCR) Analysis
2.8. Statistical Significance Analysis
3. Results
3.1. Effect of Treated SiNP Concentration on Adhesion between PDMA Hydrogel
3.2. Effect of Treated SiNP Size on Adhesion between Tissue Model
3.3. Effect of SiNP Treatment on Skin Incision Wound Closing
3.4. Effect of SiNP Treatment on Inflammatory Response from Wounded Skin
3.5. Effect of SiNPs Treatment on Tissue Regeneration and Connective Tissue Formation from the Wounded Skin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human Skin Wounds: A Major and Snowballing Threat to Public Health and the Economy: PERSPECTIVE ARTICLE. Wound Repair. Regen. 2009, 17, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Dobson, G.P. Trauma of Major Surgery: A Global Problem That Is Not Going Away. Int. J. Surg. 2020, 81, 47–54. [Google Scholar] [CrossRef]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef]
- Blaker, J.J.; Nazhat, S.N.; Boccaccini, A.R. Development and Characterisation of Silver-Doped Bioactive Glass-Coated Sutures for Tissue Engineering and Wound Healing Applications. Biomaterials 2004, 25, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Macneil, D.; Malvankar-Mehta, M.S. Comparing Sutures versus Staples for Skin Closure after Orthopaedic Surgery: Systematic Review and Meta-Analysis. BMJ Open 2016, 6, e009257. [Google Scholar] [CrossRef] [PubMed]
- Lauto, A.; Mawad, D.; Foster, L.J.R. Adhesive Biomaterials for Tissue Reconstruction. J. Chem. Technol. Biotechnol. 2008, 83, 464–472. [Google Scholar] [CrossRef]
- Ghosh, S.; More, N.; Kapusetti, G. Surgical Staples: Current State-of-the-Art and Future Prospective. Med. Nov. Technol. Devices 2022, 16, 100166. [Google Scholar] [CrossRef]
- Suarez, E.; Syed, F.; Rasgado, T.A.; Walmsley, A.; Mandal, P.; Bayat, A. Skin Equivalent Tensional Force Alters Keloid Fibroblast Behavior and Phenotype. Wound Repair. Regen. 2014, 22, 557–568. [Google Scholar] [CrossRef]
- Tuuli, M.G.; Rampersad, R.M.; Carbone, J.F.; Stamilio, D.; Macones, G.A.; Odibo, A.O. Staples Compared with Subcuticular Suture for Skin Closure after Cesarean Delivery: A Systematic Review and Meta-Analysis. Obstet. Gynecol. 2011, 117, 682–690. [Google Scholar] [CrossRef]
- Tamesue, S.; Endo, T.; Ueno, Y.; Tsurumaki, F. Sewing Hydrogels: Adhesion of Hydrogels Utilizing in Situ Polymerization of Linear Polymers inside Gel Networks. Macromolecules 2019, 52, 5690–5697. [Google Scholar] [CrossRef]
- Saito, J.; Furukawa, H.; Kurokawa, T.; Kuwabara, R.; Kuroda, S.; Hu, J.; Tanaka, Y.; Gong, J.P.; Kitamura, N.; Yasuda, K. Robust Bonding and One-Step Facile Synthesis of Tough Hydrogels with Desirable Shape by Virtue of the Double Network Structure. Polym. Chem. 2011, 2, 575–580. [Google Scholar] [CrossRef]
- Ge, L.; Chen, S. Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers 2020, 12, 939. [Google Scholar] [CrossRef] [PubMed]
- Spotnitz, W.D.; Burks, S. Hemostats, Sealants, and Adhesives: Components of the Surgical Toolbox. Transfusion 2008, 48, 1502–1516. [Google Scholar] [CrossRef] [PubMed]
- Bal-Ozturk, A.; Cecen, B.; Avci-Adali, M.; Topkaya, S.N.; Alarcin, E.; Yasayan, G.; Li, Y.C.E.; Bulkurcuoglu, B.; Akpek, A.; Avci, H.; et al. Tissue Adhesives: From Research to Clinical Translation. Nano Today 2021, 36, 101049. [Google Scholar] [CrossRef] [PubMed]
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.A.; Gargiulo, N.; Samuel, S.; Naveen, S.V.; Kamarul, T.; Towler, M.R. Gallium-Containing Mesoporous Bioactive Glass with Potent Hemostatic Activity and Antibacterial Efficacy. J. Mater. Chem. B 2016, 4, 71–86. [Google Scholar] [CrossRef]
- Asai, C.; Inomata, N.; Sato, M.; Koh, N.; Goda, S.; Ishikawa, H.; Tanaka, M.; Aihara, M. Allergic Contact Dermatitis Due to the Liquid Skin Adhesive Dermabond® Predominantly Occurs after the First Exposure. Contact Dermat. 2021, 84, 103–108. [Google Scholar] [CrossRef]
- Rose, S.; Prevoteau, A.; Elzière, P.; Hourdet, D.; Marcellan, A.; Leibler, L. Nanoparticle Solutions as Adhesives for Gels and Biological Tissues. Nature 2014, 505, 382–385. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.; Choi, Y.; Lee, D.S.; Kim, J.; Yi, G.R. Colloidal Mesoporous Silica Nanoparticles as Strong Adhesives for Hydrogels and Biological Tissues. ACS Appl. Mater. Interfaces 2017, 9, 31469–31477. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of Nanotechnology in Medical Field: A Brief Review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Meddahi-Pellé, A.; Legrand, A.; Marcellan, A.; Louedec, L.; Letourneur, D.; Leibler, L. Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by Aqueous Solutions of Nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 6369–6373. [Google Scholar] [CrossRef]
- Tarn, D.; Ashley, C.E.; Xue, M.; Carnes, E.C.; Zink, J.I.; Brinker, C.J. Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Acc. Chem. Res. 2013, 46, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Watermann, A.; Brieger, J. Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. Nanomaterials 2017, 7, 189. [Google Scholar] [CrossRef]
- de Moura Estevão, L.R.; Cassini-Vieira, P.; Leite, A.G.B.; de Carvalho Bulhões, A.A.V.; da Silva Barcelos, L.; Evêncio-Neto, J. Morphological Evaluation of Wound Healing Events in the Excisional Wound Healing Model in Rats. Bio Protoc. 2019, 9, e3285. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hourdet, D.; Petit, L. Hybrid Hydrogels: Macromolecular Assemblies through Inorganic Cross-Linkers. Macromol. Symp. 2010, 291–292, 144–158. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, K.; Kim, B.G.; Hwang, N.S.; Hyeon, T. Dual Action of a Tyrosinase-Mesoporous Silica Nanoparticle Complex for Synergistic Tissue Adhesion. Chem. Commun. 2022, 59, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Kitchener, J.A. Role of Surface Silanol Groups in the Flocculation of Silica Suspensions by Polyacrylamide Part 1.—Chemistry of the Adsorption Process; The Royal Society of Chemistry: London, UK, 1965. [Google Scholar]
- Netz, R.R.; Andelman, D. Neutral and Charged Polymers at Interfaces. Phys. Rep. 2003, 380, 1–95. [Google Scholar] [CrossRef]
- Santore, M.M. Dynamics in Adsorbed Homopolymer Layers: Understanding Complexity from Simple Starting Points. Curr. Opin. Colloid. Interface Sci. 2005, 10, 176–183. [Google Scholar] [CrossRef]
- Wu, H.; Li, F.; Wang, S.; Lu, J.; Li, J.; Du, Y.; Sun, X.; Chen, X.; Gao, J.; Ling, D. Ceria Nanocrystals Decorated Mesoporous Silica Nanoparticle Based ROS-Scavenging Tissue Adhesive for Highly Efficient Regenerative Wound Healing. Biomaterials 2018, 151, 66–77. [Google Scholar] [CrossRef]
- Tian, J.; Wong, K.K.Y.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K.H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem 2007, 2, 129–136. [Google Scholar] [CrossRef]
- Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Czupryn, M.; Antos-Bielska, M.; Szemraj, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic Acid-Modified Silver Nanoparticles for Wound Healing: The Importance of Size. Int. J. Nanomed. 2018, 13, 991–1007. [Google Scholar] [CrossRef]
- Rodero, M.P.; Khosrotehrani, K. Skin Wound Healing Modulation by Macrophages. Int. J. Clin. Exp. Pathol. 2010, 3, 643–653. [Google Scholar] [PubMed] [PubMed Central]
- Liechty, K.W.; Adzick, N.S.; Crombleholme, T.M. Diminished Interleukin 6 (IL-6) Production during Scarless Human Fetal Wound Repair. Cytokine 2000, 12, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, R.D.; Morgan, A. Secretory Granule Exocytosis. Physiol. Rev. 2003, 83, 581–632. [Google Scholar] [CrossRef]
- McNulty, A.K.; Schmidt, M.; Feeley, T.; Villanueva, P.; Kieswetter, K. Effects of Negative Pressure Wound Therapy on Cellular Energetics in Fibroblasts Grown in a Provisional Wound (Fibrin) Matrix. Wound Repair. Regen. 2009, 17, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, J.J.; Peppas, N.A. Enhanced Hydrogel Adhesion by Polymer Interdiffusion: Use of Linear Poly(Ethylene Glycol) as an Adhesion Promoter. J. Biomater. Sci. Polym. Ed. 1997, 8, 421–436. [Google Scholar] [CrossRef]
- Tamagawa, H.; Takahashi, Y. Adhesion Force Behavior between Two Gels Attached with an Electrolytic Polymer Liquid. Mater. Chem. Phys. 2008, 107, 164–170. [Google Scholar] [CrossRef]
- Techawanitchai, P.; Ebara, M.; Idota, N.; Asoh, T.A.; Kikuchi, A.; Aoyagi, T. Photo-Switchable Control of PH-Responsive Actuators via PH Jump Reaction. Soft Matter 2012, 8, 2844–2851. [Google Scholar] [CrossRef]
- Alvarez, G.S.; Hélary, C.; Mebert, A.M.; Wang, X.; Coradin, T.; Desimone, M.F. Antibiotic-Loaded Silica Nanoparticle-Collagen Composite Hydrogels with Prolonged Antimicrobial Activity for Wound Infection Prevention. J. Mater. Chem. B 2014, 2, 4660–4670. [Google Scholar] [CrossRef]
- Dam, P.; Celik, M.; Ustun, M.; Saha, S.; Saha, C.; Kacar, E.A.; Kugu, S.; Karagulle, E.N.; Tasoglu, S.; Buyukserin, F.; et al. Wound Healing Strategies Based on Nanoparticles Incorporated in Hydrogel Wound Patches. RSC Adv. 2023, 13, 21345–21364. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, Y.; Kim, T.R.; Park, E.S.; Park, J.H.; Youn, H.S.; Hwang, D.Y.; Seo, S. Effect of Silica Nanoparticle Treatment on Adhesion between Tissue-like Substrates and In Vivo Skin Wound Sealing. J. Funct. Biomater. 2024, 15, 259. https://doi.org/10.3390/jfb15090259
Jeon Y, Kim TR, Park ES, Park JH, Youn HS, Hwang DY, Seo S. Effect of Silica Nanoparticle Treatment on Adhesion between Tissue-like Substrates and In Vivo Skin Wound Sealing. Journal of Functional Biomaterials. 2024; 15(9):259. https://doi.org/10.3390/jfb15090259
Chicago/Turabian StyleJeon, Yeji, Tae Ryeol Kim, Eun Seo Park, Jae Hyun Park, Han Sung Youn, Dae Youn Hwang, and Sungbaek Seo. 2024. "Effect of Silica Nanoparticle Treatment on Adhesion between Tissue-like Substrates and In Vivo Skin Wound Sealing" Journal of Functional Biomaterials 15, no. 9: 259. https://doi.org/10.3390/jfb15090259
APA StyleJeon, Y., Kim, T. R., Park, E. S., Park, J. H., Youn, H. S., Hwang, D. Y., & Seo, S. (2024). Effect of Silica Nanoparticle Treatment on Adhesion between Tissue-like Substrates and In Vivo Skin Wound Sealing. Journal of Functional Biomaterials, 15(9), 259. https://doi.org/10.3390/jfb15090259