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Abstract: We systematically investigated the roles of tail length on the self-assembly of shape
amphiphiles composed of a hydrophobic polymer chain (tail) and a hydrophilic nanoparticle in
selective solvent using Brownian dynamics simulations. The shape amphiphiles exhibited a variety of
self-assembled aggregate morphologies which can be tuned by changing tail length (n) in combination
with amphiphile concentration (ϕ) and system temperature (T∗). Specifically, at high ϕ with T∗ = 1.4,
the morphology varied following the sequence “spheres -> cylinders -> vesicles” upon increasing n,
agreeing well with experimental observations. At low ϕ with T∗ = 1.4 or at high ϕ with T∗ = 1.2,
the morphology sequence becomes “spheres or spheres and cylinders mixture -> cylinders -> vesicles
-> spheres” upon increasing n, which has not been found experimentally. Two morphological phase
diagrams depending on n and ϕ were constructed for T∗ = 1.4 and 1.2, respectively. The rich
phase behaviors on varying tail length could provide the feasible routes to fabricate target aggregate
morphologies in various applications, especially for the vesicles with tunable thickness of membranes
that are crucial in drug and gene delivery.

Keywords: self-assembly; single-polymer-tethered nanoparticle amphiphiles; varying tail length;
Brownian dynamics simulations

1. Introduction

The distinct properties of two blocks in a molecule including shape [1–23], compatibility [24–26],
rigidity [27] and charge [28,29] offer many opportunities in controlling the morphologies by micro-phase
separation. Of these, understanding the self-assembly of amphiphilic polymer-tethered nanoparticles is
critical to developing novel fabrication materials with highly diverse and thermodynamically stable and
metastable structures in the solution [1–10], bulk [4,5] and thin-film [4,5]. The shape of the nanoparticles
with certain rigidity and anisotropy has been recognized as an important parameter in the self-assembly
of amphiphiles. “Shape amphiphiles” thus refer to the entities constructed from those chemically distinct
and geometrically anisotropic nano-building blocks [1], such as polystyrene-hydrophilic fullerene
(C60) [1–5] conjugates, polystyrene-hydrophilic polyhedral oligomeric silsesquioxane (POSS) [3–8]
conjugates, polymer-tethered inorganic/organic nanoparticles [9], poly(2-(dimethylamino)ethyl
methacrylate)-block-polystyrene [10], etc. The studies on their self-assembled behaviors are not
only scientifically intriguing, but also technologically anticipating in nanopatterning fabrications and
others [5].

Nanomaterials 2020, 10, 2108; doi:10.3390/nano10112108 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-8475-6504
https://orcid.org/0000-0002-9561-0770
http://dx.doi.org/10.3390/nano10112108
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/11/2108?type=check_update&version=2


Nanomaterials 2020, 10, 2108 2 of 13

In dilute solutions, the self-assembled morphologies of amphiphilic block copolymers have been
identified, and the mechanisms of morphology formation and transitions have been elucidated [30–39].
In contrast, the self-assembly of shape amphiphiles is much less understood than that of amphiphilic
block copolymers. Therefore, computer simulations have been employed to give insight into the
self-assembly of shape amphiphiles. Specifically, Wang’s group investigated the self-assembly of shape
amphiphiles in selective solvents by employing the dissipative particle dynamics approach [11,12].
They found that the shape amphiphiles tethered by one tail at the length of 5–31 beads (the size of
a hydrophilic H-bead is 1.5–2.0 times of a tail bead in their study) can self-assemble into vesicles,
worm-like cylinders, spheres, etc. by changing the interaction parameters between hydrophilic
nanoparticle and solvent, the length of hydrophobic tail or the concentration of amphiphiles. Moreover,
the amphiphiles with short tails tend to form vesicles, while the ones with long tails prefer to form
spherical micelles [11]. In our previous work, we studied the self-assembly of giant amphiphiles based
on polymer-tethered nanoparticle in selective solvents [13]. We found that the shape amphiphiles
with one tail of 16 beads self-assembled into spherical micelles, while the shape amphiphiles with
one tail of 48 beads self-assembled into cylindrical micelles at the reduced temperature of 1.2 and the
amphiphile concentration of 3.2% (the diameter of a hydrophilic H-bead is three times that of a tail
bead) [13]. These results present significant advances in the simulation studies of the self-assembly
of the polymer-tethered nanoparticle shape amphiphiles with short polymer tails. However, for the
shape amphiphiles with a much longer polymer tail, computer simulations have not been explored to
understand their self-assembly in dilute solution.

Recently, Cheng’s group designed and synthesized shape amphiphiles with a much longer polymer
tail based on carboxylic acid-functionalized fullerene (AC60) [1] or carboxylic acid-functionalized
polyhedral oligomeric silsesquioxane (APOSS) [6] as hydrophilic nanoparticle and polystyrene (PS)
as hydrophobic polymer tail. In a common solvent, which was a mixture of 1, 4-dioxane and
dimethylformamide (DMF) (w/w = 1/1) with water serving as selective solvent, self-assembly of the series
of PSn–AC60 has been systematically studied by varying hydrophobic tail length and/or amphiphilic
concentration [1]. They found that the self-assembly morphologies of PSn–AC60 amphiphiles were
always the spherical micelles in the low amphiphilic concentration range of equal to or less than
0.25 (wt)%; and the morphological transitions of aggregates occur from spherical micelles to cylindrical
micelles and further to bilayer vesicles as increasing the amphiphilic concentration 0.25 (wt)% and/or
the length of PS tail [1]. They also found that PSn–APOSS in selective solvents can self-assemble into
vesicles, worm-like cylinders and spheres upon increasing the degree of ionization of the carboxylic
acid groups on the POSS nanoparticles [6]. These findings indicate that the self-assembly of the shape
amphiphiles as a unique class of new materials arrests the essential structural features of the traditional
amphiphilic block copolymers, but are not completely the same as copolymers due to the nanoparticle
possessing much larger sizes [4–6]. Therefore, there are many issues remaining, such as the effects of
the coordination of the much longer hydrophobic tail and the amphiphile concentration at different
temperatures on the morphologies and the dynamic formation processes of aggregates. Furthermore,
the pathways of vesicle formation of shape amphiphiles with a longer tail are still unclear. There are two
pathways (Mechanisms I and II) of vesicle formation in amphiphilic block copolymers that have been
found and corroborated [40–49]. In Mechanism I, vesicles are formed via intermediated bilayer-type
structures [40–46]. In Mechanism II, the intermediated structures are large micelles [44–49]. In the
systems of polymer-tethered nanoparticle shape amphiphiles with two polymer tails, the transitions
between Mechanisms I and II happened by controlling the hydrophobic tail length or the amphiphile
concentration [13]. However, the effect of the tail length on the pathways of vesicle formation has not
been exposed systematically before.

Brownian dynamics as a stochastic molecular dynamics simulation method allows the simulations
of long time and large systems [14–16]. As shown by Glotzer and coworkers [14–23], Brownian dynamics
is a very promising approach to investigate the self-assembly behaviors of the polymer-tethered
nanoparticle shape amphiphiles [16]. Therefore, the primary objective of this study was, using Brownian
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dynamics method, to detect the phase behaviors and the dynamic formation processes of typical
aggregates from the shape amphiphiles with one polymer tail in dilute solution. Unlike hydrophobic
tail length n = 16 or 48 used in our previous works [13], we performed the simulations in a much
wide range of tail length. Specifically, the conditions of T∗ = 1.4 and n = 70− 140 as well as T∗ = 1.2
and n = 54− 120 were investigated. Two morphological phase diagrams depending on n and ϕ were
constructed for T∗ = 1.4 and 1.2, respectively. The pathways of aggregate formation were distinguished
for different tail lengths. Importantly, the thickness of membranes of vesicles that is crucial in the
release of drug and gene was tuned by altering the tail length. Moreover, the relationship between
the membrane thickness and the tail length was revealed. The reason for the formation of vesicles
or micelles at different tail length was explained. These simulation results not only expose the roles
of the tail length in the self-assembly of shape amphiphile, but also could be exploited in the future
fabrication of aggregated structures.

2. Simulation and Method

Our study focused on the self-assembly of polymer-tethered nanoparticle shape amphiphiles in a
selective solvent using the Brownian dynamics approach. Each model amphiphile is composed of
a linear hydrophobic polymer tail (Pn) and a hydrophilic nanoparticle (H-bead), denoted as Pn–H,
as shown in Figure 1. The diameter of the nanoparticle is three times that of a polymer tail bead,
the n in the denotation of model amphiphile is the number of coarse-grained beads (P-bead) on the
hydrophobic tail, and its value was in the range of 23–180 in our simulations, which is similar to the
shape amphiphiles synthesized by Yu et al. [1].
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where k is the FENE spring constant and R0 is the maximum bond length. Here, we set k = 30.0ε/σ2

and R0 = 1.5σ.
The Brownian dynamics simulation method was proven to be suitable for research into the

self-assembly of polymer-tethered nanoparticle shape amphiphiles [13–23]. In Brownian dynamics,
the motion of each bead in the system is subjected to conservative, random and frictional forces
Fc

i (ri(t)), FR
i (t) and γivi(t), respectively, and follows the Langevin equation:

mi
..
ri(t) = FC

i (ri(t)) + FR
i (t) − γivi(t) (3)

where mi, ri, vi and γi are the mass, position, velocity and friction coefficient of the ith bead, respectively.
t is the time. Here, we set γP = 1.0 for P-bead and γH = 3.0 for H-bead. The solvent effects are
implicitly adopted by the random force that satisfies the fluctuation–dissipation theorem:〈

FR
i (t)F

R
j (t
′)
〉
= 6γikBTδi j(t− t′) (4)

where kB is the Boltzmann constant and T is the temperature. The coupling between friction and
random forces acts as an effective thermostat [13,53].

All simulations were performed in an NVT ensemble in a cubic box under the periodic boundary
conditions. The box side length was set at 100. The concentrations of the amphiphiles (ϕ) and
hydrophilic beads (ϕH) in the cubic simulation box are defined as ϕ = NHVH+NPVP

V and ϕH = NHVH
V ,

respectively, in which NH and NP are the total numbers of hydrophilic H-beads and hydrophobic
P-beads, respectively. VH, VP and V are the volume of H-bead, P-bead and the cubic simulation
box, respectively. εPP = 1.0, σ = dP = 1.0 and the mass of a P bead mP = 1.0 are taken as the
basic units of energy, length and mass, respectively, thus the time unit τ = σ

√
mP/εPP. We fixed

the mass of an H-bead at M = 20.0, the diameter of an H-bead at dH = 3.0, the cutoff radius at
βPP = 3.0, βHH = 2

1
6 and change parameters αPP and αHH in the ranges of 0.8–1.0 and 0–0.5 to reflect

hydrophobicity of the P-beads and hydrophilicity of the H-beads, respectively. εHH, βPH and εPH were
also changed to reproduce the available experimental results. The amphiphile concentration and the
reduced temperature (T∗ = kBT/εPP) were varied in the ranges of 0.8–6.2% and 1.2–1.4, respectively,
to investigate their effects on the self-assembly behaviors of the shape amphiphiles. We checked the
size effect of the simulation box, which is larger than simulation systems with box side length of 140
or 200 with ϕ = 3.2% at T∗ = 1.4, and found that good reproducibility was obtained. An integration
time step of δt = 0.005 was used, and the simulations lasted 2.0× 108δt or 4.0× 108δt. All simulations
were performed with HOOMD package [54–56] and some data with GALAMOST [57] on an NVIDIA
GeForce GTX 1080Ti GPU.

3. Results and Discussion

In this study, we investigated the roles of tail length on the formation and transitions of morphology
of shape amphiphiles consisting of a hydrophilic nanoparticle bead and a grafted hydrophobic polymer
tail (named as Pn–H) in a selective solvent by changing tail length n at certain amphiphile concentration
ϕ and system temperature T∗. The effects of these parameters on the self-assembled morphologies of
the shape amphiphiles were studied by testing possible parameters. Figure 2a shows the morphological
phase diagram of Pn–H as a function of n and ϕ at T∗ = 1.4. Typical snapshots are shown in Figure 2b.
We found that the morphologies of the aggregates are significantly influenced by ϕ and n. Specifically,
five distinct types of aggregates are observed: spherical micelles, worm-like cylinders, cylindrical
networks, bilayer vesicles and tubular vesicles. At the low concentration range of ϕ ≤ 1.4%, the Pn–H
amphiphiles with hydrophobic tail length in the range of n = 23–140 form spherical micelles, and the
size of micelles increases upon increasing n. When n and ϕ are relatively larger, the transitions of
the self-assembled morphologies depending on ϕ or n are given as follows: for P46–H amphiphiles,
the self-assembled morphology changes from spheres atϕ = 1.4%, to worm-like aggregates in the range
of ϕ = 1.7%–2.6% and finally to cylindrical networks in the range of ϕ = 3.2%–6.2%; and for P70–H
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amphiphiles, the spherical aggregates remain until ϕ = 2.0%, then change to worm-like aggregates at
ϕ = 2.6%, further to spherical vesicles in the range of ϕ = 3.2%–5.6% and finally to tubular vesicles at
ϕ = 6.2%. However, for n = 85–140, the morphology of aggregates transforms from spherical micelles
directly to spherical vesicles upon increasing ϕ, without worm-like aggregates. The critical amphiphile
concentration (ϕc) of the vesicle formation is the lowest at n = 85 (ϕ = 2.6%) and slightly increases
upon increasing n.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 12 
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Figure 3a,b shows the morphological phase diagram and the typical snapshots of the aggregates
formed by the Pn–H amphiphiles as a function of ϕ and n at T∗ = 1.2. It is clearly shown that the
self-assembled morphologies of the Pn–H systems are spherical micelles in the lower amphiphile
concentration range of ϕ ≤ 0.8%. With the increase of ϕ, at n = 23, the self-assembled morphology
is a mixture of spherical micelles and worm-like cylinders in the range of ϕ = 1.4%–6.2%; at n = 46,
the self-assembled morphology changes from a mixture of spherical micelles and worm-like cylinders
in the range of ϕ = 1.4%–3.2% to worm-like cylinders in the range of ϕ = 3.8%–4.4% and further to
Y-like cylinders in the range of ϕ = 5.0%–6.2%; at n = 54, the self-assembled morphology changes from
spherical micelles at ϕ = 1.4% to mixed morphologies of spherical micelles and worm-like cylinders in
the range of ϕ = 2.0%–3.2%, further to worm-like cylinders in the range of ϕ = 3.8%–4.4% and finally
to bilayer vesicles in the range of ϕ = 5.0%–6.2%; at n = 56–120, the morphology transition occurs from
spherical micelles directly to bilayer vesicles, and the transitions are similar to the above simulation
results at T∗ = 1.4; and at n = 140, the self-assembled morphology is only single spherical micelles.
The ϕc value of the vesicle formation is the lowest at n = 56 (ϕ = 2.6%); it also slightly increases with
the increasing of n, which is similar to that of T∗ = 1.4. We observed cylindrical micelles for the shape
amphiphiles with a short tail (n < 80 for T∗ = 1.4 and n < 55 for T∗ = 1.2), while we did not observe
any cylindrical micelles for the shape amphiphiles with a longer tail. The shape amphiphiles with a
longer tail have relatively fewer shape heads per volume of tail, but a larger surface area needs more
hydrophilic heads to minimize the surficial free energies. Thereby, it is difficult to form cylindrical
micelles for the shape amphiphiles with a long tail.
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A comparison of Figures 2 and 3 shows that the two morphological phase diagrams are quite
different from each other, indicating that the temperature T∗ has an important effect on the self-assembled
morphology of aggregates. One difference is that systems with n = 23–54 can form mixed morphologies
of spheres and cylinders in relatively wide range of φ at T∗ = 1.2, while mixed morphologies of spheres
and cylinders at n = 23–140 and T∗ = 1.4 are not found. Another difference is that, compared with the
phase diagram at T∗ = 1.4, the windows of the vesicles and cylinders in phase diagram at T∗ = 1.2
shift to the directions of smaller n and higher φ. The third difference is that, in the phase diagram
at T∗ = 1.2, the morphology of aggregates is only spherical micelles at n = 140, while, in the phase
diagram at T∗ = 1.4 and n = 140, the morphology of aggregates changes from spherical micelles to
vesicles upon increasing ϕ.

The above simulation results are comparable to previous experiments. Upon increasing φ,
the transitions of the aggregate morphologies occur following the sequence “spherical micelles –>

worm-like cylinders –> spherical vesicles –> tubular vesicles” at n = 70 and T∗ = 1.4 and “spheres
–> mixed morphologies of spheres and cylinders –> worm-like cylinders –> vesicles” at n = 54 and
T∗ = 1.2, which are similar to that observed experimentally by Yu et al. [1]. In their experiments,
the self-assembled morphology of PS70–AC60 in mixture of 1,4-dioxane/DMF/water solution changed
from spherical micelles with an initial molecular concentration of 0.1 (wt)%, to cylinder networks
at 0.5 (wt)%, to a mixed morphology of cylinders and vesicles at 1.0 (wt)% and finally to vesicles at
2.0 (wt)%.Similar aggregate morphologies were also observed from PS100–AC60 in their experiments.
Furthermore, their experiments also indicated that the window for worm-like cylinders became
narrower as increasing the tail length of PS, which is consistent with our result. The morphology
transitions of the Pn–H self-assemblies are also similar to the experimental findings of amphiphilic block
copolymers by Eisenberg and co-workers [30,31]. In their experiments, the aggregate morphology of
polystyrene190-b-poly(acrylic acid)20 in DMF–water mixtures changed from spheres to rods and vesicles
as the copolymer concentration was increased from 1 to 3.5(wt)% [30,31]. For much longer hydrophobic
tails (n = 85–140 and n = 56–120 in Figures 2 and 3, respectively), the aggregate morphologies
transform from spherical micelles directly to bilayer vesicles with the increasing of φ, and the ϕc value
increases slightly with increasing n, which are different from that observed experimentally by Yu
et al. [1]. On the other hand, the morphological transitions of aggregates from spherical micelles to
cylindrical networks and further to bilayer vesicles are observed upon increasing n (4.4% ≤ ϕ ≤ 6.2%
in Figure 2). The simulation results are in good agreement with experimental findings [1]. For example,
in the high molecular concentration range between 1.5 (wt)% and 2.0 (wt)%, the morphology transitions
of aggregates appear from spherical micelles for PS23–AC60, to cylinders for PS46–AC60 and further to
vesicles for PS70–AC60 [1]. The results are also consistent with experimental findings by Eisenberg
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and co-workers [30]. For example, by increasing hydrophobic/hydrophilic block length ratio (nl),
in DMF–water mixtures with a molecule concentration of 2.0 (wt)%, the aggregate morphological
transition of polystyrene200-b-poly(acrylic acid)n changed from spheres at nl = 200/21 to rods at
nl = 200/15 and further to vesicles at nl = 200/8 [30]. However, upon increasing n, the morphology
transitions of aggregates appeared from spherical micelles or mixed morphologies of spheres and
cylinders, to worm-like cylinders or Y-like cylinders, further to bilayer vesicles and finally again to
spheres (2.6% ≤ ϕ ≤ 3.8% and 3.8% ≤ ϕ ≤ 6.2% in Figures 2 and 3, respectively); and from mixed
morphologies of spheres and cylinders to vesicles and further to spheres (2.6% ≤ ϕ ≤ 3.2% in Figure 3).
These simulation results are not observed experimentally.

Figure 4 summarizes the formation processes and dominant morphologies obtained at different
time steps and from (Figure 4c) different Pn–H amphiphiles in a selective solvent at ϕ = 4.4% and
T∗ = 1.4; and (Figure 4d) differentϕ for P70–H amphiphiles at T∗ = 1.4. It is noted that, with the increase
of the tethered polymer length, or with the decrease of the amphiphilic concentration, the formation
pathway of vesicles changes form Mechanism I to Mechanism II. The simulation results are consistent
with that obtained from the polymer-tethered nanoparticle amphiphiles with two tails in a selective
solvent [13]. The simulation results are also consistent with dissipative particle dynamics simulation for
amphiphilic triblock copolymer solution systems where a transition of the vesicle formation pathway
from Mechanism I to Mechanism II was found while increasing the hydrophobic block length or
decreasing the amphiphilic concentration [44].
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Figure 4. (a,b) Schematic drawings of Mechanisms I and II of the vesicle formation from Pn–H
amphiphiles, respectively. Dominant morphologies obtained at different time steps: (c) from different
Pn–H amphiphiles with ϕ = 4.4% and T∗ = 1.4; and (d) from different ϕ for P70–H amphiphiles with
T∗ = 1.4. These morphologies included: spherical micelles (S), cylindrical micelles (C), bilayer sheet (B)
and vesicles (V). Each datum is divided into zones based on its respective mechanism classification.

We analyzed the structural characteristics of vesicle formation at different hydrophobic tail length
n and certain amphiphile concentration ϕ. As shown in Figure 5, the outer radius of the vesicle is
denoted as Rout, the inner radius is denoted as Rin and the wall thickness is denoted as d, which is
determined by the difference between the outer and inner hydrophobic membranes. Here, the outer or
inner radius is defined as the average distance from the center of mass of the vesicle to the surface [58].
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The wall thickness d is the average thickness of hydrophobic membrane. The changes of the Rout, d and
Rin were therefore analyzed for vesicle characteristics based on different n and ϕ.
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The volume of the membrane of the vesicle filled by the tails of Pn–H is denoted as V′. The surface
area of the vesicle consisting of inner one and outer one formed by the heads of Pn–H is denoted as S′.
The relationships for Rout, Rin, S′ and V′ are given in Equations (5) and (6):

R2
out + R2

in= S′/4π (5)

R3
out −R3

in= 3V′/4π (6)

The volume V′ could be simply calculated by the occupied volume of one tail and the number of
tails. The surface area S′ could be ideally calculated by the number and size of head nanoparticles
under the hypothesis of that the particles are closely packed at surface to minimize surface tension.
From Equation (6), we can learn Rout ≥ Rin. When Rout = Rin, the wall thickness of the hydrophobic
membrane d is 0, namely the hydrophobic tail length n is 0. When ϕ is fixed, upon increasing n,
the volume of the hydrophobic membrane increases. Meanwhile, the outer radius Rout is increased
and the inner radius Rin is decreased at a fixed surface area. Thereby, the thickness of the membrane of
vesicles becomes increased upon increasing n. When n increases to a critical value, the inner radius
Rin becomes 0. In this case, the aggregate morphology becomes spherical micelle. For larger
n, the aggregates are still spherical micelles due to the minimization of surface free energies.
The speculations are confirmed by the parameters given in Table 1 and the cross-sectional slices
shown in Figure 6a of the aggregates self-assembled from P70–H, P85–H, P100–H, P120–H, P140–H and
P180–H when the amphiphile concentration is ϕ = 4.4%. In Table 1 and Figure 6a, we can see that the
inner radius Rin decreases with the increase of n and the aggregate morphology is spherical micelles
at n = 180. The change of the aggregate morphology from vesicles into spherical gradually upon
increasing n is consistent with the previous theoretical analysis. In Table 2 and Figure 6b, we can see
that the inner radius Rin and the outer radius Rout of vesicle are both increased with the increase of
amphiphile concentration ϕ at a fixed tail length n = 100. However, the variation of the wall thickness
of the hydrophobic membrane d is less significant. These simulation results help to design vesicles
with controllable thickness, which are crucial in drug and gene delivery.

Table 1. Summary of the inner and outer membrane radius and of the bilayer thickness with different
tail length for Pn–H with ϕ = 4.4% at T∗ = 1.4.

n N 1 Rin Rout d

70 867 15.02 35.42 20.40
85 751 14.20 35.74 21.54
100 662 12.17 36.38 24.21
120 572 8.71 36.71 28.00
140 504 3.32 36.73 33.41
180 406 0.00 37.17 37.17

1 N is molecule number.
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Figure 6. (a) Cross-sectional slices of the aggregates formed by P70–H, P85–H, P100–H, P120–H,
P140–H and P180–H and the amphiphile concentration ϕ = 4.4%. (b) Cross-sectional slices of the
aggregates formed by P100–H amphiphiles and different amphiphile concentration ϕ = 3.2%, ϕ = 3.8%,
ϕ = 4.4%, ϕ = 5.0%, ϕ = 5.6% and ϕ = 6.2%. The orange and blue beads represent hydrophilic
nanoparticle and hydrophobic polymer tail, respectively.

Table 2. Summary of the inner and outer membrane radius and of the bilayer thickness with different
amphiphile concentration for P100–H at T∗ = 1.4.

ϕ N 1 Rin Rout d

3.2% 482 7.05 31.49 24.44
3.8% 572 10.04 34.33 24.29
4.4% 662 12.17 36.38 24.21
5.0% 753 13.04 37.19 24.15
5.6% 843 14.92 39.02 24.10
6.2% 933 15.49 39.51 24.02

1 N is molecule number.

4. Conclusions

Brownian dynamics simulation with implicit solvent was used to study the self-assembly of
shape amphiphiles composed of a hydrophobic polymer tail and a hydrophilic nanoparticle in a
selective solvent. The shape amphiphiles are similar to PS–AC60 [1] or PS–APOSS [6], which can
self-assemble into a wide variety of morphological structures. Dependent on hydrophobic tail length
(n), the self-assembled aggregate morphologies at certain amphiphile concentration (ϕ) and system
temperature (T∗) comprise seven types: spherical micelles, the mixed morphologies of spheres and
cylinders, worm-like cylinders, cylindrical networks, Y-like cylinders, spherical vesicles and tubular
vesicles. Two morphological phase diagrams as a function of n and ϕ were constructed at T∗ = 1.4
and 1.2, respectively. The transitions of aggregate morphology from spherical micelles to cylindrical
networks and further to bilayer vesicles are observed by increasing n at 4.4% ≤ ϕ ≤ 6.2% and T∗ = 1.4.
The simulation results are in good agreement with experimental findings of Yu et al. [1]. Further,
more relationships about morphology aggregates that have not been found in experiments were
exposed. For example, the transition appearing from spherical micelles or mixed morphologies of
spheres and cylinders, to worm-like cylinders or Y-like cylinders, further to bilayer vesicles and finally
again to spheres upon increasing n at 2.6% ≤ ϕ ≤ 3.8% and T∗ = 1.4 or at 3.8% ≤ ϕ ≤ 6.2% and T∗ = 1.2,
as well as the transition from mixed morphologies of spheres and cylinders to vesicles and further to
spheres at 2.6% ≤ ϕ ≤ 3.2% and T∗ = 1.2 are presented. For a much longer polymer tail (n = 85–140
in T∗ = 1.4 systems or n = 56–120 in T∗ = 1.2 systems), the morphology transitions of aggregates
occurring from spherical micelles directly to bilayer vesicles upon increasing of ϕ have also not been
observed experimentally.

Our simulation work not only well complements experimental studies, but is also enlightening for
material design that depends on aggregate morphologies. In addition to the systematical investigation
of the aggregate morphologies that are controlled by thermodynamics and useful in diverse applications
of shape amphiphiles upon varying tail length, we scrutinized the formation pathways that depend
on dynamics and are difficult to be observed in experiments. A summary diagram of formation
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pathway depending on tail length and concentration is presented. More importantly, the thickness of
membranes of vesicles, which is crucial in drug and gene delivery, was tuned by changing tail length.
In addition, the relationship between the membrane thickness and tail length is given. The formation
of vesicles or micelles on increasing tail length is explained. Therefore, our simulation work might be
valuable for guiding experimental studies to manipulate the aggregation structures of polymer-tethered
nanoparticle shape amphiphiles.
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