Synthesis of Core–Double Shell Nylon-ZnO/Polypyrrole Electrospun Nanofibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Core–Double Shell Nylon-ZnO/PPy Electrospun Nanofibers
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davim, J.P.; Charitidis, C.A. Nanocomposites: Materials, Manufacturing and Engineering; Walter de Gruyter GmbH: Berlin, Germany, 2013. [Google Scholar]
- Preda, N.; Evanghelidis, A.; Enculescu, M.; Florica, C.; Enculescu, I. Zinc oxide electroless deposition on electrospun PMMA fiber mats. Mater. Lett. 2015, 138, 238–242. [Google Scholar] [CrossRef]
- Matei, E.; Busuioc, C.; Evanghelidis, A.; Zgura, I.; Enculescu, M.; Beregoi, M.; Enculescu, I. Hierarchical functionalization of electrospun fibers by electrodeposition of zinc oxide nanostructures. Appl. Surf. Sci. 2018, 458, 555–563. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Costas, A.; Breazu, C.; Stanculescu, A.; Rasoga, O.; Popescu-Pelin, G.; Mihailescu, A.; Socol, G. Hybrid organic-inorganic thin films based on zinc phthalocyanine and zinc oxide deposited by MAPLE. Appl. Surf. Sci. 2020, 503, 144317. [Google Scholar] [CrossRef]
- Ozgit-Akgun, C.; Kayaci, F.; Vempati, S.; Haider, A.; Celebioglu, A.; Goldenberg, E.; Kizir, S.; Uyar, T.; Biyikli, N. Fabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition. J. Mater. Chem. C 2015, 3, 5199–5206. [Google Scholar] [CrossRef]
- Elias, J.; Utke, I.; Yoon, S.; Bechelany, M.; Weidenkaff, A.; Michler, J.; Philippe, L. Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates. Electrochim. Acta 2013, 110, 387–392. [Google Scholar] [CrossRef]
- Kaur, P.; Bagchi, S.; Bhondekar, A.P. Impedimetric study of polypyrrole coated zinc oxide fibers for ammonia detection. In Proceedings of the 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 613–616. [Google Scholar]
- Ates, B.; Koytepe, S.; Ulu, A.; Gurses, C.; Thakur, V.K. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem. Rev. 2020, 120, 9304–9362. [Google Scholar] [CrossRef]
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar] [CrossRef]
- Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 2010, 13, 11. [Google Scholar] [CrossRef]
- Fausey, C.L.; Zucker, I.; Lee, D.E.; Shaulsky, E.; Zimmerman, J.B.; Elimelech, M. Tunable molybdenum disulfide-enabled fiber mats for high-efficiency removal of mercury from water. ACS Appl. Mater. Interfaces 2020, 12, 18446–18456. [Google Scholar] [CrossRef]
- Aruchamy, K.; Mahto, A.; Nataraj, S.K. Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product. Nano Struct. Nano Objects 2018, 16, 45–58. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Michalska-Pozoga, I.; Thakur, V.K. Biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning. Nanomaterials 2019, 9, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinga, S.-I.; Costea, C.-C.; Zamfirescu, A.-I.; Banciu, A.; Banciu, D.-D.; Busuioc, C. Composite Fiber Networks Based on Polycaprolactone and Bioactive Glass-Ceramics for Tissue Engineering Applications. Polymers 2020, 12, 1806. [Google Scholar] [CrossRef] [PubMed]
- Jinga, S.-I.; Zamfirescu, A.-I.; Voicu, G.; Enculescu, M.; Evanghelidis, A.; Busuioc, C. PCL-ZnO/TiO2/HAp electrospun composite fibers with applications in tissue engineering. Polymers 2019, 11, 1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neibolts, N.; Platnieks, O.; Gaidukovs, S.; Barkane, A.; Thakur, V.K.; Filipova, I.; Mihai, G.; Zelca, Z.; Yamaguchi, K.; Enachescu, M. Needle-free electrospinning of nanofibrillated cellulose and graphene nanoplatelets based sustainable poly (butylene succinate) nanofibers. Mater. Today Chem. 2020, 17, 100301. [Google Scholar] [CrossRef]
- Beregoi, M.; Evanghelidis, A.; Diculescu, V.C.; Iovu, H.; Enculescu, I. Polypyrrole Actuator Based on Electrospun Microribbons. ACS Appl. Mater. Interfaces 2017, 9, 38068–38075. [Google Scholar] [CrossRef] [PubMed]
- Harjo, M.; Zondaka, Z.; Leemets, K.; Järvekülg, M.; Tamm, T.; Kiefer, R. Polypyrrole-coated fiber-scaffolds: Concurrent linear actuation and sensing. J. Appl. Polym. Sci. 2020, 137, 48533. [Google Scholar] [CrossRef]
- Zhang, F.; Xia, Y.; Wang, L.; Liu, L.; Liu, Y.; Leng, J. Conductive shape memory microfiber membranes with core−shell structures and electroactive performance. ACS Appl. Mater. Interfaces 2018, 10, 35526–35532. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Beregoi, M.; Evanghelidis, A.; Negrea, R.F.; Apostol, N.G.; Enculescu, I. Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Sci. Rep. 2019, 9, 8902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viter, R.; Chaaya, A.A.; Iatsunskyi, I.; Nowaczyk, G.; Kovalevskis, K.; Erts, D.; Miele, P.; Smyntyna, V.; Bechelany, M. Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications. Nanotechnology 2015, 26, 105501. [Google Scholar] [CrossRef]
- Serban, A.; Evanghelidis, A.; Onea, M.; Diculescu, V.; Enculescu, I.; Barsan, M.M. Electrospun conductive gold covered polycaprolactone fibers as electrochemical sensors for O2 monitoring in cell culture media. Electrochem. Commun. 2020, 11, 106662. [Google Scholar] [CrossRef]
- Chen, L.; Li, D.; Chen, L.; Si, P.; Feng, J.; Zhang, L.; Li, Y.; Lou, J.; Ci, L. Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon 2018, 138, 264–270. [Google Scholar] [CrossRef]
- Abidin, S.N.J.S.Z.; Mamat, S.; Rasyid, S.A.; Zainal, Z.; Sulaiman, Y. Fabrication of poly(vinyl alcohol)-graphene quantum dots coated with poly(3,4-ethylenedioxythiophene) for supercapacitor. J. Appl. Polym. Sci. 2018, 56, 50–58. [Google Scholar] [CrossRef]
- Busuioc, C.; Olaret, E.; Stancu, I.-C.; Nicoara, A.-I.; Jinga, S.-I. Electrospun fibre webs templated synthesis of mineral scafolds based on calcium phosphates and barium titanate. Nanomaterials 2020, 10, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Li, Y.; He, W.; Huang, Q.; Zhang, R.; Feng, Q. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. J. Biomed. Mater. Res. Part A 2018, 106A, 2863–2870. [Google Scholar] [CrossRef] [PubMed]
- Bedeloglu, A.C.; Cin, Z.I. Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers. J. Polym. Eng. 2019, 39, 752–761. [Google Scholar] [CrossRef]
- Kraft, G.M.; Hire, C.C.; Santiago, A.; Adamson, D.H. Electrospun biomimetic catalytic polymer template for the sol-gel formation of multidimensional ceramic structures. Mater. Lett. 2019, 240, 242–245. [Google Scholar] [CrossRef]
- Maharjan, B.; Kaliannagounder, V.K.; Jang, S.R.; Awasthi, G.P.; Bhattarai, D.P.; Choukrani, G.; Park, C.H.; Kim, C.S. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2020, 114, 111056. [Google Scholar] [CrossRef]
- Zhou, J.-F.; Wang, Y.-G.; Cheng, L.; Wu, Z.; Sun, X.-D.; Peng, J. Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regen. Res. 2016, 11, 1644–1652. [Google Scholar]
- Marega, C.; Saini, R. Preparation and characterization of conductive polymer blends of polypyrrole and poly(ethylene oxide). J. Nanosci. Nanotechnol. 2018, 18, 1283–1289. [Google Scholar] [CrossRef]
- Capilli, G.; Calza, P.; Minero, C.; Cerruti, M. Electrospun core–sheath PAN@PPY nanofibers decorated with ZnO: Photo-induced water decontamination enhanced by a semiconducting support. Mater. Chem. A 2019, 7, 26429. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, M.; Yang, M. In-situ grown nanostructured ZnO via a green approach and gassensing properties of polypyrrole/ZnO nanohybrids. Sens. Actuators B 2017, 238, 596–604. [Google Scholar] [CrossRef]
- Migliorini, F.L.; Sanfelice, R.C.; Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Correa, D.S. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles. Appl. Surf. Sci. 2018, 443, 18–23. [Google Scholar] [CrossRef]
- De Melo, E.F.; Alves, K.G.B.; Junior, S.A.; de Melo, C.P. Synthesis of fluorescent PVA/polypyrrole-ZnO nanofibers. J. Mater. Sci. 2013, 48, 3652–3658. [Google Scholar] [CrossRef]
- Leo, C.P.; Linggawati, A.; Mohammad, A.W.; Ghazali, Z. Effects of c-aminopropyltriethoxylsilane on morphological characteristics of hybrid nylon-66-based membranes before electron beam irradiation. J. Appl. Polym. Sci. 2011, 122, 3339–3350. [Google Scholar] [CrossRef]
- Zhang, Q.-X.; Yu, Z.-Z.; Yang, M.; Ma, J.; Mai, Y.-W. Multiple melting and crystallization of nylon-66/montmorillonite nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 2861–2869. [Google Scholar] [CrossRef]
- Preda, N.; Costas, A.; Beregoi, M.; Enculescu, I. A straightforward route to obtain organic/inorganic hybrid network from bio-waste: Electroless deposition of ZnO nanostructures on eggshell membranes. Chem. Phys. Lett. 2018, 706, 24–30. [Google Scholar] [CrossRef]
- Ahmada, M.; Zhu, J. ZnO based advanced functional nanostructures: Synthesis, properties and applications. J. Mater. Chem. 2011, 21, 599–614. [Google Scholar] [CrossRef]
- Charles, J.; Ramkumaar, G.R.; Azhagiri, S.; Gunasekaran, S. FTIR and thermal studies on nylon-66 and 30% glass fibre reinforced nylon-66. J. Chem. 2009, 6, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Beregoi, M.; Preda, N.; Evanghelidis, A.; Costas, A.; Enculescu, I. Versatile actuators based on polypyrrole-coated metalized eggshell membranes. ACS Sustain. Chem. Eng. 2018, 6, 10173–10181. [Google Scholar] [CrossRef]
- Orendorff, C.J.; Huber, D.L.; Bunker, B.C. Effects of water and temperature on conformational order in model nylon thin films. J. Phys. Chem. C 2009, 113, 13723–13731. [Google Scholar] [CrossRef]
- Cho, L.-L. Identification of textile fiber by Raman microspectroscopy. J. Forensic Sci. 2007, 6, 55–62. [Google Scholar]
- Wu, T.-M.; Chang, H.-L.; Lin, Y.-W. Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos. Sci. Technol. 2009, 69, 639–644. [Google Scholar] [CrossRef]
- Biswas, S.; Drzal, L.T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 2010, 22, 5667–5671. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beregoi, M.; Preda, N.; Costas, A.; Enculescu, M.; Negrea, R.F.; Iovu, H.; Enculescu, I. Synthesis of Core–Double Shell Nylon-ZnO/Polypyrrole Electrospun Nanofibers. Nanomaterials 2020, 10, 2241. https://doi.org/10.3390/nano10112241
Beregoi M, Preda N, Costas A, Enculescu M, Negrea RF, Iovu H, Enculescu I. Synthesis of Core–Double Shell Nylon-ZnO/Polypyrrole Electrospun Nanofibers. Nanomaterials. 2020; 10(11):2241. https://doi.org/10.3390/nano10112241
Chicago/Turabian StyleBeregoi, Mihaela, Nicoleta Preda, Andreea Costas, Monica Enculescu, Raluca Florentina Negrea, Horia Iovu, and Ionut Enculescu. 2020. "Synthesis of Core–Double Shell Nylon-ZnO/Polypyrrole Electrospun Nanofibers" Nanomaterials 10, no. 11: 2241. https://doi.org/10.3390/nano10112241
APA StyleBeregoi, M., Preda, N., Costas, A., Enculescu, M., Negrea, R. F., Iovu, H., & Enculescu, I. (2020). Synthesis of Core–Double Shell Nylon-ZnO/Polypyrrole Electrospun Nanofibers. Nanomaterials, 10(11), 2241. https://doi.org/10.3390/nano10112241