Research Interest in Copper Materials for Caries Management: A Bibliometric Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection and Data Extraction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petersen, P.E. World Health Organization global policy for improvement of oral health—World Health Assembly 2007. Int. Dent. J. 2008, 58, 115–121. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, C.; Yang, H.; Wei, H.; Li, Y. Antibacterial Activity of a Lysin LysP53 against Streptococcus mutans. J. Dent. Res. 2023, 102, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Dollwet, H.H.A.; Sorenson, J.R.J. Historic uses of copper compounds in medicine. Trace Elem. Med. 1985, 2, 80–87. [Google Scholar]
- O’Gorman, J.; Humphreys, H. Application of copper to prevent and control infection. Where Are We Now? J. Hosp. Infect. 2012, 81, 217–223. [Google Scholar] [CrossRef]
- Meiers, J.C.; Schachtele, C.F. The effect of an antibacterial solution on the microflora of human incipient fissure caries. J. Dent. Res. 1984, 63, 47–51. [Google Scholar] [CrossRef]
- Afseth, J.; Amsbaugh, S.M.; Monell-Torrens, E.; Bowen, W.H.; Rölla, G.; Brunelle, J.; Li, S.; Dahl, E. Effect of topical application of copper in combination with fluoride in drinking water on experimental caries in rats. Caries Res. 1984, 18, 134–140. [Google Scholar] [CrossRef]
- Al-Hijazi, A.Y.; Hasan, N.; Nasr, B.K.; Jasim Al-Khafaji, H.H.; Al-Khafaji, B.; Abdah Alanssari, B.F.; Jalil, A.T. Recent advances in the use of inorganic nanomaterials as anti caries agents. Heliyon 2023, 9, e15326. [Google Scholar] [CrossRef]
- Essa, A.M.; Khallaf, M.K. Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles. BMC Microbiol. 2016, 16, 144. [Google Scholar] [CrossRef]
- Brookes, S.J.; Shore, R.C.; Robinson, C.; Wood, S.R.; Kirkham, J. Copper ions inhibit the demineralisation of human enamel. Arch. Oral. Biol. 2003, 48, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.F.; Bermudez, J.; Dávila-Sánchez, A.; Alegría-Acevedo, L.F.; Méndez-Bauer, L.; Hernández, M.; Astorga, J.; Reis, A.; Loguercio, A.D.; Farago, P.V.; et al. Zinc oxide and copper nanoparticles addition in universal adhesive systems improve interface stability on caries-affected dentin. J. Mech. Behav. Biomed. Mater. 2019, 100, 103366. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Memarzadeh, K.; Chang, B.; Zhang, Y.; Ma, Z.; Allaker, R.P.; Ren, L.; Yang, K. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci. Rep. 2016, 6, 29985. [Google Scholar] [CrossRef]
- Singh, S.; Prasad, A.S.; Rajeshkumar, S. Cytotoxicity, Antimicrobial, Anti-inflammatory and Antioxidant Activity of Camellia Sinensis and Citrus Mediated Copper Oxide Nanoparticle-An In vitro Study. J. Int. Soc. Prev. Community Dent. 2023, 13, 450–457. [Google Scholar] [CrossRef]
- Torres-Rosas, R.; Torres-Gómez, N.; García-Contreras, R.; Scougall-Vilchis, R.J.; Domínguez-Díaz, L.R.; Argueta-Figueroa, L. Copper nanoparticles as nanofillers in an adhesive resin system: An in vitro study. Dent. Med. Probl. 2020, 57, 239–246. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, M.; Deng, H.; Liu, Z.; Wang, L.; Ge, L. Facile and versatile strategy for fabrication of highly bacteriostatic and biocompatible SLA-Ti surfaces with the regulation of Mg/Cu coimplantation ratio for dental implant applications. Colloids Surf. B Biointerfaces 2023, 223, 113180. [Google Scholar] [CrossRef]
- Duraisamy, S.; Anandan, N.; Kannan, R. Evaluation of Antibacterial Effect of Hybrid Nano-coating of Stainless Steel Orthodontic Brackets on Streptococcus Mutans—An In vitro Study. J. Pharm. Bioallied Sci. 2024, 16, S1784–S1791. [Google Scholar] [CrossRef] [PubMed]
- Durieux, V.; Gevenois, P.A. Bibliometric indicators: Quality measurements of scientific publication. Radiology 2010, 255, 342–351. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef]
- de Sousa, F.D.B. Management of plastic waste: A bibliometric mapping and analysis. Waste Manag. Res. 2021, 39, 664–678. [Google Scholar] [CrossRef]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Niu, J.Y.; Yu, O.Y.; Chu, C.H. Copper Materials for Caries Management: A Scoping Review. J. Funct. Biomater. 2024, 15, 10. [Google Scholar] [CrossRef]
- Amiri, M.; Etemadifar, Z.; Daneshkazemi, A.; Nateghi, M. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species. J. Dent. Biomater. 2017, 4, 347–352. [Google Scholar] [PubMed]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Yu, O.Y.; Lung, C.Y.K.; Chu, C.H. Application of Copper Nanoparticles in Dentistry. Nanomaterials 2022, 12, 805. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Malaquias, P.; Hass, V.; Matos, T.P.; Lourenço, L.; Reis, A.; Loguercio, A.D.; Farago, P.V. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J. Dent. 2017, 61, 12–20. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Alegría-Acevedo, L.F.; Méndez-Bauer, L.; Bermudez, J.; Dávila-Sánchez, A.; Buvinic, S.; Hernández-Moya, N.; Reis, A.; Loguercio, A.D.; Farago, P.V.; et al. Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles. J. Dent. 2019, 82, 45–55. [Google Scholar] [CrossRef]
- Toodehzaeim, M.H.; Zandi, H.; Meshkani, H.; Hosseinzadeh Firouzabadi, A. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives. J. Dent. (Shiraz) 2018, 19, 1–5. [Google Scholar]
- Argueta-Figueroa, L.; Scougall-Vilchis, R.J.; Morales-Luckie, R.A.; Olea-Mejía, O.F. An evaluation of the antibacterial properties and shear bond strength of copper nanoparticles as a nanofiller in orthodontic adhesive. Aust. Orthod. J. 2015, 31, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Cocco, A.R.; Rosa, W.L.; Silva, A.F.; Lund, R.G.; Piva, E. A systematic review about antibacterial monomers used in dental adhesive systems: Current status and further prospects. Dent. Mater. 2015, 31, 1345–1362. [Google Scholar] [CrossRef]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin-based composite performance: Are there some things we can’t predict? Dent. Mater. 2013, 29, 51–58. [Google Scholar] [CrossRef]
- Aguilar-Perez, D.; Vargas-Coronado, R.; Cervantes-Uc, J.M.; Rodriguez-Fuentes, N.; Aparicio, C.; Covarrubias, C.; Alvarez-Perez, M.; Garcia-Perez, V.; Martinez-Hernandez, M.; Cauich-Rodriguez, J.V. Antibacterial activity of a glass ionomer cement doped with copper nanoparticles. Dent. Mater. J. 2020, 39, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Patthi, B.; Singla, A.; Malhi, R.; Goel, D.; Kumari, M. The role of copper and zinc in the prevention of dental caries—A systematic review. J. Indian Assoc. Public Health Dent. 2020, 18, 4–12. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, S.; Xu, X.; Du, Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry—A narrative review. Front. Surg. 2022, 9, 905892. [Google Scholar] [CrossRef] [PubMed]
- Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring topics in bibliometric research through citation networks and semantic analysis. Front. Res. Metr. Anal. 2021, 6, 742311. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.T.; Waaijer, C.J.; Palmblad, M. Scientific workflows for bibliometrics. Scientometrics 2016, 107, 385–398. [Google Scholar] [CrossRef]
- Ke, L.; Lu, C.; Shen, R.; Lu, T.; Ma, B.; Hua, Y. Knowledge Mapping of Drug-Induced Liver Injury: A Scientometric Investigation (2010–2019). Front. Pharmacol. 2020, 11, 842. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tosevska, A.; Klager, E.; Eibensteiner, F.; Laxar, D.; Stoyanov, J.; Glisic, M.; Zeiner, S.; Kulnik, S.T.; Crutzen, R.; et al. Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature. J. Med. Internet Res. 2021, 23, e25499. [Google Scholar] [CrossRef]
- Kumaravel, V.; Nair, K.M.; Mathew, S.; Bartlett, J.; Kennedy, J.E.; Manning, H.G.; Whelan, B.J.; Leyland, N.S.; Pillai, S.C. Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants. Chem. Eng. J. 2021, 416, 129071. [Google Scholar] [CrossRef]
- Argueta-Figueroa, L.; Morales-Luckie, R.A.; Scougall-Vilchis, R.J.; Olea-Mejía, O.F. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials. Prog. Nat. Sci. Mater. Int. 2014, 24, 321–328. [Google Scholar] [CrossRef]
- Afseth, J.; Amsbaugh, S.M.; Monell-Torrens, E.; Bowen, W.H.; Rølla, G.; Brunelle, J.; Dahl, E. Effect of copper applied topically or in drinking water on experimental caries in rats. Caries Res. 1984, 18, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Yamamoto, A.; Goto, N. Rapid identification of mutans streptococcal species. Microbiol. Immunol. 1996, 40, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xie, Q.; Bedran-Russo, A.K.; Pan, S.; Ling, J.Q.; Wu, C.D. The preventive effect of grape seed extract on artificial enamel caries progression in a microbial biofilm-induced caries model. J. Dent. 2014, 42, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Li, J.Y.; He, L.B.; Zhou, X.D. Natural Products and Caries Prevention. Caries Res. 2015, 49, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Rajamma, R.; Gopalakrishnan Nair, S.; Abdul Khadar, F.; Baskaran, B. Antibacterial and anticancer activity of biosynthesised CuO nanoparticles. IET Nanobiotechnol. 2020, 14, 833–838. [Google Scholar] [CrossRef]
- Wang, W.; Mo, W.; Xiao, X.; Cai, M.; Feng, S.; Wang, Y.; Zhou, D. Antibiotic-loaded lactoferrin nanoparticles as a platform for enhanced infection therapy through targeted elimination of intracellular bacteria. Asian J. Pharm. Sci. 2024, 19, 100926. [Google Scholar] [CrossRef]
- Anna Thomas, A.; Varghese, R.M.; Rajeshkumar, S. Antimicrobial effects of copper nanoparticles with green tea and neem formulation. Bioinformation 2022, 18, 284–288. [Google Scholar] [CrossRef]
- Ashour, A.A.; Felemban, M.F.; Felemban, N.H.; Enan, E.T.; Basha, S.; Hassan, M.M.; Gad El-Rab, S.M.F. Comparison and Advanced Antimicrobial Strategies of Silver and Copper Nanodrug-Loaded Glass Ionomer Cement against Dental Caries Microbes. Antibiotics 2022, 11, 756. [Google Scholar] [CrossRef]
- Sabatini, C.; Mennito, A.S.; Wolf, B.J.; Pashley, D.H.; Renné, W.G. Incorporation of bactericidal poly-acrylic acid modified copper iodide particles into adhesive resins. J. Dent. 2015, 43, 546–555. [Google Scholar] [CrossRef]
- Li, J.; Wyllie, R.; Jensen, P. A novel competence pathway in the oral pathogen Streptococcus sobrinus. J. Dent. Res. 2021, 100, 542–548. [Google Scholar] [CrossRef]
- Saravia, M.E.; Nelson-Filho, P.; Ito, I.Y.; da Silva, L.A.; da Silva, R.A.; Emilson, C.G. Morphological differentiation between S. mutans and S. sobrinus on modified SB-20 culture medium. Microbiol. Res. 2011, 166, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Majumdar, B.; Sarode, S.C.; Sarode, G.S.; Awan, K.H. Oropharyngeal Candidosis in HIV-Infected Patients-An Update. Front. Microbiol. 2018, 9, 980. [Google Scholar] [CrossRef]
- Lee, Y.S.; Seki, E. In Vivo and In Vitro Models to Study Liver Fibrosis: Mechanisms and Limitations. Cell. Mol. Gastroenterol. Hepatol. 2023, 16, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.L.; Yu, L.L.; Tian, F.W.; Zhao, J.X.; Zhai, Q.X. In Vitro models to study human gut-microbiota interactions: Applications, advances, and limitations. Microbiol. Res. 2023, 270, 127336. [Google Scholar] [CrossRef]
- Zendron, M.P.; Rocha, A.O.; Simões, M.; Santana, C.M.; Bolan, M.; Cardoso, M. Fluoride Varnish in Dentistry: A Bibliometric Analysis of the 100 Most-Cited Papers. Caries Res. 2023, 57, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis. J. Funct. Biomater. 2022, 13, 210. [Google Scholar] [CrossRef]
- Jiang, C.M.; Duangthip, D.; Chan, A.K.Y.; Tamrakar, M.; Lo, E.C.M.; Chu, C.H. Global research interest regarding silver diamine fluoride in dentistry: A bibliometric analysis. J. Dent. 2021, 113, 103778. [Google Scholar] [CrossRef]
- Mei, M.L.; Li, Q.L.; Chu, C.H.; Lo, E.C.; Samaranayake, L.P. Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 4. [Google Scholar] [CrossRef]
- Hajar, A.; Karakus, M. A bibliometric mapping of shadow education research: Achievements, limitations, and the future. Asia Pac. Educ. Rev. 2022, 23, 341–359. [Google Scholar] [CrossRef]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. J. Vis. Exp. 2019, e58494. [Google Scholar] [CrossRef]
- Lazarinis, F.; Vilares, J.; Tait, J.; Efthimiadis, E.N. Current research issues and trends in non-English Web searching. Inf. Retr. 2009, 12, 230–250. [Google Scholar] [CrossRef]
- Amano, T.; Berdejo-Espinola, V.; Christie, A.P.; Willott, K.; Akasaka, M.; Báldi, A.; Berthinussen, A.; Bertolino, S.; Bladon, A.J.; Chen, M.; et al. Tapping into non-English-language science for the conservation of global biodiversity. PLoS Biol. 2021, 19, e3001296. [Google Scholar] [CrossRef] [PubMed]
Category | Material | Property | Application |
---|---|---|---|
Copper and copper alloy materials | Cu nanoparticles, Cu-Ni nanoparticles, Cu-Ti alloy, Cu-Fe alloy | Inhibit the growth of S. mutans, S. aureus, S. sanguinis, E. coli, P. gingivalis, and S. sanguinis; Improve the substrate’s mechanical properties such as micro-tensile bond strength, nanoleakage, microhardness, ultimate tensile strength, durability, cross-linking density, solubility, and corrosive effects. | Topical agent, Dental adhesive, Restorative filler, Dental implant, Orthodontic appliances |
Copper salt materials | CuSO4 solution, Cu3(PO4)2 solution, CuF2 solution, CuCl2 solution, CuI nanoparticles | Inhibit the growth of S. mutans, E. faecalis, S. sobrinus, L. acidophilus, and C. albicans; Improve mechanical properties such as ultimate tensile strength and microhardness. | Topical agent, Dental adhesive, Restorative filler, Mouthwash, Drinking water, Sugar |
Copper oxide materials | CuO cement, CuO nanoparticles | Inhibit the growth of S. mutans, L. acidophilus, L. casei, C. albicans, C. krusei, C. glabrata, S. aureus, E.coli, S. sobrinus, P. aeruginosa, and S. salivarius; Improve the substrate’s mechanical properties such as micro-tensile bond strength, slow and sustained release profile, water sorption, and solubility. | Topical agent, Dental adhesive, Restorative filler, Orthodontic appliances |
Journal | Publication Number | Total Citation |
---|---|---|
Top five journals with highest publication number | ||
Caries Research | 6 | 149 |
Dental Materials | 5 | 150 |
Journal of Dentistry | 4 | 96 |
Nanomaterials | 4 | 59 |
Journal of Dental Research | 3 | 60 |
Top five journals with highest citation counts | ||
Scientific Reports | 2 | 210 |
Dental Materials | 5 | 150 |
Caries Research | 6 | 149 |
Chemical Engineering Journal | 2 | 134 |
Progress in Natural Science: Materials International | 1 | 134 |
Keywords | Strength | Burst Period |
---|---|---|
nanoparticles | 3.84 | 2021–2024 |
antibacterial activity | 2.21 | 2020–2021 |
mechanical property | 1.92 | 2022–2024 |
oxide nanoparticles | 1.79 | 2016–2017 |
quaternary ammonium | 1.76 | 2017–2018 |
antibacterial property | 1.70 | 2020–2024 |
copper nanoparticles | 1.64 | 2017–2020 |
bond strength | 1.61 | 2015–2017 |
behavior | 1.43 | 2022–2024 |
cuo nanoparticles | 1.36 | 2019–2022 |
Reference (Title, Year, Journal, Citation) | Strength | Burst Period |
---|---|---|
Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species, 2017, Journal of Dental Biomaterials [22] | 3.14 | 2021–2022 |
Application of Copper Nanoparticles in Dentistry, 2022, Nanomaterials [23] | 2.84 | 2022–2024 |
The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces, 2017, Journal of Dentistry [24] | 2.51 | 2020–2022 |
Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles, 2019, Journal of Dentistry [25] | 2.34 | 2022–2024 |
The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives, 2018, Journal of Dentistry [26] | 2.30 | 2020–2021 |
An evaluation of the antibacterial properties and shear bond strength of copper nanoparticles as a nanofiller in orthodontic adhesive, 2015, Australian Orthodontic Journal [27] | 2.22 | 2017–2020 |
A systematic review about antibacterial monomers used in dental adhesive systems: Current status and further prospects, 2015, Dental Materials [28] | 2.02 | 2017–2019 |
All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates, 2017, Dental Materials [29] | 1.69 | 2021–2022 |
Resin-based composite performance: are there some things we can’t predict, 2013, Dental Materials [30] | 1.64 | 2017–2018 |
Antibacterial activity of a glass ionomer cement doped with copper nanoparticles, 2020, Dental Materials Journal [31] | 1.61 | 2022–2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Niu, J.Y.; Yu, O.Y.; Chu, C.-H. Research Interest in Copper Materials for Caries Management: A Bibliometric Analysis. J. Funct. Biomater. 2024, 15, 274. https://doi.org/10.3390/jfb15090274
Xu VW, Nizami MZI, Yin IX, Niu JY, Yu OY, Chu C-H. Research Interest in Copper Materials for Caries Management: A Bibliometric Analysis. Journal of Functional Biomaterials. 2024; 15(9):274. https://doi.org/10.3390/jfb15090274
Chicago/Turabian StyleXu, Veena Wenqing, Mohammed Zahedul Islam Nizami, Iris Xiaoxue Yin, John Yun Niu, Ollie Yiru Yu, and Chun-Hung Chu. 2024. "Research Interest in Copper Materials for Caries Management: A Bibliometric Analysis" Journal of Functional Biomaterials 15, no. 9: 274. https://doi.org/10.3390/jfb15090274
APA StyleXu, V. W., Nizami, M. Z. I., Yin, I. X., Niu, J. Y., Yu, O. Y., & Chu, C. -H. (2024). Research Interest in Copper Materials for Caries Management: A Bibliometric Analysis. Journal of Functional Biomaterials, 15(9), 274. https://doi.org/10.3390/jfb15090274